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ABSTRACT

Cette thèse présente Linea, une nouvelle approche pour calculer la proximité 

d’objets. Pour cela, nous utilisons une combinaison des mesures de distance dans un 

espace métrique et l’analyse des liens pour définir la proximité des objets sur Internet. 

Cette structure est générique et peut être appliquée à plusieurs domaines comme la 

gestion de la relation client, les ressources humaines ou les systèmes de 

recommandation.  Puis, nous implémentons plusieurs versions de l’algorithme et nous 

comparons non seulement la précision des implémentations mais aussi leurs 

performances à travers des expériences. Ensuite, nous décrivons la conception et 

implémentation de Linea en présentant les défis que nous avons rencontrés et les 

améliorations que nous avons faites. Enfin nous donnons quelques domaines 

d’applications potentiels et champs de travaux futurs.

This dissertation presents Linea, a novel approach to proximity calculations in 

a linked metric space.  We use a combination of metric space distance calculations 

and link analysis to determine the proximity between internet objects.  This 

framework is generic and can be applied to various domains such as help desk 

support, human resources or recommender systems.  We implement several versions 

of the algorithm and compare not only their accuracy versus manual approaches, but 

also their performances through experimentation.  We also describe the design and 

implementation of Linea providing insights on challenges and improvements made.  

Finally we give possible application domains and areas for future work.
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Chapter 1

Introduction

The Internet, created over 20 years ago by the US Department of Defense 

Advanced Research Projects Agency (DARPA) as an experimental communications 

medium in the event of a nuclear holocaust, has instead spurred one of the greatest 

economic booms in history.  The major driver for this success is the World Wide Web 

(WWW) invented 15 years ago by Tim Berners-Lee.  The WWW fueled a tremendous 

explosion of online data.  From 1990, with Mr. Berners-Lee’s original website of a 

few pages to today with over 8 billion pages, the WWW has also created a vast 

opportunity for searching technologies.  This need for searching technologies, which

is conceptually based on finding the proximity between two objects, has allowed 

companies like Google and Yahoo to profit well.  However, there remains many more 

challenges and opportunities within this domain.  

Whereas much work has been done in the areas of text-based analysis 

sometimes combined with some form of link analysis, there has been relatively little 

work that exploits highly linked environments with minimal, semi-structured text.  By 

semi-structured we refer to meta-data used with content, such as databases or XML 

documents.  Popular search techniques used today determine proximity primarily by 

document content with a document’s relevance measured by link analysis.  Semantic 

analysis and statistical methods depend on significant textual content to function well.  
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Our approach does not require a large amount of text.  Hence, data sets with reduced

textual content can be measured more effectively.

Another source of motivation for our research is recommender systems.  Over 

the last decade much work has been done in this area.  Most of this work has 

concentrated in developing new methods for recommending items to users and vice 

versa, such as recommending books for customers and movies to Web site visitors.

These recommendation methods are usually classified into collaborative, content-

based and hybrid methods (Balabanovic and Shoham, 1997) and are described in 

more detail in Chapter 2.  There is a recent interest in applying multi-dimensional 

methods to recommender models (Adomavicius, 2005).  

In all of these methods, there are distance calculations that could be 

implemented with Linea. Also, in all of these methods, there is an inherent weakness.  

When a user is given a recommendation, say for a book in an online bookstore 

scenario such as Amazon, it is the result of other users actually buying the 

recommended book.  In set theory terms, the recommended items is always the result 

of an intersection of the set A of books that the user is planning to purchase and the 

set B of books that other users have purchased.  The set of recommendations comes 

for B – A.  However, there may be items that cannot be ascertained based on an 

intersection.  There may be items that are closely related to the item about to be 

purchased.  For example, using Linea, users could be recommended books that are 

close to the book that the user is purchasing.  This flexibility provides a more robust 

recommendation approach as we are not limited to making recommendations based 

matches between books purchased by the user and books previously purchased by 

other clients.

This dissertation presents Linea, a solution for searching in this type of linked 

environment.  We develop Linea by using a generic proximity calculating algorithm 

that is optimized for highly linked environments with minimal semi-structured text.   

We take a plug and play approach that allows Linea to easily be applied to different 

domains.  
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1.1 Research Objectives and Approach

The objective of this dissertation is two fold.  First we develop a generic 

algorithm that calculates the proximity between 2 objects in a linked metric space 

consisting of minimal, semi-structured text. Our second goal is to implement the 

algorithm within Linea and apply it to multiple domains.

To this end, after developing the basic algorithm, we then implement three

versions, naïve, bottom-up and iterative.  The three approaches present distinct 

opportunities and challenges and we seek to compare and contrast not only these 

developmental approaches, but also their experimental results.  

1.2 Practical Problems

I-nova requested assistance from the École des Mines de Paris in addressing 

two kinds of practical problems:  A human resource problem related to Electricité de 

France (EDF) which is described in section 1.2.1.  And then a case-based reasoning 

problem related to equipment failures of Renault Vehicular Industriel (RVI) which is 

described in 1.2.2.

1.2.1 A Human Resource Problem

As a motivation to the subject area, we present a simple example.  Consider 

the research and development (R&D) division of EDF which consists of thousands of 

employees.  In this division, there are three kinds of things that interest us:  people, 

competencies, and groups.  In this corporation, people can have competencies and 

they can belong to groups.  In addition, groups may also have competencies.
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Major Corporation

People Competencies

Groups

Figure 1  Major Corporation

Consider two employees:  John and Mary.  They have attributes which 

describe them, such as their name, their age, their education level, etc.  In our 

example, we know that John and Mary may be associated with certain competencies 

and groups within the corporation. Accordingly, we would like to find out how ‘close’ 

John is to Mary.  There are several approaches to determining this.  The approach that 

we present in this work considers not only the attributes that directly describe John 

and Mary, but also the elements that are related to John and Mary (competencies and 

groups).

Let us consider John first.  Let John be 30 years old, and have a master’s level 

education.  He has 2 competencies:  java programming and C++ programming.  He 

also belongs to the ‘webpage development’ group.  Now, let us consider Mary.  She is 

27 years old and has a bachelor’s level education.  She has 3 competencies:  database 

programming, java programming, and UML design.  She belongs to two groups in the 

corporation:  database design, database development.
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Major Corporation
People Competencies

Groups

John

Mary

Java

C++

Webpage dev

DB programming

UML design

DB design

DB dev

Figure 2  Major Corporation with links

The approach that we present to see how close John is to Mary takes into 

account  not only the direct attributes of John and Mary (we call this the 

LocalProximity) but also the proximity of the sets of elements related to John and 

Mary (we call this the ImagedProximity).   We combine these two proximity values 

for our final value which we call the GlobalProximity.

1.2.2 A Case-based Reasoning Problem

The Renault Trucks division of RVI is responsible for managing help desk 

requests from garages that repair and maintain Renault trucks.  To help manage this 

process Renault maintains a database of these incidents that are called in.  Here is an 

extract of the incident file.
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Replace steering 
column

Column locksSteering556

Mount special modelActuator causes limit 
on speed

Engine106

Support modificationBack fender/Support 
ruptured

Chassis8

Corrective ActionCorrective ActionProblemProblemPartPartIDID

Figure 3 Partial listing of the Renault incident database

As a client calls in with an incident, an entry is added to the database.  The 

goal of each session is to identify the corrective action to the problem.  Once this is 

done, it is also logged into the database under corrective actions.

The data file can be modeled within a graph structure with four nodes:

-- ID number

-- Vehicle part

-- Problem description

--Corrective action
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ID

Part

Action

Problem

8 106

Chassis

Engine
Steering

Fender

Actuator

Column

Modify

Mount
Replace

Figure 4 Partial graph representation of the Renault incident database

Incidents already in the database normally have a corrective action.  New 

incidents do not.  Hence, the aim would be to find the incident that is currently in the 

database that is closest to the new incident.   If the data-based incident is close enough 

to the new one, then its corrective action should apply to the new incident. Otherwise, 

it should help finding a solution faster since the system is finding similar incidents.

1.3 The Proximity Calculator Algorithm: A first look

In this section I will describe in general terms the process of the algorithm.  

Before doing so, I will explain the supporting graph structure, which is integral to the 

proximity calculations.
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1.3.1 The supporting domain graph

The proximity is calculated with a domain defined within a graph structure.  A 

node represents a class of elements.  Elements within a node represent instances of the 

class of elements described by the node.  For example, in Figure 1, the node Persons 

holds people.  The elements in Persons are examples of people within the domain.  

The associations between the nodes indicate that there is a defined relationship 

between elements in both nodes.  For example, the Persons and Groups have an 

association.  It defines the association that people in this domain can belong to groups.  

The links between elements in one node to elements in another indicate an instance of 

a link between the two elements.  For example, the link between John in node Persons 

and Webpage Development in node Groups in Figure 2 indicates that John is a 

member of the group Webpage Development.

1.3.2 The algorithm

The proximity calculator algorithm measures the GobalProximity between 2 

elements in the same node.  As indicated in the previous section, this calculation 

includes not only the direct attributes of each element (LocalProximity) but also the 

proximity of elements associated with each of the 2 elements (ImagedProximity).  We 

use a weight value, α, to balance the importance between the LocalProximity and 

ImagedProximity results.  

We will now expand this description somewhat.  Consider a domain 

represented by a graph with 5 nodes.  We name each node A through E.  In Node A, 

consider 2 elements, x and y. See Figure 5. 
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DD

AA

x

y

EE

CC

DD

BB

Figure 5 Sample domain graph

Each element in the domain has a set of attributes which describe it.  Recall 

that in the large corporation example from the previous section, each employee in the 

Persons node had 2 attributes:  age and education level.  The LocalProximity 

calculation compares the element attributes.  This particular calculation is domain 

specific.  We will discuss some possible approaches in Chapter 4.

For the ImagedProximity calculation, we consider the sets of elements that are 

linked to x and y in other nodes. These sets are called image sets and can be located 

in any node that is associated with Node A by an outbound directed relationship.  For 

example, in Figure 5, Nodes B, C and D can contain image sets for x and y in Node

A. 

We determine an ImagedProximity by measuring the set distance between the

pair of image sets associated with x and y in each node that is related to Node A.  We 

can see an example of this in Figure 6 with the 2 image sets of x and y that are located 

in Node B. 
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AA

x

y

BB

*
***
*

EE

CC

DD

Figure 6 Sample domain graph with an image set pair

We perform an ImagedProximity calculation for each of the nodes that can 

have image sets of x and y. These are Nodes B, C and D.  During the set distance 

calculations, we recursively calculate the GlobalProximity, which we will discuss in 

more detail in Chapter 4.

1.4 Applications

In the previous sections, we have mentioned the human resources and 

helpdesk domains as application areas for the Linea agent.  However, there are other 

domains that would also benefit from Linea.

1.4.1 Web pages

Linea can be applied to computing the proximity of web pages to one another.  

In particular web pages could be characterized by their title, their author, their 
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publication date, the terms included on the page and their hyperlinks.  We could use 

these characteristics to define the nodes for a graph representation of this domain.  

Using the Linea algorithm and by considering all the elements of each node, we can 

then compute the proximities of two Web pages, or of 2 different terms.   This could 

be used in electronic commerce to give suggestions to customers about other pages to 

visit, or other information related to the same subject.  These proximities can also be 

used to classify Web pages using clustering techniques.

1.4.2 Recommender systems

Recommender systems have been well researched over the past decade.  Most 

of this work has been focused on developing new methods of recommending items to 

users and vice versa.  With the advent of the Internet and e-commerce, recommender 

systems have found many applications.  

One application is movie recommender systems that find films that would 

interest a potential movie-goer.  The domain graph would possibly consist of 3 nodes:  

people, film preferences and movies.  The Linea agent would find the movies closest 

to a person as described by their preferences and the set of movies that other movie-

goers liked.

Similarly, Amazon.com has a well known recommender system for its clients.  

After the customer has chosen a book and is ready to finalize a purchase, Amazon 

proposes additional books.  This set of books is determined by analyzing what other 

customers purchased when buying the same book.  Linea could be used to enhance 

this system by providing contextual information via multi-dimensional data.  Instead 

of just considering what other customers purchased, with the Linea system, they could 

also take into account attributes of the customer, time or date of purchase, or books 

that are close to the book purchased but possibly not the same as other customers have 

purchased.
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1.4.3 Netfires

The US Defense Advanced Research Agency (DARPA) is sponsoring the 

development of the next generation of artillery systems.   Today, artillery systems are 

‘point-and-shoot.’  When an army unit encounters resistance from the adversary, it 

requests artillery support.  The requesting unit provides the enemy location data and 

with this, the supporting artillery unit fires rounds onto the target.  This system has 

changed very little since the time of Napoleon.

Netfires is a radical change.  Instead of waiting to be called by an army unit 

confronting an enemy, the Netfires system launches a group of small missiles that 

loiters over the battlefield beforehand.  When a friendly army unit encounters enemy 

resistance and calls for artillery support, the group of loitering missiles flying 

overhead immediately decide among themselves which will respond.  The one that is 

chosen then targets the enemy and attacks it by falling out of the sky.

The Linea agent could be used to determine which loitering missile flying 

overhead is ‘closest’ to the enemy target.  Factors that could be considered to compute 

proximities include the type of target (infantry, armor), fuel level on the missile, 

enemy location and missile location, to name a few.

1.5 Organization of the Dissertation

Chapter 2:  The state of the art related to our problem domain is presented.  

Our domain is actually a combination of multiple domains.  We present the current 

work in these domains and show how our work is related and how we extend it.

Chapter 3:  The terminology used throughout the dissertation is introduced.  

The main areas focus on algorithmic graph terms.  We have introduced terms specific 

to our problem.  The mathematical preliminaries are also described in this chapter. 

This will provide the foundation for our algorithm development.



25

Chapter 4:  The Linea agent algorithm is described.  After presenting the basic 

equations, we then present three approaches for its implementation:  naïve, relaxed 

iterative, and bottom-up.

Chapter 5:  The experiments are detailed in this chapter.  The experiments are 

centered on the 3 implementation approaches to the Linea algorithm: naïve, relaxed 

iterative and bottom-up.  We develop experiments to test for not only correctness as 

compared to manual calculations of the basic algorithm, but also to compare their 

performances.

Chapter 6:  The Linea agent implementation is the focus of this chapter.  We 

discuss not only the development of the software that implements the algorithm, but 

also the design and development of the supporting database.

Chapter 7:  Concluding remarks and directions for future work are presented.
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Chapter 2

State of the art

In this chapter we will describe the state of the art of our domain of research.  

Our work touches on several domains as it is a hybrid approach to measuring 

proximity.  As we discuss each of the supporting domains, we will also relate it to our 

work. Our research draws mainly from three domains:  link analysis, proximity 

searching in metric spaces and recommender systems.  We will discuss each area in 

turn.

2.1 Link Analysis

Link analysis can be considered a subset of relationship analysis.  In library 

science, scientists study relationships and patterns of co-citation and bibliographic 

coupling. Sociologists, on the other hand, are concerned with social networks of 

people.  Link analysis is commonly associated with Web relationships between pages.  

All cases share a common theme of defining two same-type entities related via a 

direct link, co-occurrence or co-citation.  

Intuitively, link analysis is the study of the authoritativeness of a document 

based on its links.  Consider Documents d1 and d2.  A link from d1 to d2 implies an 

endorsement of d2 from d1.  This implication provides the basis for an important body 
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of research into link analysis.  In the following sections we will discuss the 

development of this domain and describe key algorithms.

2.1.1 Library Science

Foundational work

Link analysis has its origins in library and information science. Garfield 

(Garfield, 1973) performed a systematic analysis of journal citation patterns across the 

science and technology domain.  He used the Science Citation Index (SCI) which was 

a database covering 2400 journals that contained 27 million references to about 10 

million different publications.  He discovered that the majority of references cited 

only a few journals.  Based on this, he postulated that a good multidisciplinary journal 

collection does not have to contain a large number of titles to adequately cover the 

domain (Garfield, 1973). See Figure 7.

Salton (Salton, 1975) extended Garfield’s work by combining keyword 

evidence with citation evidence to improve document retrieval performance. Small 

and Koeng (Small et al, 1977) provided an algorithm that improved the clustering of 

journals by the use of two-step bibliographic coupling linkages, instead of one-step 

linkages, which were the norm at the time.
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Figure 7 According to Salton's and Garfield's research document A is more important 

due to the number of references.

Our work

In our work, we rely heavily on link analysis.  Garfield’s and Salton’s work 

are foundational to the field on link analysis.  The concept of gleaning and analyzing a 

set of documents solely by their links is a predecessor to present day Internet search 

techniques.  Although we use link analysis, Salton’s extension is closer to our work as 

we use a combination of link and content analysis to determine proximity.  We will 

discuss other work influenced by this combinational approach in the next section.

2.1.2 Internet Applications

With the explosive growth of the internet in the 90’s, link analysis was soon 

applied to the problem of internet searching.  Two well-know approaches, Kleinberg’s

HITS algorithm (Kleinberg, 1998) and the Google PageRank algorithm (Brin et al, 
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1998), are eigenvector methods.  Essentially, they compute the eigenvectors of 

particular matrices related to the adjacency graph to find the importance of a 

document.  In the next few subsections, we will discuss the HITS and PageRank 

algorithms.  We will also describe various improvements that have been proposed.

2.1.2.1 Eigenvectors

Both the HITS and PageRank algorithms use eigenvectors in their 

calculations.  Hence we provide a brief review of the subject in preparation of our 

discussions on the two algorithms.

Let M be an n x n matrix. The number λ is the eigenvalue of M if there exists 

a non-zero vector v


 such that

.vvM
  [2.1]

In this case, v


 is called the eigenvector of M that corresponds to λ.

2.1.2.2 HITS

Kleinberg considered broad-topic queries which produce thousands of 

relevant pages on the WWW.  He identified this situation as the Abundance Problem: 

The number of pages that could reasonably be returned as relevant is far too large for 

a human user to digest.(Kleinberg, 1998)  His approach to address this  problem was 

to filter these types of responses by identifying authoritative pages.  By this distilling 

process, users would be given not only a set of relevant pages, but a smaller (and 

hopefully more manageable) set of more authoritative pages.

Though an analysis of the link structure of the Internet, Kleinberg found that 

one could discern not only authoritative pages, but also hub pages.  He defined hub 

pages as web pages that point to good authoritative pages.  Similarly, authoritative 

pages are pointed to by hub pages.  Hence, similar to Garfield’s work Kleinberg found 

that all web-pages do not have the same importance.  Authoritative and hub pages are 

more valuable. 
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Original algorithm

Kleinberg presented the Hyperlinked-Induced Topic Search (HITS) algorithm 

which consisted of the following steps. (1) Use a search engine, such as MSN search 

or AltaVista, to form a root set of pages as a start point; (2) Create the base set by 

adding pages that either point to or are pointed by the root pages; (3) Total the 

authority and hub weights of each page in the base set with an iterative algorithm.

Specifically, we can describe the HITS algorithm as follows:  For each page 

let a(p) and h(p) indicate its authority and hub weights respectively, which can be 

determined as below:





pq

qhpa )()(  and 



qp

qaph )()( [2.2]

Let M  ijm  denote the adjacency matrix of the base set where ijm =1 if page i

has a link to page j, else 0 otherwise.  We can then find the authority and hub scores 

by calculating the eigenvector of the matrix MTM and MMT respectively. 

HITS Extensions

In (Chakraborit et al, 1998) the authors modify the HITS algorithm to consider 

also keyword-based evidence.  Bharat and Henzinger (Bharat et al, 1998) also added 

content evidence to the HITS algorithm, but they computed the relevance using the 

whole document instead of just a window surrounding the hyperlink. Lempel and 

Moran (Lempel et al, 2001) introduced SALSA, a stochastic approach for link-

structure analysis.  They proved that their approach was computationally efficient and 

showed that their algorithm did better than HITS in Tight Knit Community (TKC) 

effect situations.

Our work

Our work is related to Kleinberg’s in that we employ a similar iterative 

approach in one of our implementations.  We initialize our system with local 

proximity values for all elements.  Then we iterate through the system, calculating the 

total proximity at step i + 1 using proximity values from step i.  Instead of 
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determining the hub or authority scores, we determine the proximity.  As we discuss 

in Chapter 5, our iterative approach stabilizes quickly.  

Our work has more similarities to Chakroborit and Bharat in that they both 

considered content in the search algorithms.  However, since our approach to content 

analysis for proximity measurement is generic, the domain specific parts of our 

calculations are in the content or ‘local’ proximity measures.   We apply a more plug 

and play approach.  The domain content measure is user-defined depending on the 

domain in which Linea is being applied. The results are then combined with the 

linked proximity measurements.

2.1.2.3 PageRank

Original algorithm

PageRank is the core algorithm for the Google search engine (Google, 2004).  

When a page u has a hyperlink to page v, it is assumed that the author of u considers 

page v an authority on a certain topic.  This is a key assumption in the approach that 

PageRank finds relevant pages.  Now let Nu represent the number of pages that u 

points out to, and R(u) denote the rank score of page u.  The hyperlink uv implies 

uN/1 units of rank for page v.

We then iteratively execute the following computation to determine the rank 

vector for all webpages:




 
vu

uiiv NuRvR
B

/)()(1  and )()( lim uRuR n
n 

 [2.3]

We let Bv equal the set of pages pointing to v.  As we iterate over the set of 

web-pages, the successive rank scores are recursively calculated from the previous 

ranks scores of all other pages pointing to them.(Ingongngam et al, 2004)

The PageRank algorithm has an intuitive basis in random walks on graphs. 

This initial equation is a simple implementation and corresponds to the probability 

distribution of a random walk on the Web graph.  In this Web context, we can 
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consider the behavior as that of a random surfer.  The random surfer just keeps 

clicking on successively clicking on links.  However, if the surfer gets into a loop of 

web pages, then the model collapses.  It will simply stay in this ‘island’ of linked web 

pages.  A real Web surfer is unlikely to continue to in the loop indefinitely.  Instead 

he will jump to another page.  A similar challenge is Web pages with no outbound 

links.  In both cases, the random surfer model that the ‘simplified’ PageRank 

algorithm represents, fails.

  The solution that Page and Brin suggested was to prune the nodes with no 

outbound links and add random jumps to the surfer process in PageRank.  Hence the 

following equation:

  


 
vu

uiiv NuRvR
B

/)(1)(1  [2.4]

We call  the damping factor used to modify the transitional probability of the 

random surfer model.

PageRank extensions

There are several proposed improvements to the PageRank algorithm.  

Ingongngam and Rungsawang (Ingongngam et al, 2004) propose modifying the 

PageRank algorithm by propagating a portion of the scores of the source web pages to 

the destination pages in accordance with the content found on both ends.  Although 

very interesting, their results were inconclusive.  In (Xue, et al, 2003) the authors 

propose an approach that constructs implicit links by mining user access patterns.  

These implicit links are then incorporated into the PageRank calculations.  The 

authors show a 20% improvement, but only for small web searches.

Ng (Ng et al, 2001) applied the ‘reset’ functionality of the PageRank 

algorithm to HITS in their Randomized HITS.  Their goal was to improve the stability 

of HITS to small perturbations of a document collection.

Our work

We used three approaches to implementing the Linea agent: naïve, iterative 

and bottom-up.  We discuss each of these implementations in chapter 5.  The iterative
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implementation quickly reaches a fix point due to a large eigenvalue, as in PageRank.  

However, instead of traversing the entire graph structure to rank pages, we recursively 

define proximity measurements based on the measurement of elements in the previous 

node.  This difference stems from the fact that our node does not represent the item 

we intend to measure.  Instead, it represents the class of items that we are measuring.

2.2 Proximity Searching in Metric Space

Our work is also influenced by the field of metric space distance algorithms.  

This active domain seeks to find close objects under an appropriate similarity 

function, among a finite set of elements. (Chávez et al, 2001).  

Consider a universe of objects.  Furthermore, let

:d [2.5]

denote a distance function over the objects.  Also let  represent a subset of the 

universe that must have the following properties:

),(),(),(

),(),(

0),(

yzdzxdyxd

xydyxd

yxyxd





[2.6]

Chávez (Chávez et al, 2000b) identifies three typical types of queries:

Range queries:  retrieve all objects which are within distance r from query 
object q.  Or,  rqpdp  ),(| .

Nearest neighbor (NN) queries:  retrieve the closest objects to q .  Or, 
 ),(),(,|)( qedqpdepqnn 

k-NN queries:  retrieve the k closest objects to q . Or, return a set A
such that kA  and ).,(),(,, uqdsqdAuAs 

There are several approaches to answering these three typical queries.  We 

will discuss some of the most common ones in the following sections.
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2.2.1 Pivot techniques

In metric space similarity searches, pivots are a common approach to more 

efficiently calculating distances.  The term pivot refers to any type of object that can 

be used to prune the search space.  Consider (S,d) which represents a metric space S 

that is covered by the distance function d.  A pivot Sp is a reference point in S 

from which we can ascertain distance information from at least some objects in S.  Let 

'S  be the set of objects associated with pivot p.  See figure 6. We can then say that for 

SSu  '  we know

1. the exact value of ),( upd ,

2. that ),( upd  falls within a certain range of values, or

3. that u is closer to p than to some other object Su '
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(S,d)

Pivot p

S' u

Figure 9 Example of a pivot in a metric space

By exploiting the triangular inequality property between the pivot, query and other 

objects in S, search spaces can be pruned and hence performance enhanced.

It is well known that pivot selection affects the performance of the algorithm.  

When considering two same-sized pivot sets, the set with the better chosen pivots will 

perform better.  Also, a well chosen small set of pivots that require less space can 

perform as well as a much larger set of pivots.  However, most methods choose pivots 

at random.  Bustos (Bustos et al, 2001) nevertheless proposed a technique for 

selecting efficient pivot sets.

There are several algorithms that use pivots.  They include Fixed-Queries Tree 

(FQT) (Baeza-Yates et al, 1994), Fixed Height Tree (Baeza-Yates et al, 1994), 

Vantage Point Tree (VPT) (Yianilos, 1993), Approximate Eliminating Search 

Algorithm (AESA) (Vidal, 1986), and Linear AESA (LEASA) (Micó et al, 1994).
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2.2.2 Clustering 

Clustering is the process of grouping a set of objects into categories based on 

similarity.  This similarity function can vary but normally based on cosine distance, 

Euclidean or a similar variant.  Data clustering is a well researched field with many 

areas of application.  Most recently, it has gained attention in the data mining and 

document search domains.  However, a significant amount of research has also been 

performed in other areas such as image segmentation, object recognition, and 

computational biology. This reflects its broad appeal and effectiveness as an 

important step in data analysis.  

Approaches

There are various approaches to data clustering.  Figure 10 provides a 

taxonomy of these clustering approaches.  There are other taxonometric clustering 

representations, but our description is based on (Jain et al, 1999).   We will discuss 

them in the following sections.
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Hierarchical

There are basically two approaches to clustering data:  hierarchical and 

partitional clustering techniques.  Hierarchical techniques produce a tree-like nested 

sequence of partitions that have singleton clusters as leaves and a signal all-

encompassing cluster as the root.  Each intermediate level is a combination of the 

nested clusters at the next lower level.  This tree-like structure is called a dendogram.  

There are two approaches to creating hierarchical clustering.  The agglomerative 

approach starts with individual elements as clusters and progressively forms clusters 

by merging the most similar or closest pair of clusters.  Contrarily, the divisive 

approach begins with one all-inclusive cluster and progressively divides until there 

are only singletons.  See Figure 9. Agglomerative approaches are most common.  The 

basic algorithm is as follows:
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1.  Compute the similarity between all pairs of clusters (hence a 

similarity matrix where the ijth element holds the similarity measure

between the ith and jth clusters);

2.  Merge the most similar two clusters;

3.  Update the similarity matrix to reflect the pair-wise similarity 

between the new cluster and the original clusters;

4.  Repeat steps 2 and 3 until only 1 cluster remains (Steinbach et al, 

2000).
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Figure 11 Hierarchical clustering

Zhoa and Karypis in (Zhoa and Karypis , 99) provided a survey of hierarchical 

clustering algorithms.  They also presented an efficient technique, called constrained 

agglomerative, that employs both divisive and agglomerative features that faired well 

in terms of quality with larger datasets compared to standard techniques.  Mandhani 
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(Mandhani et al, 2003) also proposed a hybrid technique employing a density-based, 

partitional-agglomerative technique with a document-word co-cluster.  The 

partitioning step identified dense sub-matrices to partition the respective row set of 

the complete matrix.  The hierarchical agglomerative step involves merging the 

similar sub-matrices to a predefined k cluster (for flat clusters) or a single complete 

matrix (for hierarchical clusters).

Partitional

In contrast to the hierarchical techniques, partition clustering creates a single-

level partitioning of datasets. There are several partition clustering techniques, but the 

most common is K-means which divides the data set into K clusters.  To do so, K 

points are chosen that represent centroids.  Through an interative approach, the 

algorithm stabilizes on K clusters.  A basic algorithm for K-means is as follows:

1. Select K points as initial centroids;

2.  Assign all the points to the closet centroid using a distance function;

3.  Recompute the centroid for each cluster;

4. Repeat steps 2 and 3 until the centroids stabilize (Steinbach et al, 

2000).

Hammouda and Kamel in (Hammouda et al, 2003) proposed an incremental 

clustering algorithm based on maintaining cluster cohesiveness.  They employed a 

cluster similarity histogram, a concise statistical representation of the pair-wise 

similarities within each document.  Clusters needed to maintain a high cohesiveness 

as documents are added.  The authors accomplished this by enabling the algorithm to 

reassign documents to clusters that where perhaps created after the documents were 

introduced.  In effect, they presented a dynamic k-means approach to clustering.

In (Dhillon et al, 2003), the authors extend the k-means approach in a 2-step 

manner.  First, for each current cluster, they execute a first variation, in which either a 

single or a string of document moves between clusters that will increase the overall 

clustering score.  Second, they perform a standard spherical k-means iteration globally 
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to further increase the score.  This dual iterative approach performed best in clustering 

high-dimensional and sparse text data.

Chávez et al in (Chávez et al, 2000a) presented a clustering technique to index 

metric spaces that recursively partitions the space into asymmetrical internal and 

external circular buckets, see Figure 11a.  Given the asymmetry of the data structure 

they are able to prune the search space in two directions.  First, one searches 

exhaustively inside the internal (I) bucket only if the query ball has some intersection 

with the search space ball c.  Equally, if the query ball is totally contained in the 

search space ball c, there is no need to consider elements in the external (E) space, see 

Figure 11b. This asymmetrical structure and double pruning feature significantly

increases the efficiency over standard pivot and clustering metric space techniques.
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Zha, Ding and Gu in (Zha et al, 2001) presented a graph-theoretic partitioning 

scheme to data clustering.  Their method uses an underlying bi-partite graph.  The 

partition is constructed by minimizing a normalized sum of the edge weights between 

unmatched pairs of nodes in the bi-partite graph.  They show that an approximate 

solution to the minimization problem can be obtained by computing the singular value 

decomposition (SVD).

Finally, Lin and Kondadadi in (Lin et al, 2001) introduced a soft clustering 

algorithm called SISC (SImilarity-based Soft Clustering), that improves on the 

Expectation Maximum approach by using a similarity function instead.  This frees the 

algorithm from relying on any underlying probability assumptions.  In many cases it 

outperformed k-means approaches.

Our work

As we have seen, proximity means different things to people depending on the 

domain.  In this section we have discussed current research on proximity measures in 
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metric spaces.  This approach for finding the similarity between objects is similar to 

our work because we also measure this proximity.  However, we also consider the 

proximity of items related to the objects we are measuring.  This distinction is what 

sets our approach apart from pure proximity calculations in metric spaces.

2.3 Recommender systems

Recommender systems traditionally deal with applications that have two 

entities, users and items.  After obtaining an initial set of ratings, the recommender 

system tries to estimate the rating function R

RatingsItemsUsersR : [2.7]

for the (user, item) pairs that have not yet been rated by users (Adomavicius et al, 

2005). Conceptually, once R is estimated for the entire ItemsUsers space, a 

recommender system can select the item ui  with the highest rating for a user u and 

recommend that item or items to the user:

),(maxarg, iuRiUsersu
Itemsi

u


 [2.8]

Instead of estimating the unknown ratings from the entire ItemsUsers space (which 

would be quite expensive) various methods have been developed to finding more 

efficient solutions requiring smaller computational efficiency such as (Goldberg et al, 

2001).  According to (Balabanovic and Shoham, 1997) the recommender system 

domain is divided into three areas:  content-based, collaborative and hybrid.

Content-Based Recommender Systems

The rating R(u, i) of item i for user u is normally determined based on ratings 

R(u, i ) given by the same user u to other items i  Items that are similar to item i in 

terms of content (Adomavicius et al, 2005).  

Content-based recommender systems have their short-comings. First they are 

limited to domains where content can be extracted automatically (Shardanand and 

Maes, 1995).   Secondly, they suffer from the new-user problem.  If the user has rated 

only a small number of items, the content-based recommender system may not 
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understand his preferences and suggest good recommendations (Adomavicius et al, 

2005).  Finally, since the user is being recommended only items that are similar to 

ones he has already highly rated, content-based recommender systems can suffer from 

‘over-specialization.’  For example, the user could be recommended different articles 

about the same event in a news-feed system (Adomavicius, et al, 2005). 

Collaborative Recommender Systems

Collaborative recommender systems make their recommendations for a 

particular customer based on how other customers had previously rated the item.  The 

rating R(u, i) of item I for user u is calculated by considering the ratings R(u , i) 

given by users u  who are similar to user u. 

The similarity measure between u  and u is used as a weight for the ratings.  

The higher the similarity measure for user u , the higher the weight value given.  

There have been several approaches measuring the similarity between users.  The two 

most popular approaches are the correlation-based (Resnich et al, 1994) and 

(Shardanand and Maes, 1995):
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and the cosine-based approach (Bresse et al, 1998) and (Sarwar et al, 2001):
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where YX  is the dot product of the rating vectors of the respective users. 

Furthermore sxr , and syr , are the ratings of item s of users x and y respectively, 

   sysxxy rrItemssS ,,|  is the set of all items rated by both users x and y

(Adomavicius et al, 2005).

Collaborative recommender systems share the new user problem with content-

based recommender systems.  Collaborative systems also suffer from the new item 
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problem since they rely solely on rating data to make recommendations. Finally the 

lack of a sufficient number of ratings is another challenge for these types of rating 

systems.  

Hybrid Recommender Systems

Hybrid systems usually combine content and collaborative methods to 

overcome some of the weaknesses discussed in earlier sections. There are several 

approaches that have been proposed.

One technique for combining content and collaborative methods is by (1) 

learning and maintaining user profiles based on content analysis using content-based 

techniques or information retrieval methods and (2) then directly comparing the 

profiles to find similar users in order to make collaborative recommendations.  The 

Fab system (Balabanovic and Shoham, 1997) and the ‘collaboration via content’ 

approach in (Pazzani, 1999) apply this hybrid technique.

Implementing separate collaborative and content-based recommender systems 

is another approach to building hybrid recommender systems.  One can either 

combine the ratings from individual recommender systems into a final

recommendation (Claypool et al, 1999) and (Pazzani, 1999) or we can use one of the 

recommender systems and at a given instance choosing to use the one that is better 

than others based on some recommendation quality matrix.  For example (Tran and 

Cohen, 2000) choose the one that is more in line with the user’s past ratings.

A third hybrid approach uses the combined content-based and collaborative 

methods about both users and items in a single recommendation model.  This 

approach was broached in (Condliff et al, 1999) and (Ansari et al, 2000) where they 

both used Baysien mixed-effects regression models for parameter estimation and 

prediction.

Finally Adomavicius and Tuzhilin (Adomavicius and Tuzhilin, 2001a) 

proposed a multidimensional approach to recommendations which extended the 

traditional user/item paradigm.  The additional dimensions capture the context in 
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which recommendations are made.  This approach was proven more accurate in 

certain situations than 2-dimensional approaches in (Adomavicius et al, 2005).

Our work

Our work is related to recommender systems in three ways.  First, the Linea 

algorithm can be applied to the user similarity calculations for the traditional 

collaborative recommender systems.  However, this use may not be the most 

interesting since these methods use a 2-dimensional approach that doesn’t take into 

account other dimensions which is Linea’s strong point.

Second, we can apply the correlation-based or cosine-based approaches 

suggested in the collaborative approach recommendation systems as local proximity 

implementations. These implementations not only would apply well to recommender 

systems but to any domain that can be represented as vectors.

Finally, our approach extends the present hybrid methods.  When a user is 

given a recommendation, say for a book in an online bookstore scenario such as 

Amazon, it is the result of other users actually buying the recommended book.  In set 

theory terms, the recommended items is always the result of an intersection of the set 

A of books that the user is planning to purchase and the set B of books that other users 

have purchased.  The set of recommendations comes for B – A.  In other words, for a 

book to be recommended, it has to have been purchased with another book that is in 

set A.  However, there may be items that can not be ascertained based on an 

intersection.  There may be items that are closely related to the item about to be 

purchased.  Linea can take better advantage of the multi-dimensional data making up 

the context to provide a recommendation.

2.4 Conclusion

As we have shown, our work is grounded in three research domains:  link 

analysis, metric space distance algorithms and recommender system.  We have 
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discussed each of these domains in detail and noted some of the important work in 

these areas. 

With its foundation in library science, link analysis has become a major 

domain of research with the expansion of the internet.  The PageRank and HITS 

algorithms and their derivatives are important advancements in this area.  Our 

approach extends these domains, combining them in a generic way that allows our 

proximity calculations to be applied to many areas.  

Proximity searching in metric space seeks to find close objects under an 

appropriate similarity function.  We discussed current research in two broad sub-

domains:  pivot techniques and clustering.

Finally we discussed recommender systems which have found wide use on the 

internet.  This domain is broken into three areas.  Content-based systems provide 

recommendations based on ratings given by the same user to items that are similar to 

the item being recommended.  While collaborative-based systems base their 

recommendations for an item based on the recommendations of other users who are 

similar to the user who is receiving the recommendation.  Both approaches have their 

strengths and weakness.  Hybrid systems, the third area, seek to combine facets of the 

previous two approaches in a way that minimizes their inherent weaknesses.

Our work extends the body of research in two ways.  First we combine link 

analysis and proximity searching in a novel, generic way to determine the proximity 

between objects.  Secondly, our work extends present hybrid models. Since our 

approach is multi-dimensional, we are able to determine similarity without having an 

intersection of sets.  This flexibility allows users to find (and make recommendations 

for) items that are similar to other items that would not be apparent with current 

approaches.
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Chapter 3

Mathematical Preliminaries

The development of this thesis depends on both graph and set theory.  In this 

chapter we will define key terms used throughout the work and then present the 

mathematical concepts that underpin the proximity framework.

3.1 Terminology

To better communicate our approach, we provide definitions for terminology 

used in calculations throughout this work.  A node represents a class of entities within 

a problem domain.  Also, nodes contain elements, which are specific instances of the 

type of entity described by the node.  Please note that the proximity, p(x, y), is the 

proximity between elements x and y.  See Figure 14.
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Figure 14 Node

We define an association as an affiliation between objects in the graphs.  

Furthermore there are two types of associations: relationships and links.  A link is an 

association between elements.  And a relationship is an association between nodes.  

We also define an image set.  To do so, first consider Node A and Node B.  Node A 

contains Elements x and y.  Node B contains Elements t and u.  Element x has a link 

to Elements t and u.  Hence, we define the set that consists of t and u as the image set 

of x in Node B.  See Figure 15.
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Figure 15 Relationships & links

A relationship can either be outbound or inbound.  An inbound relationship is 

a directed association into the referenced node, and an outbound relationship is a 

directed association out of a referenced node.  Finally, we define Γ(A) as the set of 

nodes associated with Node A via outbound relationships from Node A.  See Figure 

16.
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Figure 16 Inbound and outbound relationships

Considering the collection of nodes and relationships, we use a graph structure 

to represent problem domains for our proximity calculations.  This allows us to 

exploit graph properties when implementing the proximity calculations. See Figure 

17.
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3.2 Metric Space Distance Properties

Our main objective with this research centers on finding how close one object 

is to another.  To perform this kind of measure, we want to operate in a space X that 

has the properties of metric spaces.  First, the distance d between any two elements is 

at least zero. Negative distances cannot exist.

0),(1,,  yxdXyx [3.1]

We also assume a normalized distance between 0 and 1 since our sets will always be 

finite.

Second, the distance between any two elements must be symmetric:

),(),(,, xydyxdXyx  [3.2]

Next, the metric space must support reflexivity:
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0),(,  xxdXx [3.3]

Finally, the distance within the metric space should adhere to the triangular inequality 

property:

),(),(),(,,, yzdzxdyxdXzyx  [3.4]

3.3 Metric Space Proximity Properties

The metric space properties we discussed apply to distances.  Our work is with 

a normalized proximity. We define the relationship between a distance d and 

proximity p as follows:

),(1),( yxdyxp  [3.5]

We assume that the distance d is normalized. Furthermore, we define the following 

characteristics for a proximity p:

1),( xxp [3.6]

and 0),( yxp ,  if x or y is an isolated element (see below). [3.7]

The proximity of an element to itself is one.  In Equation [3.7], we assume that 

one of the elements is isolated.  We define an isolated element as an element that has 

no relationship with any other values in the domain.  We can consider it a null value.  

We therefore define the proximity between an isolated element and any other element 

as zero.  Hence, the proximity approaches one the closer two objects are to each other.  

Additionally, proximity retains the same metric space properties as for a distance.  

The non-negative, symmetric and reflexivity properties follow from Equations [3.1], 

[3.2], [3.3], and [3.5].

1),(0  yxp , non-negativity [3.8]

),(),( xypyxp  , symmetry [3.9]

1),( xxp , reflexivity [3.10]

We provide a more in-depth discussion for triangular inequality. Consider the 

triangular inequality for distance d

),(),(),(,,, yzdzxdyxdXzyx  [3.11]
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Now, we can substitute p(x,y) for d(x,y) according to the relationship we defined in 

Equation [3.5].

))],(1()),(1[(),(1 yzpzxpyxp  [3.12]

We can algebraically rearrange the equation as follows:

)],(),()[1()11(),(1 yzpzxpyxp  [3.13]

)],(),()[(1(),(1 yzpzxpyxp  [3.14]

),(),(),(1 yzpzxpyxp  [3.15]

Hence, we have the proximity property for triangular inequality

1),(),(),(  yzpzxpyxp [3.16]

which we apply to our normalized proximity.  Let us consider the boundary values.  

Consider that x and y are the same.  Hence, 1),( yxp .  If 1),( zxp  and 1),( yzp , 

then the triangular inequality would still hold.  Any other values of ),( zxp  and 

),( yzp  would still hold since all values would be less than one.  Consider the case 

when 0),( yxp .  This implies that either x or y (or both) are isolated elements.  Let 

x be the isolated element.  Since x is an isolated element, 0),( zxp also.  Then the 

values for the triangular inequality for proximity are

100   [3.17]

where   is the value of ),( yzp .  Since 10   , the above relation holds true.

3.4 Graph Properties

We represent the problem domain using a directed graph.  Accordingly, we 

present some basic graph properties, along with definitions that support our algorithm.

Consider Graph G = {V, E}, where V is the set of vertices and E is the set of 

edges.  Throughout this work we refer to vertices as nodes and edges as relationships.  

We do this for clarity as we have multiple things represented within one graph.  This 

will become more apparent when we introduce the Linea agent in the next chapter.  

Within our domain, V represents the set of entities that make up the domain.  
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Likewise, E represents the set of relations between entities.  Each node vV 

represents a class of objects in the domain, e.g. People from our example in Figure 1.

In our proximity algorithm, we work with the set  (v) of nodes that are linked 

to a node v via an outbound relationship from v.  Hence, we define  (v) as follows:

 Ey),(|V)(  vyv [3.18]

where (v,y) represents an outbound relationship from v to y.

Finally, consider two nodes v, z  V.  Let v contain the element x. Further, let 

Relationship t be the outbound relationship from v to z.  Then we define the function 

r(x) as the set of elements in z that are associated with xv. We further define this set 

of elements in z as the image set of x in z.  See Figure 18.

Image set of x

v z
t

x

r(x)
Image set

Figure 18 Image Set of x

3.5 Similarity Measures

3.5.1 Finite number of attributes

The proximity used in the Linea calculator consists of two parts:  the local 

proximity and the image proximity.  The local proximity will vary with the domain to 

which the proximity calculator is applied.  Our design goal was to enable this 

algorithm to be used easily in various domains.  This calls for a plug and play 
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approach to the local proximity calculations.  This suggests various approaches to 

measuring the local proximity.  There is a large amount of research on similarity 

measures.  We will discuss a few in this section as a means of illustrating the different 

areas in which the proximity calculator can be applied.  Similarity and distance are 

inversely related; the greater the similarity, the smaller the distance.  Hence we will 

use the terms interchangeably during our descriptions.

Probably the most well know distance measure is the Euclidean distance.  It 

measures the shortest distance between two points.  It is also referred to as the 

Standard metric:  

  



n

i
ii yxd

1

2

Another distance measure is the City Block or Manhattan distance. It is 

named this way because in most American cities it is not possible to move from point 

a to point b in a straight line.  Instead, it is necessary to follow the grid like city 

blocks.  

5 units

4 
u

n
it

s

Figure 19 City Block distance

The equation for the City Block distance is as follows:
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



n

i

ii yxd
1

[3.19]

It is best suited for measuring discrete data.  Distances are measured between 2 points 

as if someone would move along city blocks.  

The Chebyshev distance measures only the 2 elements from the two vectors 

(or sets) that are farthest apart.  

ii
ni

yxd 
1

max [3.20]

Hence, it measures the greatest distance between 2 vectors.  This measure is very 

useful when computational efficiency is a priority.  

The Minkowski distance can be seen as a type of meta-distance:   

  


 
n

i

p
d ii

p

yx
1

/11

[3.21]

When p=1, it is the same as the City Block distance.  When p=2, it is the 

Euclidian distance.  As p increases, the metric approaches the Chebyshev distance.

(Patel, 2004)

3.5.2 Relationships

In information retrieval, there are 5 common similarity measures (Van 

Rijsbergen, 2004). The simple matching coefficient measures the intersection 

between 2 sets of elements. It does not take into account the size of either set, thereby 

providing only a non-normalized result. There are 4 other coefficients (Overlap, 

Cosine, Jaccard and Dice) that are very similar.
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Figure 20 Similarity coefficients

The differences are the penalties they impose for non-intersecting elements.  The 

Overlap coefficient is the most lenient while the Dice coefficient gives the highest 

penalty.

We also consider proximity distribution similarity measures.  These types of 

similarity metrics are often applied to information retrieval.  Given a document set 

with a probability distribution of words, we can compare two documents via their

proximity distributions to determine the probability of them being related.  One such 

metric is called the Jensen-Shannon divergence, which we can define as follows:  

consider two probability distributions  )1()1(
2

)1(
1

)1( ,...,, kpppp  and 

 )2()2(
2

)2(
1

)2( ,...,, kpppp that satisfy the constraints, listed in Figure 21:
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Figure 21 Probability distribution constraints

Then the Jensen-Shannon divergence is

        )2()2()1()1()2()2()1()1()2()1( , pppppp EEED   [3.22]

where 

  



k

i

ii ppE
1

2logp [3.23]

is the Shannon entropy of the probability distribution  kppp ,...,, 21p . (Grosse et al, 

2002)

As we have described in this section, there are many options for measuring the 

local proximity.  The type selected is based on the domain.  This flexibility in local 

proximity measures lends significantly to the generic nature of the Linea agent.
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3.5.3 Valued relationships

This type of similarity measure occurs in domains where we place a value on a 

relationship.  For example

--People movies and grading them

--Documents including words, each word appearing 0 or more times in 

every document

If we have such values associated with relationships, we may define 

similarities using the same formulas as in section 3.5.2 and also the correlation 

method defined in Chapter 2.

3.6 Conclusion

We used this chapter to introduce the foundation concepts that we will build 

upon through the dissertation.  In particular we introduced the terminology to be used 

throughout the remainder of the thesis.  Next we discussed the basic distance 

properties then converted them to proximity relationships.  We then discussed the key 

graph properties that support our work.  We ended the chapter with a discussion of the 

various similarity measures.  These similarity measures are concrete examples of local 

proximities that will be further explained in the following chapter.
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Chapter 4

Linea Proximity Calculator

4.1 Introduction

The Linea proximity calculator that we propose consists of two parts.  First,

we determine the local proximity, which is calculated between two elements x and y 

within the same node v.  This calculation uses the attributes of the elements in 

question and is domain dependent.  We discussed various approaches in the previous 

chapter.  Second, the image proximity considers the proximity between the image sets 

of x and y for each node in  (v).  Finally, we manage the balance between the local 

and image proximities via a weight variable.  The global proximity then, is the local 

proximity combined to the imaged proximities, taking into account a user-defined 

weight between the local and imaged proximity results.  Hence, we define the Linea 

proximity calculator as

),(PrIm)1(),(Pr)(,* )( yxoximityagedyxoximityLocalyxp aaaaa   [4.1]

where p*a(x,y) is the global proximity between x and y elements in Node a.  In 

addition, a is a weight variable with a value between 0 and 1, inclusive.

We present and compare three approaches to implementing the Linea agent.  

They are the naïve, bottom-up and iterative variants.  The difference between the 

naïve and iterative approaches centers on recursion.  In the naïve approach we stop 

recursion artificially, whereas in the iterative method,  it stabilizes naturally.  The 
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bottom-up method is used for special case situations when the graph has no loops.  In 

the following sections, we describe each of these approaches in more detail.

For each of the three approaches, the local proximity measures are the same.  

The choice of the local proximity algorithm is dictated by the domain.  Please refer to 

Section 2.2 for a discussion of the state of the art proximity measures that could be 

applied.  Section 3.4 discusses other approaches that can be local proximity measures 

that are more traditional.

4.2 Naïve Algorithm

4.2.1 Definition

The naïve approach recursively visits the nodes linked to the source node 

which contains the x and y elements for which we want to find the global proximity.  

The algorithm moves to each node following the image set links.  As the algorithm 

functions within a graph structure with possible loops, we have to stop the recursion 

somewhere.   This algorithm is based on a heuristic determination of the visited 

nodes.  In short, if a node has been visited previously, we only consider the local 

proximities of the elements of that node.  This spanning tree approach is illustrated in 

below.
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Figure 22 Spanning tree induced by previously visited nodes.   Nodes which are 

already visited in a path do not recursively call any other node 

computation

The original algorithm is changed slightly to keep track of paths.  We write the 

equation for the naïve approach as

),(PrIm)1(),(Pr)(,* )( yxoximityagedyxoximityLocalyxp aLaaLaaL   [4.2]

where L represents the set of nodes already visited in the current path.  This variable 

is used to implement the artificial fix point.

As discussed above, LocalProximity paL(x,y) will change by domain, but not 

by implementation approach.  Accordingly, we will focus our attention on the 

implementation of the ImagedProximity.  The two elements for which we are trying to 

determine their proximity are related to other elements in other nodes.  As discussed 

earlier, we call these groups of elements image sets.  The ImagedProximity considers 

the set distance between the image set of each of the two elements in which we are 
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trying to determine the proximity.  Thus, we state that the elements x and y in Node a

have the following ImagedProximity:

  



)(

* ,),(PrIm
aZ

ZLzaL YXPyxoximityaged  [4.3]

where X and Y represent the image sets of x and y in node Z respectively and 

),(* YXPZL  calculates the set distance between the two image sets.  We sum the image 

proximities for every node Z that is linked to a via an outbound relationship, or every 

node )(aZ  . The variable Z  is a weight function such that for any node v in Graph 

G:

1
)(


 vZ

Z [4.4]

The value of Z  is domain dependent.  It represents the relative importance of each 

node Z in Γ(v).  In our examples we assumed that each Z was equal.  We further 

define ),(* YXPZL  as follows: 

 


















),(

1

Lor Z  0)(,

,*

YXQ
YX

Zif
YX

YX

YXP

ZL

ZL

[4.5]

where

   









Yy

ZZL
XxXx

ZZL
Yy

ZL xypyxpYXQ ),(max),(max),( *
}{

*
}{ [4.6] 

If either the current node Z has no outbound relationships or the node has been 

visited previously in the algorithm, we calculate the set distance by dividing the 

cardinality of the intersection of the image sets by the cardinality of their union. 

Otherwise, we calculate the set distance by recursively calling the global proximity 

function for each pair of elements in the image sets.  We also normalize this equation 

to the total number of elements in both sets.
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4.2.2 A Visual Example

We provide the following example to illustrate how the naïve algorithm 

works.  Although simple, the example illustrates all of the possible cases in our 

algorithm.  We define a directed graph G = (V, E).  The nodes in V are a, b, c, and d.  

The relationships in E are q, u, t, s, w.  Each node represents a class of objects.  The 

actual instances are located in the set of elements within each node.  Consider the 

elements x and y located in a.  We want to determine their proximity to each other 

within this domain, which is described by the structure of the graph (see Figure 23).
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ImagedProximityaL(x,y) =  bL [  P*b(X, Y)]

a
b

c

d

p*aL(x,y) = (δa)LocalProximityaL(x,y)+ (1-δa) ImagedProximityaL(x.y)

ImagedProximityaL(x,y)=  Z [  P*ZL(X, Y)]
Z  Γ(a)

Figure 23 Detailed example –Node a

For brevity, we omit the LocalProximity variable, as it is a trivial calculation 

and varies by domain.  We also omit a and L updates for clarity.  Hence, we focus 

our attention on the ImageProximity for this example.  To calculate the 

ImagedProximity, we only consider the nodes that are linked to a via an outbound 
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relationship from Node a.  Node a only has one outbound relationship, q, which links 

Node a to b.  So we calculate the set distance between the image set of x that is in b

and the image set of y that is in b.  Since node b has outbound relationships and it has 

not been visited yet in the algorithm, we use the recursive equation to determine the 

set distance.  In Figure 24 we assume that element k is in the image set of x and 

Element h is in the image set of y.  We take these two elements as an example and 

recursively apply the global proximity function.
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ImagedProximityaL(x,y) = 1 - bL [ 1 – P*b(X, Y)]

ImagedProximityaL(x,y)=  Z [ 1 – P*ZL(X, Y)]
Z  Γ(a)

X        Y

Figure 24 Detailed example-node b

We continue this process, systematically walking through the graph, following 

all outbound relationships from each node of interest.  Hence, from Node b we would 

calculate the set distance in Node c between the image sets of Node b’s elements k 

and h (see Figure 25) 
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Figure 25 Detailed example-node c

Node c has three outbound relationships, s, u, and w; so we use the recursive 

set distance calculation for this calculation also.  As we follow the relationships s and 

u, we return to Nodes a and b respectively which have already been visited.  Hence, 

we calculate the set distance between the image sets of m and n (that are located in 

node c) by dividing the cardinality of the intersection of the sets by the cardinality of 

their union.  We do this as an artificial fix point to this recursive algorithm.  We 

perform the same type of calculation to determine the set distance of the image sets in 

Node d.  However, the reason we use this case here is because Node d has no 

outbound relationships (see Figure 26).
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Figure 26 Detailed example-nodes a, b and c

4.2.3 The algorithm implementation

The naïve algorithm progresses through the graph structure beginning with the 

source node that contains the x and y elements that we desire to find the proximity.  

As it progresses through each node, it calculates both the local and imaged 

proximities.  It determines the image proximity by comparing the proximity between 

the image sets of the x and y elements of the preceding node.  During this image set 

calculation, we measure the proximities between each element in one image set to the 

each element in the other.  It’s during these calculations that we recursively call the 

global proximity procedure that moves us to the next Node n that is associated with 

the current node by an inbound directed association.  The algorithm’s fix point is 

artificial and we stop the fix point calculation when we arrive at a node with no 

outbound associations or if the node has already been visited for the current 

calculation path.  We define a calculation path as the path followed through recursive 

calls from one node to another.  Each outbound association from a Node n implies a 

unique path.
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4.2.3.1 Naïve algorithm helper procedure

The Calculate Global Proximity (CGP) procedure uses a helper procedure we 

call Calculate Raw Proximity (CRP).  The CRP procedure houses the actual recursive 

call to CGP.  Since the steps executed in CRP are called multiple times in CGP, we 

put them into a separate procedure.  Hence, we begin our discussion with CRP.

CRP(iSet1, iSet2, graph, alpha)

1  iSetMaxProximity 0

2  iSetProximity 0

3  1To2iProximity  0

4  for each element e1 in iSet1

5    for each element e2 in iSet2

6        iSetProximity CGP(e1, e2, graph, alpha)

7        if  iSetProximity > iSetMaxProximity

8  iSetMaxProximity iSetProximity

9     1To2iProximity  1To2iProximity + iSetMaxProximity

10   iSetMaxProximity  0

11 return 1To2iProximity

Lines 1-3 initialize the internal variables used to keep track of the intermediate 

image proximities between each pair of image sets and the eventual final image 

proximity that is returned.  The main body of the procedure is located in lines 5 – 10 

where we loop through the set of elements in each image set to measure the proximity 

between each pair.  After recursively calling the CGP procedure in Line 6 (which we 

will discuss next), the result is compared to the current maximum proximity value for 

the current element in the first image set.  After looping through all of the elements in 

image set 2 (iSet2), the current maximum proximity value (iSetMaxProximity) is 

added to the total image proximity (1To2iProximity) in Line 9.  This procedure, as we 

shall see shortly, is called twice in the CGP procedure for the same pair of image sets, 

but the order is changed.  Hence iSet1 is compared to iSet2. And then iSet2 is 

compared to iSet1.  This is done to implement the algorithm.
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4.2.3.2 Naïve algorithm main procedure

The naïve algorithm main procedure, CGP, calculates the global proximity 

between the elements x and y located in node n.  It does so by recursively calculating

the image set proximities and global proximities in nodes )(nn  .  The procedure 

continues until each path that is followed arrives at an artificial fix point.

CGP(x, y, graph, alpha)

1  globalProximity  0

2  imagedProximity 0

3  localProximity  0

4  currentImagedProximity  0

5  for each node n in gamma(currentNode)

6     xImageSet  getImageSet(x, n)

7      yImageSet  getImageSet(y, n)

8      if |xImageSet| = 0 and |yImageSet| = 0

9         currentImagedProximity  1

10     else if |xImageSet| = 0 or |yImageSet| = 0

11        continue

12   else

13       if node n has already been visited or |gamma(n)| = 0

14         currentImagedProximity  calculateSetDistance(xImageSet, 
yImageSet)

15      else

16         xToyIP CRP(xImageSet, yImageSet, graph, alpha)

17         yToxIP CRP(yImageSet, xImageSet, graph, alpha)

18         currentImagedProximity   (xToyIP +  yToxIP)/| xToyIP | + | yToxIP
| 

19         currentImagedProximity  currentImagedProximity * weight   

20     imagedProximity  imagedProximity + currentImagedProximity

21     currentImagedProximity  0 

22 globalProximity  alpha * localProximity + (1-alpha)*imagedProximity    

Alter initializing the various proximity variables used in the algorithm, the 

CGP procedure loops through all of the nodes n in Γ(currentNode).   The 

currentNode variable represents the node where the elements x and y reside.  For each 
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image set pair, it first checks the size of both sets.  If both image sets are empty and 

the local proximity is 1, we set the currentImageProximity value to 1.  If both image 

sets are empty and the local proximity is any value less than 1 then we set the 

currentImageProximity value to 0.   If only one image set is empty, we continue, 

leaving the currentImageProximity value initialized to zero, since the 

currentImageProximity is reset to zero after each iteration of the loop (Line 21).  If the

node n has previously been visited on this calculation path or |Γ(n)|=0, then in Line 14 

we implement the artificial fix point calculation for determining the image proximity.   

If all of the previous if statements are false, then we make the recursive call to the 

CGP procedure for each image set in Lines 16 and 17.    In Lines 18 and 19 we 

normalize the results and factor in the weight value for the current node.  The last 

calculation in the loop at Line 20 is to add the current image proximity value to the 

running total.  The CGP procedure ends by calculating the global proximity using the 

totaled imaged proximity, local proximity and alpha value.

We define a path as the sequence of nodes visited by the Linea algorithm until 

it reaches either a previously visited node or a node n where Γ(n) = 0.  Normally, a 

domain graph is contains multiple paths.  The order of the paths that Linea follows 

does not affect the final score. We provide empirical evidence in Chapter 5 to support 

this claim. 

4.2.4 Time complexity

In order to estimate the time complexity of the proximity algorithm, we first 

consider the base case.  If there are no outbound relationships, this means there are no 

image sets.  Accordingly the only calculation would be the local proximity, which 

would be constant C.
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x   y

CyxO ),(

Figure 27 Base case

In order to consider the follow-on cases, we must first look closer at how the 

algorithm progresses.  The proximity calculator works on a graph.  It is a recursive 

algorithm that follows the outbound relationships from the original node (that has the 

x and y elements) outward.  The algorithm stops in 2 cases: 1) when it reaches a node 

that has already been visited on the current path, or 2) when it reaches a node that has 

no outbound relationships.  Given these two induced termination cases, any graph can 

be represented as a tree.  For example, Figure 22 shows a tree induced from a graph 

due to previously visited nodes.

Similarly, Figure 28 shows a partial tree induced by a node that has no outbound 

relationships.
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x,yA

B
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D
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No outbound relationships

Blue path: A,C,D,B,E
Red path: A,B,E

Figure 28 Tree induced by a node with no outbound relationships

With these two cases, any graph can be represented as a tree because eventually, as 

the algorithm follows the outbound relationships of the nodes in a graph, it will either 

reach a node it has previously visited, or it will reach a node that has no outbound 

edges.  We use this tree characteristic of our graph to determine the time complexity 

upper-bound.

There are three variables that influence the time complexity of the algorithm.  

First, consider R, which represents the number of outbound relationships from the 

node that has the most outbound relationships in the graph.  Then, let n equal the 

number of elements in the node that has the most elements in the graph.  Finally let h 

be the height of the tree induced from the graph.  As we shall show in Chapter 5, the 

order of the paths that the algorithm follows has no effect on the end result.  

Accordingly, the height h is simply the longest path in the graph.  We define R and n 

as the worst case to ensure we capture the upper-bound of our algorithm complexity.
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In the base case we described earlier, there were no outbound relationships, 

hence R was zero.  Now, let us consider the case when R=2 and the height h of our 

induced tree is 1.  In the base case with node outbound relationships (R=0), the time 

complexity is a constant c.  This represents the calculation of the local proximity.  As 

we follow the outbound relationships, we must perform the image proximity 

calculations.  Let’s consider Node B.  According to the proximity calculator 

algorithm, we would consider the image sets for both x and y that are in Node B.  To 

capture the upper bound, we assume that the size of the image set of both x and y in B 

is n.  Hence we would perform 2n2c calculations in Node B to calculate both the local 

proximity at constant time c and the image proximity.  We would repeat this 

calculation for each outbound relationship from Node A.  Hence, since R=2, the time 

complexity when h=1 is 2n2Rc+c.  See Figure 29.

x,y

R=2 h=1

2n2Rc + c

Figure 29 Time complexity when R=2 and h=1
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Now let’s consider the follow-on cases in order to detect a defining time 

complexity equation.  Assume we have now progressed in the induced tree to the h=2 

level.  At level h=1, we made 2n2Rc+c calculations.  Each of those calculations 

included a recursive call to the proximity calculator and the local proximity 

calculation at a cost of constant c time.  This involves the calculation of the image sets 

in Γ(v) where v represents a node at level h=1. All nodes in Γ(v) will be located in 

level h=2.  So if we consider an arbitrary node in Γ(v), named v1, then the image set 

calculation number will be as follows:

  cRn 2222 [4.7]

To perform the image set calculations in any node, it takes 2n2 calculations.  

However, at level h=2, this calculation will be performed 2n2 times due to the 

recursive calls from level h=1.  Furthermore, at level h=2, there are a total of R2

outbound relationships from level h=1.  This is a progressive calculation.  

Accordingly, we must add this calculation to the previous one for level h=1.  Hence 

you would have the following:

  cRcncRn  2222 22 [4.8]

See Figure 30 for a visual representation of the equation at level h=2.
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x,yR=2

h=12n2Rc + c

h=2

(2n2)2R2c+2n2Rc + c

Figure 30 Time complexity at h=2

We continue this process for an additional step.  At level h=3, there would be 

8 nodes added. See Figure 31.  Hence we have

    cRcncRncRn  2222332 222 [4.9]

which now takes into consideration this new level.  Similar to our calculations at level 

h=2, at h=3, we must make the image set calculations 2n2 times for each node.  

However, we must do this (2n2)2 times due to the recursive calls from level h=2.
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x,yR=2

h=12n2Rc + c

h=2

h=3

(2n2)2R2c+2n2Rc + c

(2n2)3R3c+(2n2)2R2c+2n2Rc + c

Figure 31 Time complexity at h=3

At this point, we can begin to see a pattern develop.  The height h of our 

induced tree is related to the equation that describes the time complexity.  For 

example at h=3, the equation that represents the time complexity can be rewritten in 

terms of h.

      ccRncRncRn hhhhhh
  2221122 222 [4.10]

The exponents for the (2n2) and R factors are tied to the value of h.  Specifically, the 

height h of the tree defines the largest exponent value for these 2 factors.  Hence if 

h=2, then the highest exponent values would be 2 or cRn 222 )2( .  Likewise, if h=5 then 

the highest exponent value would be 5 or   cRn 5522 .  We can rearrange equation 

[4.10] by factoring out the constant c.  We then have:

      cRnRnRn
hhh

1222
22122 


[4.11]

Accordingly, we can generalize this series to

      cRnRnRn
hh

1222
12122 


 [4.12]
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which describes the complexity for any height h.   This series can be now rewritten as 

the summation

      1222)2(
1 12122

1

2 



 RnRnRnRn

c

hh
h

m

m  [4.13]

for values 1 through h.  The constant c represents the value for h =0.  This well known

summation has the following value:

12

1)2(
)2(

1
2

12

1

2










Rn

Rn
Rn

c

hh

m

m [4.14]

Hence, we state the time complexity for the recursive approach to the proximity 

calculator as follows:

 
c

Rn

Rn
RhnT

h


















12

12
),,(

2

12

[4.15]

or

)]([ 2 hRn [4.16]

This is a worst case estimation.  Given a graph, we chose n as the number of 

elements in the node with the largest number of elements.  We then assumed that each 

node has this same number, n, of elements.  Similarly, we defined R as the number of 

outbound edges from the node with the most outbound edges.  We then applied this 

value for each node in the graph.  The induced tree has a height h.  Within the context 

of the graph, h is the longest path in the graph.  We assumed that every path length in 

the graph was the same for as the longest path.  Within the context of the induced tree, 

that means that the induced tree is a complete ‘R-ary’ tree in which all leaves have the 

same depth and all internal nodes have degree R.

This covers the worst case for our time complexity.  In many cases, this value 

will be much larger than in actuality.  However, the time complexity depends on the 

height, degree and number of elements in the node.  We are unaware of a way to get a 

closer approximation of the time complexity.
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4.3 Bottom-up

The bottom-up approach works on a modified tree version of the domain 

graph.  This modified tree is developed either by using the artificial fix point method 

from the naïve approach (section 4.2) or from directed graphs with no loops in them.  

In this latter approach, we arrange the graph into a modified tree (explained later) 

with nodes n with |Γ(n)| = 0 as leaves.  Once the graph has been converted to a 

modified tree, we pre-process the image set calculations and hence improve the 

efficiency of the algorithm.

4.3.1 Proximity of an element to an image set

In order to improve the speed of the algorithm, we do not directly compute the 

proximities of image sets, but we first compute the proximities of elements to image 

sets. Before we continue, we shall provide a couple of definitions.

S: is the image set, located in Node X, of Zu 

),( SxX : is the proximity of an element Xx to the image set S

For instance, consider node X and parent nodes Y and Z which have relationships 

towards Node X. Given any element Xx , and given any image set S, we compute 

the proximity

)),((max),( * txpSx X
St

X 
 [4.17]

We take the maximum of the global proximities, ),(* txpX  between the given element x

and each element t in the image set S. 

Another way to look at the proximities between image sets and elements is to 

consider the element of origin of the image set.  For example S, located in Node X, is 

the image set of Element u which is located in Node Z.  Hence, we wish to define the 

proximities between S and elements in X from the perspective of u.  Accordingly, 

consider

 )(Im,),( uageSetxux XXZ  [4.18]
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which captures this representation.  The subscript X is the node where the image set 

resides.  Whereas the second subscript, Z, represents the source node of the image set 

found in Node X.  Next, x is the element in Node X and u represents the source 

element located in Node Z of the image set located in Node X.

x

ZZ

YY
u

XX

v

'
1u

'
5u

'
4u

'
2u

'
3u '

1v

'
5v

'
4v

'
2v '

3v

S

Figure 32 Computing the distance of any element x of X to image sets of all elements 

u of Y or Z

4.3.2 Proximity of 2 image sets

After computing the proximities of the image sets of elements u and v of node 

Z to any element in the child node, it is easy to compute the proximities of image sets 

of elements u and v : those are given by  :








 


 
 Vv

X
Uu

X
Z

Ximage UvVu
VU

VUp ),(),(
1

),( [4.19]

The two image sets U and V that are located in Node X.  They are image sets 

of a pair of elements located in Node Z.  To find the proximity between these two 
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image sets, we sum the proximities between each element u  in the image set U and 

image set V.  Similarly, we also sum the proximities between each element v  in the 

image set V and the image set U.  See Figure 33 below. After adding the two 

summations, we normalize the result by dividing by the total number of elements in 

each image set.  

U

V

u'

v'

v'
v'

v'

v'v'
u'

u'

u'

u'u'

Node X

Node Z
a

b

Figure 33 Elements of an image set proximity measure

4.3.3 The algorithm

As mentioned in the beginning of this section, we convert the given graph into 

a modified tree.  For cyclic graphs we convert them into trees using either nodes with 

no outbound edges or nodes that have already been visited as leaves. In the case of a 

directed acyclic graph G, we can transform G into a modified tree by only considering 

nodes with no outbound edges.  So in effect, acyclic graph conversion is a special 
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case of the naïve approach conversion method.  We call it modified because children 

nodes are allowed to have multiple parents, such as the case for Node E in Figure 28.

CC

EE

BB

DD

AA AA

CC

EE

BB

DD

Figure 34 Directed graph with no loops converted into modified tree

The bottom-up algorithm follows two phases.  Phase 1 collects image sets for 

each node and moves in a downward direction.  It begins at the source node, the node 

that has the original 2 elements for which we want to find the proximity.  Phase 2 then 

starts at the leaves and calculates proximities between elements and image sets in an 

upward direction until the source node.

Fore each coupe of nodes A and B, where  AB  , phase 2 includes 2 steps:

 Step 1: for each element Bb  and for each element Aa , 

o Compute  abBA ,  according to equations [4.17] and [4.18]

 Step 2:  for each couple of elements  aa ,  with Aa

o Compute     aageSetaageSetp A
Bimage Im,Im , using [4.19]
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The algorithm that implements Phase 1, collecting image sets for all elements, 

is named CollectIS( n) and  takes a Node n.  This algorithm employs a data structure 

IS(p,e) that holds image sets of individual elements.  IS is accessible in Phase 1 and 

Phase 2.  Finally, we use the function Γ(n) that returns the set of nodes that have an 

inbound relationship from Node n. Hence the algorithm is stated as

CollectIS( n)

1  for each p  Γ(n)   

2     for  e  n 

3        compute IS(p,e)

4     if not examined(p)

5           CollectIS(p) 

6  examined(n) = true

This algorithm is called recursively starting with the top node: 

CollectIS(TopNode).  The algorithm then ends when we reach leaf nodes or nodes 

that have already been examined.

The goal of Phase 2 is to use the image sets collected in Phase 1 to calculate 

the global proximity between two elements.  We accomplish this by starting at the 

bottom of the modified tree and working upwards.  As in Phase 1 above, we employ 

supporting data structures in this phase.  A Proximity Element Image Set (PEI) table 

is used to globally keep track of element to image set proximity measures. See 

equation [4.17].  This table also holds the element node identifying information.

4.3.4 Time complexity

Let  N1, N2, …, Nk be the k nodes in graph G.  Furthermore, let n1, n2, … , nk

there sizes. The total number of elements of the graph is n = n1 + n2 + … + nk.  The 

time required for ordering the nodes in a bottom-up manner is a constant O(c).

Consider now step 1 of the algorithm for some upper node Ni and some lower 

node (son) Nj.   Remember that step 1 applies equation [4.17].  Computing the 

proximity of an element of Nj to the image set of an element of Ni takes at most nj
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operations. Doing this for each element of Ni and for each element of Nj takes at most 

ni* nj² operations.

Consider now step 2 of the algorithm. Computing the proximity of 2 image 

sets of Ni requires at most 
hjjj nnn  ...

21
 operations, where h is the number of 

child nodes of Ni and j1, j2, …, jh are the sons of Ni. For each couple of nodes i,j where 

i is the parent of child node j, the time component is nj. If we do this operation for any 

2 nodes of Ni, we get ni² * nj operations. To summarize, the time of the algorithm is 

the sum of  ijji nnnn 22  for any relationship (i , j) where i designates the parent node 

of the relationship and j the child node.

We may roughly say that O(n3) is a higher bound of the algorithm, which may 

be considered better than the recursive algorithm of section 4.2, but which may be 

improved in practice because of the sparse data available.

Take for instance a collaborative filtering problem like the one given on the 

site http://www.grouplens.org/ This site has collected data about rating of movies by 

moviegoers. Two databases are given on this site: one of 100,000 ratings for 1682 

movies by 943 users. The second one consists of approximately 1 million ratings for 

3900 movies by 6040 users. Pure applications of the complexity formula n1²n2 + n2²n1  

would give enormous numbers.

Step 1 of the algorithm requires each link between N1 and N2 to be examined 

only once for each element of N2.  Step 2 requires each link to be examined only once 

for each element of N1.  L12 being the number of links from node N1 towards N2, step 

1 of the algorithm has a time reduced to n2* L12, and step 2 has its time reduced to n1*

L12. Thus, the time is only L12(n1 + n2).  With the above examples, this represents a 

gain of time between 15 and 18 due to the sparsity of the matrix of links.  In the case 

of k classes, with n = n1 + n2 + … + nk elements, the total complexity is O(nL).
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4.4 Iterative

In this section I will explain the time complexity for the iterative approach to 

solving the proximity calculations.

4.4.1 Algorithm description

The algorithm given in this section solves the general problem expressed in 

equations [4.1] – [4.5].   The graph may include several nodes with loops.  Our 

equations may be written in the vector form:

cxMx


 )( [4.20]

where:

x


:  is a vector representing the total proximity. 

M:  is an operator containing the coefficients and max, addition and 
multiplication operands from proximity equations 

c


:   is a constant vector

We employ, under certain restrictions, some theorems and properties of linear algebra.  

See (Elsner and Driessche, 1999).  

If we look at the linear-max equation system represented by the M object and 

the c


vector, it has the following properties by construction:

1) The diagonal elements are all ones

2) All coefficients are positive

3) The sum of all row coefficients other than the diagonal coefficient is less 

than or equal to one.

4) The c


vector has all of the coefficients in the [0, 1] range.

Property 3 is usually referred to as ‘diagonal dominance’ in linear algebra.  It 

is well know that a linear system holds the form

cxMx


 [4.21]

where M is a strictly diagonally dominant matrix and is solvable by iterative methods 

called relaxation algorithms in the following way:
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1) Choose any 0x


2) Compute cxMx mm


1   starting with m=0 and continuing until 

convergence.  

(Press et al, 1995) shows that convergence may be slow, but in practice it gets 

faster as the sum of the non-diagonal coefficients of matrix M becomes significantly 

lower than the rank of the matrix.

Because of the similarity of linear algebra and max-plus algebra, we are 

entitled to use the same iterative method of equation solving, known as the Gauss-

Jacobi Algorithm.  Compute:

 
  ...12

01

cxMx

cxMx







4.4.2 Time complexity

We use the same notation found later in the bottom-up algorithm.  First p is 

the size of the x


 vector.  The size of the matrix-like M object is p x p, where 

)1(...)1()1( 2211  kk nnnnnnp [4.22]

with k being the number of nodes in our graph and 1n being the number of elements in 

one node. So p is of the order of ,... 22

1 knn  however M is a very sparse object as we 

have already seen.

An iteration of our algorithm consists of computing the mx


vector elements 

using 1mx


.  Remember that the size of x


is p (see above).  Using the same algorithm 

from 4.3.3, we get a computation time of nL for each basic step where:

knnn  ...1 [4.23]

and L is the total number of links of any element to any other element.  Iterating r 

times, the total complexity is given by:

)(rnLOt  [4.24]

Intuitively, the convergence speed is determined by the sum of all non-

diagonal elements of M.  For instance, in the example presented in Annex A, the rank 
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of M is 4 and the sum of all non-diagonal elements is 7/4.  Convergence speed is 

related to the ratio of this sum and the rank (7/16 in our example). The time needed to 

converge decreases as this ratio decreases.

4.4.3 Proof of convergence

The convergence of this relaxation algorithm can be established in the same 

way as if M was a true matrix and  xM


was the usual matrix-vector multiplication.  

We will first review the pure linear case in section 4.4.3.1, then introduce the max 

operator in section 4.4.3.2 and finally conclude on some graph characteristics which 

guarantee absolute convergence.

4.4.3.1 Pure linear equations without max operators

Suppose that

cxMx


 [4.25]

would be a pure linear equation with:

 A constant matrix M

 A constant vector c


 A vector of unknown x


The iterative method described in section 4.3.1 is then the so called power method.  

Given a matrix M with all positive elements, convergence of this method requires the 

highest eigenvalue to be less than one.  However, as we know that the sum of each 

row is less than or equal to 1, we can deduce that the highest eigenvalue is less than or 

equal to one.  For example, see (Pillai, 2005).  Relaxation equations such as:

cxMx nn 
 1 [4.26]

can be detailed as:

  

j
i

n
jij

n
i cxmx 1 [4.27]

We consider the difference 1 nn xx


of the values of x


 at two consecutive iterations.  

The following vector norm measures the distance between consecutive values of x

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)max( 11   n
j

n
j

nn xxxx


[4.28]

which is the maximum of the absolute values of the components.  Now we should 

show that 

1,211   kxxkxx nnnn 
[4.29]

which proves the absolute convergence of 0x


, 1x


,… nx


.  For any i, we have:

   
j

n
j

n
jij

n
i

n
i xxmxx 211 [4.30]

                
21

21












n
j

n
jij

j

n
j

n
jij

xxm

xxm



Thus, 11 max   n
i

n
i

i

nn xxxx


 which is less than or equal to 21   nn xx


 because 

1
j

ijm

Under which conditions can the symbol ‘ ’ be replaced by ‘ ’, which 

guarantees absolute convergence?  This will be discussed in section 4.4.3.3.

4.4.3.2 Equations with max operators

The proof of convergence of the previous section can be easily transposed into 

our equations which include maxes, pluses and multiplications by constants.  The 

Linea model has equations like the following:

   

j
i

n
j

n
j

n
jij

n
i cxxxmx

k

111 ,...,,max
21

[4.31]

where  kjjj ,..., 21 is a set of indices of vectors x


, given as a function of j. Remember 

that  
j

ijm 1.

We are still using the following measure of distance of two successive 

approximations of  n
j

n
j

j

nn xxxxx   max1
.   For any i, we have:

      
j

n
j

n
j

n
i

n
jj

n
i

h
i kk

xxxxmxx 22111 ,...,max,...,max
11

[4.32]

Observe now that if a, b, c, and d are four positive numbers, it is always true that:
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     dbcadcba  ,max,max,max [4.33]

Thus,

   
j

n
j

n
j

n
j

n
jj

n
i

n
i kk

xxxxmxx 21211 ,...,max
11

[4.34]

                 2121  







  nnnn

j
j xxxxm


                                              

Thus,

211   nnnn xxxx


[4.35]

Of course, absolute convergence can only be achieved if strict ‘<’ inequality is 

guaranteed, like in equation [4.27].

4.4.3.3 Equations of graph structures to achieve absolute convergence

First remember that, for every equation like 

  
j

ijjiji cxxmx
k

,...,max
1

[4.36]

we have, by construction of the Linea model

 
j

iij cm 1 [4.37]

We shall call ic  the “constant term” of the ith equation.  If, for all equations, the 

constant term ic  is equal to zero, there is no convergence of the relaxation algorithm.  

If some equations have 0ic  and some other are not, we have to eliminate all 

variables i such that 0ic , by row additions.  If variables eliminate trivially, the 

system is degenerate and hence we can replace these variables by zero.  At the end of 

the elimination process, every equation has non-zero constant.  Thus,

1
j

ijm [4.38]

for any i.

It may of course happen that some zero-constant variables may not be 

expressed in terms of non-zero constant variables.  Here is one example:
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  

5.7.

5.5.

5.,max5.








wy

wx

yxw

uv

vu

Note that u and v are given by equations where there is a zero-constant term, and 

cannot be expressed as functions of w, x, nor y.  There values are undetermined.  

Practically, we give them a value of zero.  This situation is quite common in 

recommendation systems with 2 classes: fans and movies.  If fan A saw movie K and 

fan B saw movie L, and neither A nor B saw any other movie, and K and L were not 

seen by any other fans.  See Figure 35.

AA

BB LL

KK

Fans Movies

Figure 35  Movie recommendation system example with undetermined values

Considering this example and assuming all local proximities are zero, we have the 

following equations
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),(* BAPu 

),(* LKPv 

uv

vu




which have no unique solution.  Thus we set u and v to zero.  With two classes (fans 

and movies in this example), a non-zero constant factor appears in the equations as 

soon as two elements of one class share the same element in the same element in their 

image sets within the image set node.  See Figure 36.

AA

BB
FF

CC
DD

EE

GG
HH

Figure 36 With the intersection of the two image sets at E, we are assured a non-zero 

constant

The equation giving the proximity of A and B includes a constant element.  In this 

example, the constant is 1/12 because the image set cardinalities of A and B are 3 and 

4 respectively.
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If we still have two classes and there exists a path between two elements A

and B of the same class, their proximity can be computed.  Here is one example:

AA

BB

KK
DD

EE
LL

MM

Figure 37 The proximity between A and B can be computed due to the path between 

them created from the links and intersections of the other elements.

The equations giving P*(A,D),  P*(K,L), P*(D,E), P*(L,M), P*(E,B) have 

non-zero constants.  Therefore P*(A,E) can be computed from P*(K,L),  P*(K,M) can 

be computed from P*(A,E) and P*(A, B) can be computed from P*(K,M).  

However, this kind of ‘path reasoning’ can not be generalized with more than 

2 classes.   Here is an example with 3 classes:
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AA BB CC

aa22

aa11

aa33

aa44

bb11

bb22

bb33

cc22

cc11

cc33

cc44aa55

Figure 38 Three class example

Proximities of b1 and b2 can be computed and the proximities of b2 and b3 can also be 

computed.  However, the proximity of b2 and b3 cannot be computed without other 

connected elements.

4.5 Conclusion

In this chapter we have introduced the Linea proximity calculator.  In doing 

so, we described three implementation approaches—naïve, bottom-up and iterative.  

Furthermore, we provided time complexity estimations for each approach and 

provided a proof convergence for the iterative method.  In chapter 5 we will discuss 

our experiments and their results as they pertain to each of the three methods 

mentioned in this chapter.
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Chapter 5

Experiments

5.1 Introduction

In this chapter we will present the various experiments we conducted with the 

Linea proximity calculator.  We will start with a description of the data we worked 

with during our experiments.  Next, we will compare the results between various 

approaches we employed with the proximity calculator.  Specifically, we will first 

measure the accuracy of the three approaches as compared to the manual results.  

Next, we will compare their performance.  Finally, we will make some conclusions 

and recommendations for algorithm choice.

5.2 Data description

For our experiments, we refer to data from two different domains.  The first 

one is a simple data-store that represents a set of web pages.  We used this set of data 

because it allows us to manually perform the proximity calculations for verification.  

The second set of data is more complicated.  It contains sample information 

representing employees of research and development (R&D) division of Électricité de 

France (EDF), a large French corporation.  I will discuss both databases in detail.
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5.2.1 Web pages

The web pages data-store provides a simple representation of a set of web 

pages. There are two entities:  web pages and terms.  There are three associations.  

Web pages contain terms.  Terms are contained in web pages.  And web pages point 

to other web pages.

Web PagesWeb Pages TermsTerms
Contains

Contained in

Points to

Figure 39 Web pages data model

The web pages data store consists of 27 elements in total.  Specifically, there 

are 17 web pages and 10 terms.  There are 6 web pages that have terms in their image 

set.  Likewise, there are 6 web pages that have other web pages in their image set.  

Finally, there are 4 terms that have web pages in their image sets.

Since this is such a small dataset, we use it mainly for comparisons between 

manual and automated methods.  For more robust testing, we use the corporate data 

structure described in the next section.
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5.2.2 Corporate

The corporate data set contains sample information representing employees of 

the R&D division of EDF. This data set is more complicated mainly due to two 

factors. First, it contains many more elements. Second, there are seven associations in 

the graph, significantly more than in web pages. There are three entities modeled by 

the corporate data store:  persons, competences and groups. There are bi-directional 

associations between all entities.  In addition, there is a reflexive association in 

groups, which represents a super/sub group association.

The source node used throughout our experiments is the person node.  The 

structure of the data contained in the corporate data sets has a much lower percentage 

of image set intersections.  Accordingly, we can expect that the proximity results will 

be lower than those of the web pages database.  In the following paragraphs, we 

provide a detailed description of the corporate data set that provides support to our 

conclusion of lower expected proximity scores.
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PersonsPersons CompetenciesCompetencies
Persons_Competencies

Groups_Competencies

SuperGroups_SubGroups

GroupsGroups

Persons_Groups

Figure 40 Corporate Data model

There are 2573 people represented in the corporate database.  There are also 

214 groups and 128 competences.  On closer examination, other interesting 

characteristics of the data emerge.  First, only 193 of the 2573 corporate personnel 

have a listed competence.  Of this population, 99 have only one competence.  

Afterwards, there are 33 people who have three competences. There is one person 

who has six competencies, the most in the database.
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Figure 41 Competences per Person comparison

Inversely, of the 128 competences listed, 24 are not associated with a person.  

Of the 104 competences associated with people, 22 of them were associated with 1 

person only.  Equally, 22 competencies were associated with 2 persons.  There were 

three competences associated with 11 or more people.  The most common 

competency, Networked Computer Systems & Telecommunications, was associated 

with 15 people. 

When we consider the image sets of elements in persons in the competences, 

we can see that the chances of overlap between different image sets are low.  The 

effect will be a lower overall proximity measure as a result of competences.  As we 

move further away from the source node, in this case people, the effects of image set 

overlap are lower.  Accordingly, although there is a higher chance of image set 

overlaps when taking competencies as the originating node and persons as the image 

set node, the positive effects are lesser since we are considering image sets node 
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directly associated with persons.  In this case, there is a intermediate node, 

competences, between the source node (persons) and the node containing the image 

sets (persons).

Figure 42 Competencies per Person comparison

When comparing groups to people, we found that most people, by far, 

belonged to only one group. In fact, out of the 2545 people in the corporate data store 

that are associated with a group, 2512 were members of only a single group.  An 

additional 30 people belonged to 2 groups while only 3 people belonged to either 3 or 

4 groups.  No one was associated with more than 4 groups.

The distribution of people among groups is more disperse than people with 

competences.  Whereas most people tend to have one or two competencies, the 
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number of people per group follows more of a normal distribution.  There are 16 

groups that have 15 people in them.  At the extremes, only 1 populated group contains 

the lowest number of people: one.  Similarly, there is only 6 groups contain 29 or 

more people including the outlier group that has 58 members. 

When we consider image sets in node groups, which originate in the persons 

node, there is a higher chance of set intersection since the vast majority of people 

belong to a group and many groups contain 15 or more people.  Accordingly, image 

set proximity scores here should be higher. 

Figure 43 Groups per Person comparison

Groups can also contain other groups.  There are 30 groups that contain other 

groups. Most of these super-groups contained between 4 and 9 sub-groups.  However 
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there is one case in which a group contains 20 sub-groups.  Also there is one instance 

in which a sub-group is a member of 2 super groups.  Finally, there are 26 super-

groups that are also a sub-group of another.

Of the 214 groups in the corporate data store, 30 have sub-groups.  Hence less 

than 15% of the groups have subgroups.  If we consider groups as the originator node 

for image sets contained in subgroups, we can conclude that this structure feature also 

lends itself to lower proximity scores.  

Figure 44 Super-groups per Sub-group

In the corporate database 20 groups have competences.  The majority of these 

groups had 8 or fewer competences.  There were 2, however, that had 12.
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Figure 45 Groups per Competency

Out of the 128 competences in the database, 120 were associated with a group.  

Furthermore, each competency was associated with only one group.

As we have considered all permutations for image sets, we can expect to have 

lower proximity scores. (~.25 and lower)  This analysis helps us to have an 

expectation of values when we run the experiments.

5.3 Accuracy

In this section, we discuss the accuracy of all three implementations.  First we 

confirm for this example the consistency of our results regardless of the order in 
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which the paths were followed by the algorithm.  We then compare results from the

different implementations to the manual results

5.3.1 Intuitive Accuracy Experiment

The naïve implementation is different from the other approaches in several 

ways.  One of these differences is that the naïve implementation is tied to the structure 

of the graph. In other words, the implementation follows the relationships from node

to node based on the location of current elements’ image sets.  This attachment to the 

graph structure led to a hypothesis that we needed to confirm through 

experimentation.

5.3.1.1 Recursive tree consistent proximity results

With the naïve implementation of the proximity calculator, the algorithm 

follows paths outward from the initial node, which contains the x and y elements 

whose proximity we are interested in obtaining.  Since the results of each path’s 

calculation are added to the next path’s calculation, the order in which the paths are 

calculated should not change the result of the proximity calculation.
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Figure 46 Calculation paths

  To confirm this, we decided to run some experiments to compare the results 

from calculations made from following paths in different order.  We defined two 

simple heuristics.  We then developed an application that analyzed the graph structure 

of the problem domain and ordered the paths according to the desired heuristic.  We 

then ran the calculations over each heuristic, collected the results and then compared 

them.  We did this for both data sets (Web pages and corporate).  The results were 

inline with our hypothesis.  This, in turn provided a partial validation of the 

correctness of our implementation.

5.3.1.1.1 Heuristics

Our first step was to define differentiable heuristics for calculating the global 

proximity between two elements.  The global proximity included both the local and 

image proximities.  The local proximity is a static calculation, in that there is only one 

way to calculate it.  Regardless of the implementation, the local proximity should 
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remain consistent.  However, the image proximity consists of recursive calls that 

follow a path through the graph based on image sets.  During the recursive step of an 

element proximity calculation, there may be several image sets, each located in 

distinct nodes. Hence there lies the possibility of different paths.  How does the 

proximity calculator determine which image set to calculate next?  Initially it was 

random.  There were no heuristics. 

In turn, we proposed two heuristics: shortest-to-longest and longest-to-

shortest.  As the names imply, the shortest-to-longest heuristic chooses the shortest 

path first (assuming multiple paths) then progressively chooses the next longer path.  

Conversely, longest-to-shortest heuristic chooses the longest path first then 

progressively chooses the next shorter path.
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Path 3: 3 links

Path 4: 4 links

Path 1: 2 links

Path 2: 2 links

Shortest to 
longest path length order

x,y
A

B

E

D

C

Figure 47 Heuristics

5.3.1.1.2 Approach

Until this point, we were not concerned with path lengths.  Hence, the 

proximity calculator had no facilities to analyze them.  Accordingly, our first task was 

to add a feature to the proximity calculator which would allow us to consider path 

lengths.  Next we ran the algorithm over the Websites and corporate data sets.  For 

each graph we chose one node to work with.  In this node we measured the proximity 

between an element and every other element in the node.  We then repeated this 

process for every element in this node.  We stored all of the results on disk for later 

access.  We did these calculations for each heuristic.

5.3.1.1.3 Software Implementation

Adding the path following functionality to the proximity calculator was 

accomplished by first implementing a path manager function.  We then implemented 

an experiment class which ran the various calculations.
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Figure 48 Experimentation software architecture

5.3.1.1.3.1 Path Manager

The path manager class is the heart of the experimentation software.  First, 

given a start node in a graph, it identifies and catalogs each path in the graph by 

length.  Then it arranges and stored the paths in both increasing and decreasing order.  

These actions are done during the construction of the path manager object.  

Afterwards, the experiment class calls on the path manager when calculating the 

proximities.
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Figure 49 Path Manager Class Diagram

Within the image proximity implementation, we adjusted the software to make 

a call to the path manager when considering the next image set to process.  The next 

image set provided by the path manager correlates to the heuristic used. 

As an example, consider Figure 50.  Assume we are following a shortest to 

longest path heuristic and the start Node is A.  Furthermore, we have arrived at Node 

D for the first time.  We are at the step in the algorithm where we are recursively 

calculating the global proximities of each element in the two image sets located in 

Node D.  There are 2 outbound relationships from D:  a reflexive relationship back to 

D and a relationship to Node E.  The path that would take us to Node D is 3 links.  

The path that would take us to Node E is 4 links.  Since we are following a shortest to 

longest heuristic, the next node to consider for calculating image sets is Node D. 
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Path 3: 3 links
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Path 1: 2 links
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CurrentCurrent
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Figure 50 Path manager example

This is exactly how the path manager interacts with the proximity calculator.  

At each point in the algorithm where the proximity calculator has more than one 

possible node to step to for image set calculations, it calls the path manager to 

determine the correct node, based on the current heuristic.

5.3.1.1.3.2 Experiment Driver

The code that drives the experiment is encapsulated in the ExperimentDriver 

method.  This simple method makes the necessary calls to 1) initialize the proximity 

calculator with the proper graph, 2) instantiate a PathManager object 3) run the 

multiple iterations of the proximity calculations and 4) store the results to disk.  The 

principal methods in this class are listed in Figure 51.  
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Figure 51 ExperimentDriver class diagram

5.3.2 Manual calculations

We first examine the accuracy of the proximity calculator as compared to a 

manual approach.  We use the Web Pages data set to perform our experiments.  We 

structured our experiments with three representative examples, based on the measure 

of proximity.  More specifically, we consider the cases when there is a partial, 

complete and absence of imaged proximity.

The first example is of partial image proximity.  We obtain our sample 

elements from the Web Pages node.  The two Web Pages are WP2950 and WP2951.  

In the manual calculation we need to follow all of the links based on image set 

relationships.  Both WP2950 and WP2951 contain terms and point to other Web 

Pages. The following series of diagrams show the progression of the algorithm as we 

manually calculated the proximity between WP2950 and WP2951.  In Figure 52, you 

can see the terms that WP2950 and WP2951 are associated with.  These two set of 

terms make up the image sets of WP2950 and WP2951 in the Node Terms.
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Figure 52 Terms related to WP2950 and WP2951

Next we calculated the set distance between the two image sets in Terms.  In 

doing so, we must calculate the total proximity between the set Term 6 and Term 7 

and the set consisting of Term 7 and 8.  Calculating the total proximity requires 

finding both the local and image proximities.  Hence, identify the image sets of the 

two groups in the Node Web Pages.  See Figure 53.
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Figure 53  Proximity calculations in the Node Terms

The image sets in the Web Pages node intersect on one Web Page:  WP2960.  

Furthermore, since the Web Page node has already been visited, we do not consider 

image sets; we only calculate the local proximities when determining the proximity 

between the image sets.  

At this point, we have followed the path:  Web Pages-Terms-WebPages.  We 

must also consider the other path from Web Pages:  Web Pages-Web Pages.  The 

calculations are the same; we just follow the links of image sets over the identified 

path.
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Figure 54 Second path starting at Web Pages

In this second path, we consider the same 2 original Web Pages (WP2950 and 

WP2951) and identify the other Web Pages to which they point. See Figure 54.   We 

calculate the proximity between the 2 image sets in Web Pages in the same manner as 

above when we arrived at a previously visited node:  we consider only the local 

proximities when determining the set distance.  

We performed the same manual calculations on Web Pages that had both a 

complete overlap on their image proximity and that had no image proximity. The 

results of the manual calculations are listed in the table below.
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Manual Results

0.125WP 2950WP 2949

0.500WP 2952WP 2949

0.281WP 2951WP2950

Web Page 1 Web Page 2 Proximity

Figure 55 Manual Proximity Results for Web Pages

Note that the proximity between WP2949 and WP2950 is greater than zero.  

This is the case because the secondary image sets (from Terms back to Web Pages) 

have image sets that overlap.

5.3.3 Accuracy of Automated methods vs. Manual

After determining the proximities manually, we then determined the 

proximities using each of the implantation methods (naïve, relaxed iterative and 

bottom-up).  Before presenting the results, a discussion of the precision for the 

relaxed iterative method is due.

Recall that with the relaxed iterative method, iteration stops with the 

difference between np and 1np  is less than the precision variable ε where 10   .  

In our implementation, we compared the average ε for all proximity values in the 

graph.  We randomly chose a ε default value of .01 for our calculations.  In practice, 
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this value will adjust based on the needs of the application.  We found that at ε = 0.01, 

the proximity results were consistent with the other methods to 5 decimal places.  All 

three automated results were consistent with the manual calculations. 

5.4 Performance

In this section we compare the performances of the three implementations.  In 

particular, we consider both initiation time and proximity calculation time for each 

version of the Linea proximity calculator.

5.4.1 Approach

To capture the times, we added timing methods during object initialization and 

during the actual proximity calculations.  We then stored all of the timing information 

in a convenient data structure we created to manage the results of our experiment 

runs.  After the each run we then collected the timing data for further analysis.

5.4.2 Impact of precision on iterative method

In the relaxed iterative method, the performance is influenced by the precision 

variable ε.  As ε decreasing, the calculation time increases until the algorithm 

stabilizes.  As discussed in chapter 4, our relaxed iterative algorithm was expected to 

stabilize quite quickly due to the diagonal dominance of the system of equations.  We 

can see this behavior reflected in the calculation time.  After seven to ten iterations, 

the calculation time levels out. See Figure 56.
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Figure 56 Calculation time versus precision

5.4.3 Results

We then calculated the proximities of the entire Web Pages node using the 

NodeProximity data structure found in chapter 6.  We performed these calculations 

using each of the three Linea implementations.  During each run of the experiment, 

we captured the time.
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Figure 57  Comparison performance results experiments

To better see the behavior of the algorithms, we divided the times into three 

classes:  1) system initialization 2) initial answer time and 3) subsequent answer time.  

The system initialization time describes the time needed for any initializing steps such 

as the graph class initialization.  The initial answer time captures the time needed to 

produce the first answer while the subsequent answer time describes the time needed 

to calculate each result afterwards.  

The naïve and bottom-up approaches take the same amount of time for system 

initialization as they both use the graph structure in their calculations.  The naïve 

approach’s initial and subsequent times to calculate a result are both .0165 seconds.  

This is as to be expected since each calculation (whether initial or subsequent) is 

performed the same way.  The bottom-up approach’s initial calculation time is much 

larger than the naïve approach.  However, the subsequent times to calculate a result 

are negligible as the computational significant calculations are performed while 

gathering all of the proximity results for the initial calculation.  Finally, we see that 
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the iterative approach has by far the most costly calculation time for the initial 

calculation.  This is due to the fact that we calculate all of the proximities in the graph 

multiple times.  Note though that the subsequent calculation time is negligible.  

5.5 Conclusions

Each of the implementation approaches has both their advantages and 

disadvantages.  They have different situations in which they would be best employed.  

We compare each approach’s advantages and disadvantages and suggest the situation 

in which it would best be used.  In order to accomplish this we compare the results of 

the EDF dataset run with 1 calculation to 1000 calculations.
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Figure 58  Experiment result insights

As we can see from Figure 58 the naïve approach becomes costly as the 

requests increase.  By contrast the iterative and bottom-up methods are extremely 
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efficient time-wise for multiple calculations.  Their time costs are concentrated in the 

initial calculation.  Finally, the iterative approach is some about more than twice as 

fast as the bottom-up approach.   Accordingly, for problems that involve one or only a 

few calculations, the naïve approach is the best suited.  However, for problems which 

call for many proximity calculations, the iterative approach is the best choice.
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Chapter 6

Implementation

6.1 Introduction

In this chapter, I will discuss the software implementation of the proximity 

calculator.  I will first give an overview of the system architecture, pointing out the 

major components and the communications.  Next, I will discuss the multi-tier 

approach employed to implement this application.  Afterwards, I will discuss in some 

detail the design of the underlying database and its implementation.  Finally, I will 

touch on some implementation improvements that have been made over the course of 

development.

6.2 System Architecture Overview

6.2.1 Introduction

The key factor in driving the design of the proximity calculator was flexibility.  

Given that our partner, I-nova was interested in applying the proximity calculator to 

several domains, it was imperative that we design the calculator for easy adaptability.  

For the most part, we accomplished this by applying software best practices including 

abstraction and encapsulation.  Another factor that influenced the system design was 

the eventual need for extendibility.  Accordingly, we applied several features of the 
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Java 2 Enterprise Edition J2EE architecture.  In other cases we designed the software 

to be easily scaled to support larger applications, which will be discussed in the Multi-

tier section.

In this section I present the overall system architecture, explaining the various 

components.  Afterwards, I will discuss the sequence of communications between the 

system elements during a normal operation.  

6.2.2 Architecture Elements

The key to the system is the actual proximity calculator.  It performs the 

calculations that measure the proximity between 2 given elements.  However, there 

are several other parts to the system that are also crucial to the proximity calculator.  

The supporting graph that’s used by Linea is implemented as a java object.  When the 

graph class is instantiated, the Data Access Object (DAO) accesses the Relational 

Database Management System (RDMS) and populates the graph class with the proper 

graph.  The Path Manager controls the path the proximity calculator follows based on 

the chosen heuristic.  Finally, the proximity calculator can be accessed from various 

sources:  web browsers, java applications and web services clients.
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Figure 59 Proximity Calculator System Architecture

6.2.2.1 Proximity Calculator

The proximity calculator does one function.  It calculates the proximity 

between 2 elements in a node of a graph.  Accordingly, its public interface contains 

only one method:

GlobalProximity(Element x, Element y, Graph graph, Double alpha, 
PathManager pathManager)

The CalculateGlobalProximity method takes the 2 elements between which we want

to obtain the proximity.  It also takes a graph object that contains the elements and a 

value for the alpha, which is between 0 and 1, and provides the weight between the 

local and image proximities.  An alpha value of 0 would mean only the image 

proximity would count.  An alpha value of 1 would mean that only the local proximity 

would count.  An alpha value of .5 would give the local and image proximities equal 

weight.  Finally, the method also takes a Path Manager object which manages the 
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order of the paths followed during calculation.   The CalculateGlobalProximity 

method returns a proximity result as BigDecimal object.

There is also a set of helper classes that have been added for managing larger 

sets of proximity calculation results.  By using these classes, a client, with one 

request, can obtain all of the proximity measurements in a domain graph.  In addition, 

the results are returned in a single data structure for easy manipulation. 

A foundation class is the ProximityDataElement, see Figure 60.  For a 

proximity calculation, we identify the two elements in question as either the source or 

destination element ID.  This data structure contains the destination elementID. It 

stores the proximity result.  This data structure is never instantiated directly by a 

client application.  Instead, it is either subclassed or contained in another class.

The ProximityDataElementPair extends ProximityDataElement, adding the 

source element ID. See Figure 60.  This class holds the information for a complete

proximity calculation. Hence, a client could actually use this class directly.  
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Figure 60 ProximityDataElement and ProximityDataPair 

The ElementProximity class also uses the ProximityDataElement.  However, 

instead of sub-classing it, the ElementProximity contains a collection of 

ProximityDataElements.  This class holds all of the proximity measurements from one 

element to all of the other elements in a node.  See Figure 51.

Following a logical progression, the NodeProximity class holds an

ElementProximity for each element in the node.  This gives a client application, in 

one data structure, all of the proximity calculations from any element in a node to any 

other element.  See Figure 61.
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Figure 61 ElementProximity and NodeProximity

 Finally, there is GraphProximity class which holds a NodeProximity for each 

node contained in the graph.  These data structures allow a client application to 

request possibly thousands of proximity calculations with one method call and in 

addition receive a data structure in response that has all of the results available for 

further manipulation.
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Figure 62 GraphProximity

6.2.2.2 Path Manager

As described in the Experiments chapter, the Path Manager class provides the 

means for controlling the order in which the paths are followed during the proximity 

calculation process.  We developed this class to support the experiments where we 

wanted to strengthen the conjecture that the order in which the paths were followed 

had no impact on the proximity calculation results.  The experimental results 

supported our hypothesis.  

The path manager also analyzes the path structure of the graph.  It captures all 

of the paths that exist in a directed graph given a reference node.  The path manager 

also orders the paths by length.  Given these additional features, we decided to keep 

the path manager functionality.
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6.2.2.3 Graph Class

The Graph Class models a directed graph and provides the environment in 

which the proximity calculator performs its calculations. The Graph class contains a 

set of node and edge objects. 

Other than the getter and setter methods, the Graph class also has some 

methods especially tailored for the proximity calculator.  The getInboundWeight() 

method is used to get the weight for a particular node when calculating the image 

proximity.

There is also a set of methods that track when a node has been visited 

(addVisitedVertice(int VerticeID), addVistiedVertices(Collection items), 

clearVisitedVertices()) which is used to determine if a node has been visited in the 

current path.  If it has been visited, then we consider the path ended.

6.2.2.4 RDMS

We used the MySQL Server 4.1 database system for our application.   It is a 

fast and simple open source database system.  Also, several advanced features, such 

as subquery and join, have been added to this version that were crucial for the 

proximity calculator implementation.

6.3 Multi-tier approach

The proximity calculator is a web-based agent written with the J2EE facilities.  

The system was developed following a three-tier approach.  There is a thin interface 

tier developed using Java Server Pages (JSP) technology.  The middle tier houses the 

business logic and is written in Java.  The final tier is the data-access level.
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6.3.1 Introduction

The proximity calculator system uses a 3-tier design for separating software 

functions.  In this section, I will discuss the benefits of this approach.  I will also 

discuss the DAO functionality in more detail.
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Figure 63 Multi-tier architecture

6.3.2 Benefits of the approach

This separation simplifies design and development and software packaging.  

The multi-tier approach enhances code separation, encapsulation and scalability.

6.3.2.1 Code separation

By following the multi-tier approach in developing the proximity calculator 

application, code can be separated by function.  Code in the Information tier was 

concerned only with assessing or storing permanent data.  Likewise, software written 
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for the middle tier was concerned with the actual proximity calculations.  Similarly, 

the applications developed in the presentation-tier were focused on displaying results.  

The code separation helped tremendously with software organization.  It 

allowed for a logical grouping of software functionality.  Furthermore, we employed 

J2EE standards such as Java Database Connectivity (JDBC), JavaBeans, Servlets and 

Java Server Pages (JSPs) to simplify inter-tier communications.   

6.3.2.2 Encapsulation

We employed encapsulation to isolate and hide complex software 

functionality.  For example, the GlobalProximityCalculator class only works on a 

Graph object to perform the proximity calculations.  The GlobalProximityCalculator 

knows nothing about the underlying database that actually houses the data in the 

graph object.  This allowed us to focus on the implementation of the 

GlobalProximityCalculator without having to be concerned about the operations of 

the underlying database.  The separation of code by functionality not only simplified 

development, but improved maintainability.

6.3.2.3 Scalability

We have used many tenants of the J2EE standard, but not all.  Enterprise 

JavaBeans (EJBs) are also part of the J2EE standard.  An EJB is a body of code that 

implements modules of business logic (Armstrong, 2004).  EJBs are always deployed 

within an EJB container which provides support services for distributed applications, 

such as security protocols, authentication and distributed resource directory services.  

We designed the proximity calculator application to easily incorporate EJBs.
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6.3.3 DAO

6.3.3.1 Purpose

The data access layer is implemented using a data access object (DAO).  The 

DAO is the interface between permanent storage and the middle layer.  All of the 

database specific code is contained here.  The advantage of this approach is that it 

hides the details of the database access from the business layer.  Furthermore, through 

the use of generic classes, one is able to switch database implementations without any 

modifications to the business layer.

6.3.3.2 Structure

The DAO actually consists of an interface and the database specific concrete 

class that implements it, and another interface that defines the data access methods 

available to client applications.  When a client application wants to instantiate a graph 

object that is in the database, it works through the DistanceManager interface.  The 

client application must pass it a DAO object that extends the GenericDAO interface.  

The GenericDAO interface defines the database operations required to support the 

DistanceManager.  The DAO classes that extend the GenericDAO interface house the 

database vender specific code for accessing that particular database.  For example, we 

use the MySQL database system.  The class we developed (MySQLDAO) that 

extends the GenericDAO contains all of the SQL statements specifically suited for the 

MySQL database management system. 
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Figure 64 DAO related classes

6.4 DB Design and Implementation

6.4.1 Introduction

We chose the Unified Modeling Language (UML) to capture the design of the 

database that supports the Linea agent.  UML is a broadly accepted standard for 

modeling software applications.  It is extremely rich and flexible, able to express 

diverse aspects of a development project.  Accordingly, we were able to consistently 

use UML for not only the database design, but for the entire system.  Using one, rich 

language simplified the analysis and design of the entire system.

In this section, we will detail the steps we took in designing the database.  

Specifically, we will discuss our analysis with object modeling and use case diagrams.  

We will also explain the class diagram development.  Finally, we will discuss our 

technique for converting class diagrams into database schemas.
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6.4.2 Object modeling

When designing the Linea database, we followed the basic practices of Object 

Oriented Analysis (OOA).  We started by considering our domain and then extracting 

descriptive nouns and verbs.

• A graph contains nodes

• A graph contains edges

• Nodes contain elements

• Elements have image sets

We then used these phrases to construct a first cut of our data object model.  

We did so by converting all nouns to classes.  Next we created associations between 

the classes whenever we had a verb phrase containing the names of the classes.  
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Figure 65 Data object model - first cut

However, as the name implies, this is only a first step.  We performed more 

analysis to capture other data requirements that may not have been apparent from the 

noun-verb analysis.  The next step we performed was use case analysis.

6.4.3 Use cases

We use a use case diagram to capture the functional aspects of the database 

within the context of the entire system (Chitnis et al, 2005).  Rather than looking at 

the problem of proximity calculations, with use cases, we focus on how we calculate 

the proximity calculation.  Use cases are another way we can consider the problem 

that can possibly provide more insight on data requirements.

In Figure 66, we provide an example of the Linea use case.  This simple use 

case contains 2 actors, a client who wishes to know the proximity between 2 elements

and the database.  The primary use case associated with the Linea client is calculate 

proximity.  This use case includes 2 other use cases: calculate local proximity and 
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calculate image proximity. These 2 included use cases are associated with the 

database actor in order to obtain the domain graph information.

Figure 66 Linea use case diagram

Through this analysis, we realized that we needed to capture the local 

proximity measures between elements in a node. For this work, we stored local 

proximities in the database.  Hence, this needed to be captured in our finalized data 

model.

6.4.4 Class diagrams

We used the class diagram to provide a logical view of the database design.  It 

is based on the original object model we developed, with consideration for other 
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analysis such as the use case diagrams.  We can consider the object model we 

developed in the previous section a ‘first draft’ while the class diagram is the ‘final 

cut.’  As you can see in Figure 67 we have extended the original object model to 

include the local proximities.   We also included attributes for each class.

Figure 67 Database class diagram

6.4.5 Database schema conversion

The bridge for our design and implementation was the conversion of the UML 

diagram into schema.  We employed the UML-to-schema guide developed by the 

author while teaching a database design course at the United States Military Academy 

at West Point.   The guide consists of a set of pattern matching rules that allows a 

class diagram to be translated to a database schema almost automatically.  The rules 
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are organized with the most frequently used and necessary ones first.  The two most 

basic conversion rules, for strong classes and many-to-many associations are shown in 

Figures 68 and 69

if key-attributesA = { keyAttr1, …, keyAttrj }
and other-attributesA = { singleAttr1, …, singleAttrk }
then A-schema = ( key-attributesA, other-attributesA )

Figure 68 Guide to converting a strong class to table schema
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if A-schema = ( key-attributesA, other-attributesA )

and B-schema = ( key-attributesB, other-attributesB )

then R-schema = ( key-attributesA, key-attributesB, other-attributesR )

with a foreign key from R-schema.key-attributesA to A-schema.key-attributesA

and a foreign key from R-schema.key-attributesB to B-schema.key-attributesB

Figure 69 Guide to converting a many-to-many association to table schema.

In the last section of the guide, there are ways to optimize the schema.  An 

example, which is to drop an association table when the association is an existence 

dependency, is shown below.  If the many-to-many association was an existence 

dependency association, the association table could be dropped and the table schema 

representing the class on the many side of the association (in this case A-schema) 

would be altered.
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if A-schema = ( key-attributesA, other-attributesA )

and B-schema = ( key-attributesB, other-attributesB )

and R-schema = ( key-attributesA, key-attributesB, other-attributesR )
with foreign keys and unique constraints as defined earlier

then drop R-schema

and alter A-schema=( key-attributesA, other-attributesA, key-attributesB, other-attributesR )
with a foreign key from A-schema.key-attributesB to B-schema.key-attributesB

and a unique constraint on A-schema.key-attributesB

Figure 70 Guide to optimizing the schema by eliminating unneeded many-to-one table 

schema.

Given this guide (which can be found in annex B), we present the schema that 

we developed from our class diagram.  The database used throughout our system was 

implemented from this schema.
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Strong classes
Graph_schema = {graphID, name}
Edges_schema = {edgeID, name}
Elements_schema = {elementID, name}
Nodes_schema = {nodeID, name}

Many-many
element-node_schema = {elementID, nodeID}

foreign key reference from foreign key reference from elementIDelementID --> > Elements.elementIDElements.elementID
foreign key reference from foreign key reference from nodeIDnodeID --> > Nodes.nodeIDNodes.nodeID

edge-node_schema = {edgeID, nodeID}
foreign key reference from foreign key reference from edgeIDedgeID --> > Edges.elementIDEdges.elementID
foreign key reference from foreign key reference from nodeIDnodeID --> > Nodes.nodeIDNodes.nodeID

element_imagedElement = {elementID, imagedElementID}
foreign key reference from foreign key reference from elementIDelementID --> > Elements.elementIDElements.elementID
foreign key reference from foreign key reference from imagedElementIDimagedElementID --> > Elements.elementIDElements.elementID

localProximities = {firstElementID, secondElementID, localProximityValue}
foreign key reference from foreign key reference from firstElementIDfirstElementID --> > Elements.elementIDElements.elementID
foreign key reference from foreign key reference from secondElementIDsecondElementID --> > Elements.elementIDElements.elementID

Many-one
edge-graph = {edgeID, graphID}

foreign key reference from foreign key reference from edgeIDedgeID --> > Edges.elementIDEdges.elementID
foreign key reference from foreign key reference from graphIDgraphID --> > Graphs.nodeIDGraphs.nodeID

graph-node = {nodeID, graphID}
foreign key reference from foreign key reference from nodeIDnodeID --> > Nodes.nodeIDNodes.nodeID
foreign key reference from foreign key reference from graphIDgraphID --> > Graphs.nodeIDGraphs.nodeID

Figure 71 Table schema for the graph database

6.5 Implementation Improvements

Throughout the development of the Linea agent, there were some 

implementation inefficiencies that needed to be overcome.  Specifically, we addressed 

problems with object instantiation and initialization.

6.5.1 Object instantiation efficiency

The first challenge we encountered was that the system continuously crashed

during initialization in certain situations.  For small data sets, such as the web pages 

database, the system would run fine.  However, for larger data sets, such as the 

corporate database, it would crash.

After extensive debugging we discovered that we had inadvertently developed 

the software to instantiate a new DAO every time an element was pulled from the 

database into the graph object.  For small databases, this didn’t pose a problem.  
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However, for the corporate database with over 2700 elements and 6 million local 

distance values, memory was quickly depleted.

We easily corrected our oversight and adjusted the software by only 

instantiating one DAO object per application and reusing it for all database accesses.  

After making the correction, the system did not crash at initiation anymore. 

6.5.2 Lazy local proximity initialization

Shortly after solving the problem with object initialization, we discovered 

another challenge.  The system continued to crash with large data sets.  After 

performing more program analysis, we discovered the root cause to be the 

initialization of the local proximity values.  The graph object contains nodes and 

edges.  A node contains a set of elements called a payload.  This payload object 

contains a collection of local proximity values of type BigDecimal collected from the 

database at initialization.  For the corporate data set, this included over 6 million 

items.  As with the object initialization, the system ran out of memory at instantiation.  

Upon further analysis, we determined that all of the local proximity values were not 

needed to start the proximity calculations.  As a result, we implemented a ‘lazy’ local 

proximity initialization scheme.  In effect, when a graph was instantiated, the local 

proximity values would not be read in.  Instead, they would only be read in if needed.  

More specifically, we created an n x n table for each node where n was the number of 

elements in the node.  The table was initialized to -1.  During the proximity 

calculations, when there was a need for a local proximity value, this table is 

consulted.  If the value was -1, then the system would make a database call to fetch 

the value and then store it into the table.  If a non-negative value was already in the 

table, then it would simply be read.

After this adjustment, the system worked without problems.  In hindsight, we 

believe the ‘lazy’ initialization is a better approach since it not only reduces the need 

for memory, but also improves speed by only making a database access when needed.
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6.6 Conclusion

In this chapter, we presented the software implementation of the Linea 

proximity calculator.  We first gave an overview of the system architecture.  Next we 

explained our multi-tier development approach.  And after a detailed discussion of our 

supporting database, we concluded with some implementation improvements that 

have been made.
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Chapter 7

Conclusion

We have presented through this dissertation the Linea algorithm, a new 

approach for measuring the proximity between 2 objects in a linked metric space. 

This linked metric space is represented within a graph.  The algorithm is generic and 

has been designed to be easily applied to various domains.  

Along with the algorithm we presented three implementation approaches: 

naïve, iterative and bottom-up.  The naïve approach implements the theoretical 

algorithm and uses an artificial fix point.  The bottom-up works on a modified tree 

version of the support domain graph.  In this case, we are able to take advantage of 

certain preprocessing steps that improve our efficiency.  Finally, the iterative 

approach begins with an initial value for all proximities in the graph then iterates until 

the difference between successive proximity values in the system is less than a pre-

defined precision limit. We compared the three approaches and provided insight on 

the situations they are best used in.

7.1 Summary of Contributions

7.1.1 A novel approach to metric space calculations

The Linea algorithm is a novel approach to measuring metric space 

calculations.  It provides an efficient and generic way of determining the proximity 
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between two objects in a linked metric space.  It is optimized for linked environments 

with minimal, semi-structured text.  From our research of the domain, we have found 

no other approaches that combine both the direct proximity measurements and the 

link analysis.  Our work, in partnership with I-nova, will be applied to developing 

innovative and flexible solutions for I-nova’s many and diverse customers.

7.1.2 A comparison of implementation methods

We also proposed and provided a comparison of implementation methods.  In 

addition, we described situations when a particular approach is best used.  In 

particular we found that the naïve approach was good for single (or a few) 

calculations.  This is because the naïve approach had very little preprocessing time. 

By contrast we found that the iterative approach was best for large numbers of 

calculations such as batch jobs.  Although the one-time preprocessing step was long, 

all subsequent calculations were negligent. 

7.1.3 Linea implementation

The Linea algorithm is implemented and can be used for further research.  We 

have a version for each of the three implementation methods described in this work.

7.2 Directions for Future Research

There are various areas of improvement and further research.  They include 

Response integration, Netfires, parallelization, and web services.

7.2.1 Response integration

This work was performed in partnership with I-nova.  A design goal was for 

Linea to be able to be integrated into various domains.  One of those domains is 

helpdesk support.  Response, a European Union funded research project, has a goal of 

applying artificial intelligence technologies to the helpdesk support domain.  In 
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particular, the Response system employs case-based reasoning and Bayesian analysis 

techniques to help determine whether a new incident received at a helpdesk is a 

known case with a solution.  

How to employ Linea into the Response project is an interesting area of 

research.  There are two areas to consider.  In order to determine if a group of 

incidents make-up a case, the project will use clustering techniques.  Can Linea be 

used effectively as the proximity algorithm when determining clusters?  Second, can 

Linea be used to measure the proximity between a new incident and an already 

established case?  This area of research could further support the generic nature of the 

Linea agent

7.2.2 Netfires

Netfires is a next-generation munitions project sponsored by DARPA.  Since 

the times of Napolean, artillery has been an important weapon on the battlefield.  

When friendly forces would come under attack from the adversary, artillery rounds 

would often be fired in response with devastating effectiveness.   Nevertheless, there 

always has been the time delay between when friendly forces needed the support from 

artillery and when it actually arrived on target.  Through many communication 

advancements over the last two centuries, this delay has been minimized.  However, 

there still exists the delay because normally, artillery forces are not located on the 

front-line.  Instead they are often several kilometers behind lines.  Hence, even if 

artillery units receive a request of support, the time it takes for a round to travel after 

being fired can be minutes.

DARPA seeks to radically change the way artillery, or more generally, 

indirect fires are executed.  Instead of waiting for a request from friendly forces for 

indirect fire, artillery units would fire their rounds before a unit becomes engaged 

with the enemy.  However, instead of traveling point to point, like a bullet from a gun, 

the next-generation rounds would loiter over the battlefield, awaiting a request from 
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friendly forces below.  The rounds would exhibit intelligent behavior by flying in a 

flocking formation.  Once there is a request for artillery fire, the loitering rounds 

decide among themselves who is best qualified and the chosen round or rounds then 

fall from the sky.  The response time now reduces from minutes to seconds.

One area of research is how do the rounds decide among themselves to 

respond to the request for fire support?  Another way to look at the problem is to 

frame it differently.  The problem can be seen as a proximity question.  How do you 

determine which round is closest to the target of the fire request?  Proximity in this 

case is not limited to physical distance between the round and the target.  It would 

also include type of round, type of target, and remaining fuel on the round, among 

others.  Hence, Linea could also be applied to this domain.

7.2.3 Parallelization 

The iterative and bottom-up approaches have potential applications in web-

based applications that require many proximity calculations.  However, the initial 

calculation step is very expensive.  There are opportunities to improve Linea’s 

performance with parallelization.  An interesting problem would be to investigate and 

apply various parallelization techniques to the iterative and bottom-up 

implementations and compare their performances.

7.2.4 Web Service

The Linea agent is generic by design.  It would be very interesting to extend it 

as a web service.  This would allow it to be used by various applications much 

simpler.  The interface would need to be analyzed to determine how to support a web 

services interface.  We have already implemented the Linea agent as a JavaServlet.
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Annex A

A Simple Example

We give a simple example of constructing proximity equations and solving 

them using various approaches.  Consider two nodes with 3 elements each.  

A.1 Example and its graph

We show the individual links between the elements (instead of showing 

relationships between nodes).  Each directed link points to an element in the image set 

of the element from which the link originated.  For example, in Figure 62, Element a

in Node 1 has two image set elements in Node 2.  They are elements x and y.
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Figure 72 Sample graph

A.2 Equations of the Linea model for this graph

For this annex, we simplify the notation as follows:

xy: is the proximity between elements x and y.

a[bc]: is the proximity between element a to the set of elements {b, c}

a[bc]=  acab,

(ab)(cd):  is the proximity between the sets {a, b} and {c, d}

We handle this example model with the assumptions that all local proximities 

are zero except for the identity case, which is one.  The basic equations we begin with 

are:

xy = (ab)(a)

yz = (a)(bc)

xz = (ab)(bc)

ab = (xy)(xz)

ac = 0
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bc = 0

A.3 Solving the equations

We observe that:

(ab)(a) = 1/3 (a[ab] + aa + ba) 

            = 1/3 (2 + ab)

Transferring the equations using the same method gives:

xy = 1/3 (2 + ab)

yz =  1/3 (ab + ac + a[bc]) = 2/3 ab

xz = ¼ (2 + a[bc] + c[ab]) = ¼ (2 + ab)

ab = ¼ (2 + y[xz] + z[xy])

ac = 0

bc = 0

Now observe that:

y[xz] =     



  ababxzxy

3

2
,2

3

1
,

Since 10  ab ,

y[xz]=  
3

2 ab

and thus:

z[xy] =  ab2
4

1

The equation given ab can be rewritten:

ab =  abab  2
16

1
)2(

12

1

2

1

thus giving the final values as:

ab = 38/41

xy = 40/41

yz = 76/123

xz = 30/41
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A.4 Iterative approach to solving the equations

We will now present a solution that applies an iterative approach to solving 

the equations.  Our approach stabilizes very quickly.

Step 1 : We start with an initial vector of 6 values, all equal to 1 except for 
those which have an already known value :

ab0=1

xy0=1

yz0=1

xz0=1

For convenience we do not repeat for each step that ac=0 and bc=0

We then compute the new values of  the 4 unknown variables :

ab1= .5 + .25  00, xzxy  +  25  00 , zyzx  = 1

xy1= .333 (2 + ab0) = 1

yz1= .666 ab0 = .666

xz1 = .25 (2 + ab0) = .75

Step 2: using the same equations, we compute ab2, xy2, yz2, xz2, using the 

values obtained at the end of step 1 :

ab2 = .5 + .25 + .25 x .75 = .938

xy2 = 1

yz2 = .666

xz 2= .75

Step 3 : we compute in the same way ab3, xy3, yz3, xz3, using the values 

obtained at the end of step 2 :

ab3 = .938

xy3 = .979

yz3 = .625

xz3 = .735

Step 4 : it yields ab4 = .928, xy4 = .979, yz4 = .625, xz4 = .735  Notice that 

these values are very close to those obtained by direct computation : 

ab=38/41 , xy = 40/41 , yz = 76/123 , xz = 30/41
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A.5 A completely linear approximation

In order to make the model completely linear, we may be can replace max 

(a,b,c) with (a+b+c)/3.  Of course, the model changes : this means that the proximity 

of an Element x to a set is not more the max of the proximities of x to all elements of 

the set, but the average proximity of x to these elements.  We get a set of 6 linear 

equations:

ab = 1/8 xy + ¼ yz + 1/8 xz + ½ 

ac = 0 

bc = 0 

xy = 1/3 ab + 2/3 

yz = 2/3 ab 

xz = ¼ ab + ½

Solving this system by a direct method, like for instance the Gauss-Jordan elimination 

method, yields the exact solution:

xz = 3588/5037 = .712 , ab = .849 , yz = .506 , xy = .919

Of course we may also solve this system by the Gauss-Seidel iterative method. This 

looks like the iterative method employed on the other system. Results are:

Initial values : ab = 1, ac=0 , bc = 0, xy = 1, yz = 1, xz = 1

Step 1 : ab = 1, xy = 1, yz = .666, xz = .75

Step 2 : ab = .884, xy = 1, yz= .666, xz = .75

Step 3 : ab = .884, xy = .961, yz = .589, xz = .721

Step 4 : ab = .857, xy = .961, yz = .589, xz = .721

Convergence is rather good, though a little bit slower than with the “max-plus” 

algebra.
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Annex B

UML to Schema guide

UML to Table Schema Conversion - Generating Rules

1. Convert strong classes to table schema.

Figure 73 Strong class

if key-attributesA = { keyAttr1, …, keyAttrj }

and other-attributesA = { singleAttr1, …, singleAttrk }

then A-schema = ( key-attributesA, other-attributesA )

Important: Multi-valued attributes are covered in a separate rule.

2. Convert all weak classes to table schema.
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Figure 74 Weak class

if A-schema = ( key-attributesA, other-attributesA )

then B-schema = ( key-attributesA, discriminatorsB, other-attributesB )

with a foreign key from B-schema.key-attributesA to A-schema.key-attributesA

and C-schema = ( key-attributesA, discriminatorsB, discriminatorsC, other-
attributesC )

with a foreign key from C-schema.key-attributesA, discriminatorsB

to B-schema.key-attributesA, discriminatorsB

Important: "Chained" weak classes should be handled from "strongest to 
weakest".  Also, you don't need schema for the weak associations (R-schema & S-
schema).

3. Convert all super-/sub-classes to table schema.

Figure 75 Super/sub classes

if A-schema = ( key-attributesA, other-attributesA )
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then B-schema = ( key-attributesA, other-attributesB )

with a foreign key from B-schema.key-attributesA to A-schema.key-attributesA

and C-schema = ( key-attributesA, other-attributesC )

with a foreign key from C-schema.key-attributesA to A-schema.key-attributesA

also D-schema = ( key-attributesA, other-attributesD )

with a foreign key from D-schema.key-attributesA to B-schema.key-attributesA

and E-schema = ( key-attributesA, other-attributesE )

with a foreign key from E-schema.key-attributesA to B-schema.key-attributesA

4. Convert all many-to-many associations to table schema.

Figure 76 Many-to-many associations

if A-schema = ( key-attributesA, other-attributesA )

and B-schema = ( key-attributesB, other-attributesB )

then R-schema = ( key-attributesA, key-attributesB, other-attributesR )

with a foreign key from R-schema.key-attributesA to A-schema.key-attributesA

and a foreign key from R-schema.key-attributesB to B-schema.key-attributesB

5. Convert all many-to-one associations to table schema.
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Figure 77 Many-to-one associations

if A-schema = ( key-attributesA, other-attributesA )

and B-schema = ( key-attributesB, other-attributesB )

then R-schema = ( key-attributesA, key-attributesB, other-attributesR )

with a foreign key from R-schema.key-attributesA to A-schema.key-attributesA

and a foreign key from R-schema.key-attributesB to B-schema.key-attributesB

Important: Handle one-to-many associations by reversing the roles of A and 
B.  Also, composition relationships may permit optimizations.

6. Convert all one-to-one relationships to table schema.

Figure 78 One-to-one associations

if A-schema = ( key-attributesA, other-attributesA )

and B-schema = ( key-attributesB, other-attributesB )

then R-schema = ( key-attributesA, key-attributesB, other-attributesR )

with a foreign key from R-schema.key-attributesA to A-schema.key-attributesA

and a foreign key from R-schema.key-attributesB to B-schema.key-attributesB

and separate unique constraints on R-schema.key-attributesA & R-schema.key-
attributesB
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7. Convert all multi-valued attributes to table schema.

Figure 79 Multi-valued attributes

if key-attributesA = { key-attr1, …, key-attrj }

then A-schema = (key-attributesA, single-attributesA)

and M1-schema = ( key-attributesA, multi-attr1 )

with a foreign key from M1-schema.key-attributesA to A-schema.key-
attributesA

and M2-schema = ( key-attributesA, multi-attr2 )

with a foreign key from M2-schema.key-attributesA to A-schema.key-
attributesA

. . .

and Mn-schema = ( key-attributesA, multi-attrn )

with a foreign key from Mn-schema.key-attributesA to A-schema.key-
attributesA
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UML to Table Schema Conversion - Optimizing Rules

8. Use existence dependencies to eliminate unneeded many-to-one 

table schema.

Figure 80 Existence dependencies on many-to-one associations

if A-schema = ( key-attributesA, other-attributesA )

and B-schema = ( key-attributesB, other-attributesB )

and R-schema = ( key-attributesA, key-attributesB, other-attributesR )

with foreign keys as defined earlier

then drop R-schema

and alter A-schema = ( key-attributesA, other-attributesA, key-attributesB, 
other-attributesR )

with a foreign key from A-schema.key-attributesB to B-schema.key-attributesB

9. Use existence dependencies to eliminate unneeded one-to-one

table schema.
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Figure 81 Existence dependencies in one-to-one associations

if A-schema = ( key-attributesA, other-attributesA )

and B-schema = ( key-attributesB, other-attributesB )

and R-schema = ( key-attributesA, key-attributesB, other-attributesR )

with foreign keys and unique constraints as defined earlier

then drop R-schema

and alter A-schema = ( key-attributesA, other-attributesA, key-attributesB, 
other-attributesR )

with a foreign key from A-schema.key-attributesB to B-schema.key-attributesB

and a unique constraint on A-schema.key-attributesB

10. Eliminate many-to-one and one-to-one table schema at the 

"risk" of using NULLs.

Figure 82 Many-to-one reduction

if A-schema = ( key-attributesA, other-attributesA )

and B-schema = ( key-attributesB, other-attributesB ) and R-schema exists

then drop R-schema

and alter A-schema = ( key-attributesA, other-attributesA, key-attributesB, 
other-attributesR )

with a foreign key from A-schema.key-attributesB to B-schema.key-attributesB



167

and (for one-to-one relationships only) a unique constraint on A-schema.key-
attributesB

Important: The A-schema.key-attributesB column may contain NULLs, which 
may cause problems or unexpected results when used in many common 
database/query operations


