
Efficient Parallel Shell

Georges-André Silber
Centre de Recherche en Informatique, École des mines de Paris

35, rue Saint-Honoré, 77305 Fontainebleau cedex, France
E-Mail: Georges-Andre.Silber@ensmp.fr

ABSTRACT
We propose a slightly modified Unix shell where the user can
explicitly or implicitly execute commands on different com-
puters of a cluster. The shell redirects output and input of
those different commands to and from the right hosts, for in-
stance when the user uses the redirections | (pipe), > (write
to a file) and < (read from a file). We use a simple model of
remote execution implemented as a portable Remote Execu-
tion Daemon (RED) that has to be executed on each node
of the cluster and that can be seen as a highly simplified
operating system. We show with a simulation that those
very simple shell constructs coupled with a RED could lead
to significant performance results on clusters.

Keywords: Unix shell, remote execution, parallel
execution, pipelined execution.

1. INTRODUCTION
A Unix shell offers several ways to express parallelism. For
instance, A|B|C describes a pipelined execution of processes
A, B and C that collaborate in parallel to produce a result; the
operator & launch a process without waiting for its result,
giving the possibility to launch other processes in parallel.

On computers with a processor executing a single thread
of instructions, processes are not executed in parallel. They
are only executed in parallel if the computer has several pro-
cessors or at least several execution units and if the oper-
ating system is capable of distributing the processes among
execution units. Grouping some computers with the same
architecture into a cluster is a widely used way of running
parallel programs. But, it does not lead directly to a parallel
execution of processes, because those processes must be ex-
ecuted remotely on computers of the cluster. Programmers
usually have to write specific programs using TCP/IP sock-
ets or message passing libraries like MPI to obtain a parallel
execution of communicating processes.

Transparent remote execution of processes on computers of
a cluster can be obtained with a single system image oper-
ating system [1, 5]. It gives the user the illusion that the
cluster is a single computer with several execution units.
The underlying operating system is responsible for processes
allocation on computers, load-balancing, input/output redi-
rections, file systems management, etc.

We propose a different approach where a modified Unix shell
allows the user to explicitly or implicitly launch commands
on different computers of a cluster. The shell redirects out-
put and input of those different commands to and from the
right hosts, for instance when the user uses the redirections
| (pipe), > (write to a file) and < (read from a file). An
important aspect of our work is that the user has the choice
to name the host where he wants to run a task or to let the
shell decide for him where to run the task. Another aspect
is that the user does not have to transfer the file he wants
to execute to the right hosts, the shell taking care of that
for him.

Our approach requires a modification of the shell but no
modification of the operating system. It uses a simple model
of remote execution materialized as a Remote Execution
Daemon (RED) [7] that has to be executed on each node
of the cluster. This daemon implements a simple service for
remote program execution and file storage and can be seen
as a highly simplified operating system. Our shell process is
in fact a client of many RED running on distant hosts.

RED and the modified shell are highly portable on POSIX
systems. We show with a simulation that those very simple
constructs coupled with a simple RED could lead to signifi-
cant performance results on clusters.

The organization of this paper is as follows. First, we present
our extensions to the Unix shell. Second, we present per-
formance results for a simple pipeline in two cases: CPU-
bounded and IO-bounded application. We show that in ev-
ery case our approach leads to speedups. Third, we give
a sketch of the implementation of our extensions in GNU
BASH using a C implementation of a RED using XML-RPC
[10, 4]. Finally, before we conclude, we discuss some related
works.

2. PARALLEL SHELL
Our reference shell is GNU BASH and we based our exten-
sions on the documentation that can be found in [2]. We

describe our parallel shell in an informal way, without giv-
ing many implementation details. We are going to see in
section 4 that our extensions can be easily implemented.

We use the first restriction that all computers share the same
architecture. The second restriction is that the executable
file and the required dynamic libraries of the command that
is executed on a remote host must be present on the local
host. They are transferred on demand by the shell on the
remote host. With this last restriction, the computers of the
cluster does not need to share a file system.

2.1 Local shell and remote hosts
When a shell is started, we consider that it has a list of avail-
able remote hosts that have the same architecture and that
accept commands (typically, the computers of the cluster).
We consider in a first approach that this list is read from a
file when the shell starts and that it cannot change during
shell execution.

The shell sends a message to each host of this list, getting a
token for each host. Those tokens represent keys to private
virtual file systems that are created on each host for the
client shell when it asks for a token. Those file systems
can be empty and there is no guarantee of persistence for
the files stored on the remote host. The private virtual file
systems on the remote hosts can be implemented in memory
or in actual disks. The client shell is the only one that can
access its private file system.

2.2 Simple commands
A simple shell command is a sequence of words separated by
blanks, terminated by one of the shell’s control operators (a
newline or one of the following: ‘||’, ‘&&’, ‘&’, ‘;’, ‘;;’, ‘|’, ‘(’,
or ‘)’). The first word generally specifies a command to be
executed, with the rest of the words being that command’s
arguments.

In our parallel shell, the first word, the command to be
executed, can be prefixed by a sequence of characters of the
form host:, where host is the computer where the command
has to be executed. For instance, the command

node0:command a b c

runs the command program on the host node0 with the argu-
ments a, b, and c. The remote command does not see the
local files. All files used by command must be on node0. The
shell is responsible for transferring the command executable
and its associated dynamic libraries to node0 if they are not
already there. The command can be the path where to find
the command locally. For instance, the user can write:

node0:/usr/bin/command a b c

and the local command /usr/bin/command is going to be
transfered to node0, creating on the fly the directories if
needed.

In a natural way, standard input stream is taken from the
terminal that launched the command and standard output
and error streams are redirected to the terminal. A com-
mand executed this way does not receive any PID (Process
IDentifier), because no process is created on the local host.
It only receives a job number in the BASH sense and can
then be manipulated with BASH built-in commands.

2.3 Redirections
We add a special case for file names that are used in redi-
rections. The user can prefix filenames with a host:, where
host is the remote computer where the file must be written
or read. For instance, the command

node0:command > node1:file1 < node2:file2

use the remote file file1 as input stream of the remote
command command that writes its result in the remote file
file2. To copy the resulting file locally, it is sufficient to
write

cat > localfile < node2:file2

2.4 Pipeline
The way we handle pipelines is one of the main aspect of
our work. A pipeline is a sequence of simple commands
separated by ‘|’. The format for a pipeline is

command1 [| command2 ...]

where the output of each command in the pipeline is con-
nected via a pipe to the input of the next command. That is,
each command reads the previous command’s output. We
modify the pipe semantic the following way: if at least one
command of the pipe is a remote execution, the pipe be-
comes a direct network connection. We are going to see in
section 3 that this aspect is crucial in terms of performance.

2.5 Predefined parameter to get a remote host
name

We add a new special parameter of the shell, the parame-
ter $: that contains the name of a remote host accepting
commands. Two consecutive uses of $: do not necessarily
give the same result. By default, we consider a round-robin
policy where we just pick the next remote host on the static
list. Other policies can be implemented, to take for instance
load-balancing aspects into account.

With this special parameter, it is possible to put the name
of a distant host in a variable like

MYHOST=$:

and to use it the following way

$MYHOST:command

The user can also directly write

$::command

leaving to the shell the placement decision.

We also add a variable called REDHOSTS that contains the list
of all available hosts. In the following, we give an example
where this special variable is used to run a single command
on all available hosts.

2.6 Examples
With our parallel shell, it is possible to write commands
with explicit placement like:

producer | node1:task1 | node2:task2 > node3:dfile

cat < node3:dfile > lfile

where node1, node2 and node3 are remote computers. The
data produced by the process task1 running on node1 is sent
directly to the standard input of the process task2 running
on node2, without returning to the host running the process
producer.

The special parameter $: is convenient to exhibit an implicit
placement like:

DESTHOST=$:

producer | $::task1 | $::task2 > $DESTHOST:dfile

cat < $DESTHOST:dfile > lfile

where the shell decides where to run the different tasks.

It is also possible to run a single command on multiple hosts
at the same time:

for node in $REDHOSTS

do

$node:task &

done

wait

Note the ’&’ character that is necessary to run all the pro-
cesses in parallel. The wait command is a BASH command
that waits for the completion of all processes running in the
background [2].

3. PERFORMANCE RESULTS
The results presented here come from a simulation we ran
before we began the actual implementation of our extensions
into GNU BASH and the development of RED with XML-
RPC. We wanted to validate our ideas by experiments that
are now motivating our developments. We show that our
approach gives significant performance results when execut-
ing communicating processes in parallel under the form of
a pipeline. We provide in [6] a file containing all C source
codes and shell scripts we have used during our experiments.

We ran experiments using the following pipeline, where x

is the number of packets of 1024 bytes that are produced
by the program producer and consumed by the program
consumer. Each packet contains random data.

producer x | task w | task w | task w | consumer x

The standard output of producer is transmitted to the stan-
dard input of a program task, that executes the following
steps: 1) read a packet of 1024 bytes, 2) iterate w times over
this packet, executing two arithmetic operations on each
byte, and 3) write the packet to the standard output. The
program consumer just read x packets, one at a time, and
does not write anything on standard output.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Sequential
Remote
Parallel

Figure 1: Sum of user and system time in seconds
(y axis) for an increasing number of 1024 bytes data
packets exchanged (x axis). IO-bound version of the
pipeline (2048 iterations per packet).

Sequential experiments were done using a Pentium 4 com-
puter running Debian GNU/Linux. Its processor is clocked
at 2.4 GHz and has 2 GB of RAM (this computer is called
stockholm). The +-line called Sequential in Figure 1 gives
the running time (user and system time) in seconds of the
previous pipeline for numbers of packets x. The parameter
w is set to 2 (1024 × 2 = 2048 iterations per packet). We
call this version the IO-bound version because most of the
running time is taken by input/output operations. Figure
2 represents the same experiment with a parameter w set
to 1024 (1024× 1024 = 1048576 iterations per packet). We
call this version the CPU-bound version because most of the
running time is taken by computing operations.

Our next experiments consisted in the evaluation of two
distributed execution schemes: one that uses the rsh com-
mand, and another that uses a parallel execution scheme
that can be expressed with our shell extensions. We used for
these experiments three more computers: a computer with
two Opteron 244 processors at 1.8 GHz with a 8 GB shared
RAM (surville), a computer with a Pentium 4 computer at
2.4 GHz with 2 GB of RAM (saigon), and a computer with a
Pentium 4 computer at 3 GHz with 2 GB of RAM (nantes).
The four computers are connected using a 100 Mbit/s Eth-
ernet switch that is the main switch of our laboratory. We
are not exactly in a cluster, but the differences between the
schemes of executions that we present should remain in a

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sequential
Remote
Parallel

Figure 2: Sum of user and system time in seconds
(y axis) for an increasing number of 1024 bytes data
packets exchanged (x axis). CPU-bound version of
the pipeline (1048576 iterations per packet).

true cluster environment. All four computers run Debian
GNU/Linux.

The first distributed scheme of execution, that we call the
remote execution scheme, is as follows:

producer x | (rsh surville task w)

| (rsh saigon task w)

| (rsh nantes task w) | consumer x

where producer and consumer are executed on the host
stockholm and the three task processes are remotely ex-
ecuted on the hosts surville, saigon, and nantes. Three
bi-directional network connections are established between
the host stockholm and the hosts surville, saigon, and
nantes. The order of data movements are depicted in Fig-
ure 3 a).

We can see in Figure 3 that the remote scheme of execution
transforms the host stockholm in a potential bottleneck for
data transfers. This is verified in Figure 1 where we can see
that the ×-line representing the execution times is far above
the sequential execution for the IO-bound case. On the con-
trary, this scheme of execution leads to a linear speedup
depicted in Figure 2 for the CPU-bound case.

The second distributed scheme of execution, that we call the
parallel execution scheme, is as follows:

producer x | surville:task w | saigon:task w

| nantes:task w | consumer x

where an explicit direct network connection is made between
stockholm and surville, surville and saigon, saigon

and nantes, and nantes and stockholm. The order of data
movements are depicted in Figure 3 b). We can see that this
parallel scheme of execution has no bottleneck. This is veri-
fied in Figure 1 where we can see that the ∗-line representing
the execution times becomes better than the sequential ex-
ecution for the IO-bound case, when the number of packets

nantessurville

saigon

stockholm

1,2

3,4

5,6

a) remote

nantessurville

saigon

stockholm

1

2 3

4

b) parallel

Figure 3: Communication schemes for the a) remote
and the b) parallel executions of the pipelined com-
mand.

exchanged exceed 105. This scheme is equivalent to the re-
mote execution scheme for the CPU-bound case depicted in
Figure 2.

These encouraging results confirmed that our very simple
extensions can lead to significant performance results with
a very easy syntax. So, we decided to implement those ex-
tensions as discussed below.

4. IMPLEMENTATION IN GNU BASH US-
ING RED-XML

Our developments are twofold. First, we are implementing
in C a simple daemon for remote execution and storage,
following the RED interface described in [7]. Second, we are
modifying the source code of GNU BASH version 3.0 to add
our extensions. The use of those extensions is going to be
an option when BASH is launched.

Our implementation of RED is on top of a regular Linux
system and consists in an HTTP server waiting for messages
in XML-RPC format. Each kind of message represents a call
to one method of the RED interface. Basically, this interface
allows to transfer files and to remotely execute commands,
with flexible input/output redirections in sockets. The main
point is that this interface permits the implementation of
each extension of our parallel shell under the form of one or
several calls to methods of one or several RED servers. In
fact, the conception of the RED interface has been driven by
the needs that appear during the conception of our parallel
shell.

5. RELATED WORK
The most recent work that shares some ideas with our work
is [9]. Compared to our work, they do not address the prob-
lem of pipelines and they do not give a simple and coherent
shell syntax to place explicitly tasks on remote computers.
The work in [8] is more an effort to build a Single System
Image than a parallel shell. It does not address explicit
placement nor pipelines. The work in [3] focus on Grid en-
vironments and its main purpose is to provide a work around
to build virtual grids composed of hundred of heterogeneous
machines. It does not provide any implicit placement of
processes nor any mechanism to automatically transfer on-
demand executable files to the remote hosts. To finish, none
of the works cited above give any real or simulated perfor-
mance result for the execution time of a pipelined applica-
tion.

6. CONCLUSION AND FUTURE WORK
We introduced a new syntax to express explicit or implicit
simple parallelism on clusters with Unix shell constructs.
We gave significant performance results that motivate our
approach. We are now implementing the RED interface us-
ing XML-RPC and we are modifying GNU BASH with our
parallel extensions.

This simple system is not as powerful and generic as a mes-
sage passing interface like MPI nor a Single System Image
operating system, but it is far more simple to use and to
implement, and it does not require any modification in ex-
isting programs nor operating systems. Furthermore, people

familiar with the shell should be able to use those new con-
structs in a very natural way.

We plan to extend our framework towards heterogeneous
networks of workstations. An easy but not very elegant
way to achieve this is to store locally several versions of the
commands and to transfer the proper version at the right
time.

7. REFERENCES
[1] Barak, A., and La’adan, O. The MOSIX

Multicomputer Operating System for High
Performance Cluster Computing. Journal of Future
Generation Computer Systems 13, 4 (Mar. 1998),
361–372.

[2] Free Software Foundation (FSF). GNU BASH.
Web.
http://www.gnu.org/software/bash/bash.html.

[3] Kaneda, K., Taura, K., , and Yonezawa, A.
Virtual Private Grid : A Command Shell for Utilizing
Hundreds of Machines Efficiently. In Proceedings of
the 2nd IEEE International Symposium on Cluster
Computing and the Grid (CCGrid) (may 2002).

[4] Laurent, S. S., Dumbill, E., and Johnston, J.
Programming Web Services with XML-RPC. O’Reilly,
2001.

[5] Morin, C., Gallard, P., Lottiaux, R., and
Valée, G. Towards an Efficient Single System Image
Cluster Operating System. Future Generation
Computer Systems 20, 2 (2004).

[6] Silber, G.-A. Experiments for coset-2 workshop.
Web. http://www.cri.ensmp.fr/people/silber/
metacc/red/coset02.tar.gz.

[7] Silber, G.-A. Remote Execution Daemon (RED): A
Simple Service for Remote Execution and Storage.
Tech. Rep. E-267, CRI/ENSMP, Apr. 2005. http:
//www.cri.ensmp.fr/classement/doc/E-267.pdf.

[8] Tan, C., Tan, C., and Wong, W. Shell over a
Cluster (SHOC): Towards Achieving Single System
Image via the Shell. In Proceedings of IEEE
International Conference on Cluster Computing
(CLUSTER 2002) (sep 2002), pp. 28–36.

[9] Truong, M., and Harwood, A. Distributed shell
over peer-to-peer networks. In Proceedings of the 2003
International Conference on Parallel and Distributed
Processing Techniques and Applications (Las Vegas,
Nevada, 2003), pp. 269–275.

[10] Wikipedia, the Free Encyclopedia. Xml-rpc.
Web. http://en.wikipedia.org/wiki/XML-RPC.

