
Collège doctoral
N° attribué par la bibliothèque

|__|__|__|__|__|__|__|__|__|__|

T H E S E

pour obtenir le grade de

Docteur de l’Ecole des mines de Paris

Spécialité « Informatique Temps Réel, Robotique et Automatique »

présentée et soutenue publiquement

par

Kevin HUGGINS

le 29 avril 2005

LINEA: UNE MÉTHODE DE CALCUL PAR GRAPHES DE

LA PROXIMITÉ DES OBJETS SUR INTERNET

Jury

M. D. Carteret Examinateur

M. C. Carver Rapporteur

M. J. J. Girardot Rapporteur

M. P. Jouvelot Examinateur

M. R. Mahl Directeur de thèse

i

ii

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor, Robert Mahl, for deftly guiding

me through the dissertation process. His wise counsel and time that he unselfishly

invested in me were key to the successful completion of my research. I am truly

grateful.

This work is the fruit of a partnership with I-Nova, an innovative software

development company that specializes in knowledge management systems. David

Cateret, co-founder of I-Nova, developed the intuitive idea of the algorithm. He

sought out the Centre de Recherche en Informatique (CRI) to develop the algorithm.

Through this partnership, our research was awarded a formal approval of the French

National Software Technologies Network (RNTL) under the Linea project. The goal

of this project was to develop a generic proximity algorithm that could be applied to

multiple domains. In addition, we were also awarded funding by the French

government after getting the EUREKA label for the Response project. This project’s

goal includes the development of a helpdesk system that employs case-based

reasoning in combination with Bayesian calculations. Linea is integrated into this

system in order to measure the proximity between potential and known cases. This

innovative approach overcomes the challenge posed by some partially defined

datasets that are difficult to handle in pure case-based reasoning approaches.

I am also indebted to Pierre Jouvelet for the countless hours he shared with me

discussing algorithms, making the many revisions to my dissertation and debating

various important life issues.

The two rapporteurs also contributed significantly to the quality of my thesis.

Both Dr. J.J. Girodot and Lieutenant Colonel Curtis Carver provided extremely

valuable and insightful comments and suggestions. I am very appreciative of their

efforts.

iii

Next, I would like to thank the members of the Centre de Recherche en

Informatique (CRI). Each person in the center went out of their way to make me feel

welcomed. I appreciate their patience with me as I not only learned their beautiful

language, but a little of their culture as well.

Last but definitely not least, I want to thank my wife and kids for all of their

support. This dissertation was undoubtedly a team effort and I could not have

accomplished it without my family team.

iv

ABSTRACT

Cette thèse présente Linea, une nouvelle approche pour calculer la proximité

d’objets. Pour cela, nous utilisons une combinaison des mesures de distance dans un

espace métrique et l’analyse des liens pour définir la proximité des objets sur Internet.

Cette structure est générique et peut être appliquée à plusieurs domaines comme la

gestion de la relation client, les ressources humaines ou les systèmes de

recommandation. Puis, nous implémentons plusieurs versions de l’algorithme et nous

comparons non seulement la précision des implémentations mais aussi leurs

performances à travers des expériences. Ensuite, nous décrivons la conception et

implémentation de Linea en présentant les défis que nous avons rencontrés et les

améliorations que nous avons faites. Enfin nous donnons quelques domaines

d’applications potentiels et champs de travaux futurs.

This dissertation presents Linea, a novel approach to proximity calculations in

a linked metric space. We use a combination of metric space distance calculations

and link analysis to determine the proximity between internet objects. This

framework is generic and can be applied to various domains such as help desk

support, human resources or recommender systems. We implement several versions

of the algorithm and compare not only their accuracy versus manual approaches, but

also their performances through experimentation. We also describe the design and

implementation of Linea providing insights on challenges and improvements made.

Finally we give possible application domains and areas for future work.

v

TABLE OF CONTENTS
ACKNOWLEDGMENTS ... ii
ABSTRACT... iv
LIST OF FIGURES .. ix
Chapter 1 ...13
Introduction...13

1.1 Research Objectives and Approach ... 15
1.2 Practical Problems ... 15

1.2.1 A Human Resource Problem ... 15
1.2.2 A Case-based Reasoning Problem... 17

1.3 The Proximity Calculator Algorithm: A first look .. 19
1.3.1 The supporting domain graph .. 20
1.3.2 The algorithm... 20

1.4 Applications ... 22
1.4.1 Web pages.. 22
1.4.2 Recommender systems... 23
1.4.3 Netfires... 24

1.5 Organization of the Dissertation .. 24
Chapter 2 ...27
State of the art ...27

2.1 Link Analysis ... 27
2.1.1 Library Science .. 28
2.1.2 Internet Applications.. 29

2.2 Proximity Searching in Metric Space .. 34
2.2.1 Pivot techniques ... 35
2.2.2 Clustering... 37

2.3 Recommender systems... 43
2.4 Conclusion ... 46

Chapter 3 ...49
Mathematical Preliminaries...49

3.1 Terminology... 49
3.2 Metric Space Distance Properties .. 53
3.3 Metric Space Proximity Properties .. 54
3.4 Graph Properties .. 55
3.5 Similarity Measures ... 56

3.5.1 Finite number of attributes... 56
3.5.2 Relationships.. 58
3.5.3 Valued relationships... 61

3.6 Conclusion ... 61
Chapter 4 ...63
Linea Proximity Calculator ...63

4.1 Introduction.. 63
4.2 Naïve Algorithm .. 64

4.2.1 Definition ... 64
4.2.2 A Visual Example .. 67
4.2.3 The algorithm implementation... 70
4.2.4 Time complexity .. 73

4.3 Bottom-up .. 81
4.3.1 Proximity of an element to an image set.. 81

vi

4.3.2 Proximity of 2 image sets .. 82
4.3.3 The algorithm... 83
4.3.4 Time complexity .. 85

4.4 Iterative .. 87
4.4.1 Algorithm description .. 87
4.4.2 Time complexity .. 88
4.4.3 Proof of convergence ... 89

4.5 Conclusion ... 95
Chapter 5 ...97
Experiments...97

5.1 Introduction.. 97
5.2 Data description ... 97

5.2.1 Web pages.. 98
5.2.2 Corporate.. 99

5.3 Accuracy .. 105
5.3.1 Intuitive Accuracy Experiment .. 106
5.3.2 Manual calculations ... 113
5.3.3 Accuracy of Automated methods vs. Manual.. 117

5.4 Performance ... 118
5.4.1 Approach.. 118
5.4.2 Impact of precision on iterative method .. 118
5.4.3 Results.. 119

5.5 Conclusions.. 121
Chapter 6 ...123
Implementation ...123

6.1 Introduction.. 123
6.2 System Architecture Overview.. 123

6.2.1 Introduction.. 123
6.2.2 Architecture Elements.. 124

6.3 Multi-tier approach .. 130
6.3.1 Introduction.. 131
6.3.2 Benefits of the approach .. 131
6.3.3 DAO... 133

6.4 DB Design and Implementation... 134
6.4.1 Introduction.. 134
6.4.2 Object modeling... 135
6.4.3 Use cases.. 136
6.4.4 Class diagrams ... 137
6.4.5 Database schema conversion ... 138

6.5 Implementation Improvements .. 142
6.5.1 Object instantiation efficiency ... 142
6.5.2 Lazy local proximity initialization... 143

6.6 Conclusion ... 144
Chapter 7 ...146
Conclusion ...146

7.1 Summary of Contributions... 146
7.1.1 A novel approach to metric space calculations.. 146
7.1.2 A comparison of implementation methods .. 147
7.1.3 Linea implementation .. 147

7.2 Directions for Future Research .. 147

vii

7.2.1 Response integration.. 147
7.2.2 Netfires... 148
7.2.3 Parallelization .. 149
7.2.4 Web Service ... 149

Bibliography ..150
Annex A..154
A Simple Example...154
Annex B..160
UML to Schema guide ..160

viii

ix

LIST OF FIGURES

Figure 1 Major Corporation ..16

Figure 2 Major Corporation with links ...17

Figure 3 Partial listing of the Renault incident database ...18

Figure 4 Partial graph representation of the Renault incident database.............................19

Figure 5 Sample domain graph ..21

Figure 6 Sample domain graph with an image set pair..22

Figure 7 According to Salton's and Garfield's research document A is more
important due to the number of references. ..29

Figure 8 Examples of types of queries. a) Range b) Nearest Neighbor, and c) k-
nearest neighbors ..35

Figure 9 Example of a pivot in a metric space...36

Figure 10 A clustering taxonomy ..38

Figure 11 Hierarchical clustering...39

Figure 12 a. Recursive asymmetrical partitions b. search space and query balls42

Figure 13 Our work..48

Figure 14 Node ..50

Figure 15 Relationships & links ..51

Figure 16 Inbound and outbound relationships ...52

Figure 17 Graph representing a problem domain ...53

Figure 18 Image Set of x..56

Figure 19 City Block distance..57

Figure 20 Similarity coefficients ...59

Figure 21 Probability distribution constraints..60

Figure 22 Spanning tree induced by previously visited nodes. Nodes which are
already visited in a path do not recursively call any other node
computation ..65

Figure 23 Detailed example –Node a ..67

Figure 24 Detailed example-node b ...68

Figure 25 Detailed example-node c ...69

Figure 26 Detailed example-nodes a, b and c..70

x

Figure 27 Base case ...74

Figure 28 Tree induced by a node with no outbound relationships...................................75

Figure 29 Time complexity when R=2 and h=1 ..76

Figure 30 Time complexity at h=2...78

Figure 31 Time complexity at h=3...79

Figure 32 Computing the distance of any element x of X to image sets of all
elements u of Y or Z ...82

Figure 33 Elements of an image set proximity measure..83

Figure 34 Directed graph with no loops converted into modified tree84

Figure 35 Movie recommendation system example with undetermined values...............92

Figure 36 With the intersection of the two image sets at E, we are assured a
non-zero constant..93

Figure 37 The proximity between A and B can be computed due to the path
between them created from the links and intersections of the other
elements. ...94

Figure 38 Three class example ..95

Figure 39 Web pages data model...98

Figure 40 Corporate Data model..100

Figure 41 Competences per Person comparison..101

Figure 42 Competencies per Person comparison...102

Figure 43 Groups per Person comparison..103

Figure 44 Super-groups per Sub-group..104

Figure 45 Groups per Competency ..105

Figure 46 Calculation paths ...107

Figure 47 Heuristics...109

Figure 48 Experimentation software architecture..110

Figure 49 Path Manager Class Diagram ..111

Figure 50 Path manager example...112

Figure 51 ExperimentDriver class diagram ...113

Figure 52 Terms related to WP2950 and WP2951 ..114

Figure 53 Proximity calculations in the Node Terms ...115

xi

Figure 54 Second path starting at Web Pages..116

Figure 55 Manual Proximity Results for Web Pages...117

Figure 56 Calculation time versus precision..119

Figure 57 Comparison performance results experiments ...120

Figure 58 Experiment result insights ..121

Figure 59 Proximity Calculator System Architecture..125

Figure 60 ProximityDataElement and ProximityDataPair ..127

Figure 61 ElementProximity and NodeProximity ...128

Figure 62 GraphProximity ...129

Figure 63 Multi-tier architecture..131

Figure 64 DAO related classes ..134

Figure 65 Data object model - first cut ..136

Figure 66 Linea use case diagram..137

Figure 67 Database class diagram..138

Figure 68 Guide to converting a strong class to table schema...139

Figure 69 Guide to converting a many-to-many association to table schema.140

Figure 70 Guide to optimizing the schema by eliminating unneeded many-to-
one table schema...141

Figure 71 Table schema for the graph database...142

Figure 72 Sample graph ...155

Figure 73 Strong class..160

Figure 74 Weak class ...161

Figure 75 Super/sub classes ...161

Figure 76 Many-to-many associations...162

Figure 77 Many-to-one associations..163

Figure 78 One-to-one associations...163

Figure 79 Multi-valued attributes ..164

Figure 80 Existence dependencies on many-to-one associations165

Figure 81 Existence dependencies in one-to-one associations ..166

Figure 82 Many-to-one reduction ..166

xii

13

Chapter 1

Introduction

The Internet, created over 20 years ago by the US Department of Defense

Advanced Research Projects Agency (DARPA) as an experimental communications

medium in the event of a nuclear holocaust, has instead spurred one of the greatest

economic booms in history. The major driver for this success is the World Wide Web

(WWW) invented 15 years ago by Tim Berners-Lee. The WWW fueled a tremendous

explosion of online data. From 1990, with Mr. Berners-Lee’s original website of a

few pages to today with over 8 billion pages, the WWW has also created a vast

opportunity for searching technologies. This need for searching technologies, which

is conceptually based on finding the proximity between two objects, has allowed

companies like Google and Yahoo to profit well. However, there remains many more

challenges and opportunities within this domain.

Whereas much work has been done in the areas of text-based analysis

sometimes combined with some form of link analysis, there has been relatively little

work that exploits highly linked environments with minimal, semi-structured text. By

semi-structured we refer to meta-data used with content, such as databases or XML

documents. Popular search techniques used today determine proximity primarily by

document content with a document’s relevance measured by link analysis. Semantic

analysis and statistical methods depend on significant textual content to function well.

14

Our approach does not require a large amount of text. Hence, data sets with reduced

textual content can be measured more effectively.

Another source of motivation for our research is recommender systems. Over

the last decade much work has been done in this area. Most of this work has

concentrated in developing new methods for recommending items to users and vice

versa, such as recommending books for customers and movies to Web site visitors.

These recommendation methods are usually classified into collaborative, content-

based and hybrid methods (Balabanovic and Shoham, 1997) and are described in

more detail in Chapter 2. There is a recent interest in applying multi-dimensional

methods to recommender models (Adomavicius, 2005).

In all of these methods, there are distance calculations that could be

implemented with Linea. Also, in all of these methods, there is an inherent weakness.

When a user is given a recommendation, say for a book in an online bookstore

scenario such as Amazon, it is the result of other users actually buying the

recommended book. In set theory terms, the recommended items is always the result

of an intersection of the set A of books that the user is planning to purchase and the

set B of books that other users have purchased. The set of recommendations comes

for B – A. However, there may be items that cannot be ascertained based on an

intersection. There may be items that are closely related to the item about to be

purchased. For example, using Linea, users could be recommended books that are

close to the book that the user is purchasing. This flexibility provides a more robust

recommendation approach as we are not limited to making recommendations based

matches between books purchased by the user and books previously purchased by

other clients.

This dissertation presents Linea, a solution for searching in this type of linked

environment. We develop Linea by using a generic proximity calculating algorithm

that is optimized for highly linked environments with minimal semi-structured text.

We take a plug and play approach that allows Linea to easily be applied to different

domains.

15

1.1 Research Objectives and Approach

The objective of this dissertation is two fold. First we develop a generic

algorithm that calculates the proximity between 2 objects in a linked metric space

consisting of minimal, semi-structured text. Our second goal is to implement the

algorithm within Linea and apply it to multiple domains.

To this end, after developing the basic algorithm, we then implement three

versions, naïve, bottom-up and iterative. The three approaches present distinct

opportunities and challenges and we seek to compare and contrast not only these

developmental approaches, but also their experimental results.

1.2 Practical Problems

I-nova requested assistance from the École des Mines de Paris in addressing

two kinds of practical problems: A human resource problem related to Electricité de

France (EDF) which is described in section 1.2.1. And then a case-based reasoning

problem related to equipment failures of Renault Vehicular Industriel (RVI) which is

described in 1.2.2.

1.2.1 A Human Resource Problem

As a motivation to the subject area, we present a simple example. Consider

the research and development (R&D) division of EDF which consists of thousands of

employees. In this division, there are three kinds of things that interest us: people,

competencies, and groups. In this corporation, people can have competencies and

they can belong to groups. In addition, groups may also have competencies.

16

Major Corporation

People Competencies

Groups

Figure 1 Major Corporation

Consider two employees: John and Mary. They have attributes which

describe them, such as their name, their age, their education level, etc. In our

example, we know that John and Mary may be associated with certain competencies

and groups within the corporation. Accordingly, we would like to find out how ‘close’

John is to Mary. There are several approaches to determining this. The approach that

we present in this work considers not only the attributes that directly describe John

and Mary, but also the elements that are related to John and Mary (competencies and

groups).

Let us consider John first. Let John be 30 years old, and have a master’s level

education. He has 2 competencies: java programming and C++ programming. He

also belongs to the ‘webpage development’ group. Now, let us consider Mary. She is

27 years old and has a bachelor’s level education. She has 3 competencies: database

programming, java programming, and UML design. She belongs to two groups in the

corporation: database design, database development.

17

Major Corporation
People Competencies

Groups

John

Mary

Java

C++

Webpage dev

DB programming

UML design

DB design

DB dev

Figure 2 Major Corporation with links

The approach that we present to see how close John is to Mary takes into

account not only the direct attributes of John and Mary (we call this the

LocalProximity) but also the proximity of the sets of elements related to John and

Mary (we call this the ImagedProximity). We combine these two proximity values

for our final value which we call the GlobalProximity.

1.2.2 A Case-based Reasoning Problem

The Renault Trucks division of RVI is responsible for managing help desk

requests from garages that repair and maintain Renault trucks. To help manage this

process Renault maintains a database of these incidents that are called in. Here is an

extract of the incident file.

18

Replace steering
column

Column locksSteering556

Mount special modelActuator causes limit
on speed

Engine106

Support modificationBack fender/Support
ruptured

Chassis8

Corrective ActionCorrective ActionProblemProblemPartPartIDID

Figure 3 Partial listing of the Renault incident database

As a client calls in with an incident, an entry is added to the database. The

goal of each session is to identify the corrective action to the problem. Once this is

done, it is also logged into the database under corrective actions.

The data file can be modeled within a graph structure with four nodes:

-- ID number

-- Vehicle part

-- Problem description

--Corrective action

19

ID

Part

Action

Problem

8 106

Chassis

Engine
Steering

Fender

Actuator

Column

Modify

Mount
Replace

Figure 4 Partial graph representation of the Renault incident database

Incidents already in the database normally have a corrective action. New

incidents do not. Hence, the aim would be to find the incident that is currently in the

database that is closest to the new incident. If the data-based incident is close enough

to the new one, then its corrective action should apply to the new incident. Otherwise,

it should help finding a solution faster since the system is finding similar incidents.

1.3 The Proximity Calculator Algorithm: A first look

In this section I will describe in general terms the process of the algorithm.

Before doing so, I will explain the supporting graph structure, which is integral to the

proximity calculations.

20

1.3.1 The supporting domain graph

The proximity is calculated with a domain defined within a graph structure. A

node represents a class of elements. Elements within a node represent instances of the

class of elements described by the node. For example, in Figure 1, the node Persons

holds people. The elements in Persons are examples of people within the domain.

The associations between the nodes indicate that there is a defined relationship

between elements in both nodes. For example, the Persons and Groups have an

association. It defines the association that people in this domain can belong to groups.

The links between elements in one node to elements in another indicate an instance of

a link between the two elements. For example, the link between John in node Persons

and Webpage Development in node Groups in Figure 2 indicates that John is a

member of the group Webpage Development.

1.3.2 The algorithm

The proximity calculator algorithm measures the GobalProximity between 2

elements in the same node. As indicated in the previous section, this calculation

includes not only the direct attributes of each element (LocalProximity) but also the

proximity of elements associated with each of the 2 elements (ImagedProximity). We

use a weight value, α, to balance the importance between the LocalProximity and

ImagedProximity results.

We will now expand this description somewhat. Consider a domain

represented by a graph with 5 nodes. We name each node A through E. In Node A,

consider 2 elements, x and y. See Figure 5.

21

DD

AA

x

y

EE

CC

DD

BB

Figure 5 Sample domain graph

Each element in the domain has a set of attributes which describe it. Recall

that in the large corporation example from the previous section, each employee in the

Persons node had 2 attributes: age and education level. The LocalProximity

calculation compares the element attributes. This particular calculation is domain

specific. We will discuss some possible approaches in Chapter 4.

For the ImagedProximity calculation, we consider the sets of elements that are

linked to x and y in other nodes. These sets are called image sets and can be located

in any node that is associated with Node A by an outbound directed relationship. For

example, in Figure 5, Nodes B, C and D can contain image sets for x and y in Node

A.

We determine an ImagedProximity by measuring the set distance between the

pair of image sets associated with x and y in each node that is related to Node A. We

can see an example of this in Figure 6 with the 2 image sets of x and y that are located

in Node B.

22

AA

x

y

BB

*

*

EE

CC

DD

Figure 6 Sample domain graph with an image set pair

We perform an ImagedProximity calculation for each of the nodes that can

have image sets of x and y. These are Nodes B, C and D. During the set distance

calculations, we recursively calculate the GlobalProximity, which we will discuss in

more detail in Chapter 4.

1.4 Applications

In the previous sections, we have mentioned the human resources and

helpdesk domains as application areas for the Linea agent. However, there are other

domains that would also benefit from Linea.

1.4.1 Web pages

Linea can be applied to computing the proximity of web pages to one another.

In particular web pages could be characterized by their title, their author, their

23

publication date, the terms included on the page and their hyperlinks. We could use

these characteristics to define the nodes for a graph representation of this domain.

Using the Linea algorithm and by considering all the elements of each node, we can

then compute the proximities of two Web pages, or of 2 different terms. This could

be used in electronic commerce to give suggestions to customers about other pages to

visit, or other information related to the same subject. These proximities can also be

used to classify Web pages using clustering techniques.

1.4.2 Recommender systems

Recommender systems have been well researched over the past decade. Most

of this work has been focused on developing new methods of recommending items to

users and vice versa. With the advent of the Internet and e-commerce, recommender

systems have found many applications.

One application is movie recommender systems that find films that would

interest a potential movie-goer. The domain graph would possibly consist of 3 nodes:

people, film preferences and movies. The Linea agent would find the movies closest

to a person as described by their preferences and the set of movies that other movie-

goers liked.

Similarly, Amazon.com has a well known recommender system for its clients.

After the customer has chosen a book and is ready to finalize a purchase, Amazon

proposes additional books. This set of books is determined by analyzing what other

customers purchased when buying the same book. Linea could be used to enhance

this system by providing contextual information via multi-dimensional data. Instead

of just considering what other customers purchased, with the Linea system, they could

also take into account attributes of the customer, time or date of purchase, or books

that are close to the book purchased but possibly not the same as other customers have

purchased.

24

1.4.3 Netfires

The US Defense Advanced Research Agency (DARPA) is sponsoring the

development of the next generation of artillery systems. Today, artillery systems are

‘point-and-shoot.’ When an army unit encounters resistance from the adversary, it

requests artillery support. The requesting unit provides the enemy location data and

with this, the supporting artillery unit fires rounds onto the target. This system has

changed very little since the time of Napoleon.

Netfires is a radical change. Instead of waiting to be called by an army unit

confronting an enemy, the Netfires system launches a group of small missiles that

loiters over the battlefield beforehand. When a friendly army unit encounters enemy

resistance and calls for artillery support, the group of loitering missiles flying

overhead immediately decide among themselves which will respond. The one that is

chosen then targets the enemy and attacks it by falling out of the sky.

The Linea agent could be used to determine which loitering missile flying

overhead is ‘closest’ to the enemy target. Factors that could be considered to compute

proximities include the type of target (infantry, armor), fuel level on the missile,

enemy location and missile location, to name a few.

1.5 Organization of the Dissertation

Chapter 2: The state of the art related to our problem domain is presented.

Our domain is actually a combination of multiple domains. We present the current

work in these domains and show how our work is related and how we extend it.

Chapter 3: The terminology used throughout the dissertation is introduced.

The main areas focus on algorithmic graph terms. We have introduced terms specific

to our problem. The mathematical preliminaries are also described in this chapter.

This will provide the foundation for our algorithm development.

25

Chapter 4: The Linea agent algorithm is described. After presenting the basic

equations, we then present three approaches for its implementation: naïve, relaxed

iterative, and bottom-up.

Chapter 5: The experiments are detailed in this chapter. The experiments are

centered on the 3 implementation approaches to the Linea algorithm: naïve, relaxed

iterative and bottom-up. We develop experiments to test for not only correctness as

compared to manual calculations of the basic algorithm, but also to compare their

performances.

Chapter 6: The Linea agent implementation is the focus of this chapter. We

discuss not only the development of the software that implements the algorithm, but

also the design and development of the supporting database.

Chapter 7: Concluding remarks and directions for future work are presented.

26

27

Chapter 2

State of the art

In this chapter we will describe the state of the art of our domain of research.

Our work touches on several domains as it is a hybrid approach to measuring

proximity. As we discuss each of the supporting domains, we will also relate it to our

work. Our research draws mainly from three domains: link analysis, proximity

searching in metric spaces and recommender systems. We will discuss each area in

turn.

2.1 Link Analysis

Link analysis can be considered a subset of relationship analysis. In library

science, scientists study relationships and patterns of co-citation and bibliographic

coupling. Sociologists, on the other hand, are concerned with social networks of

people. Link analysis is commonly associated with Web relationships between pages.

All cases share a common theme of defining two same-type entities related via a

direct link, co-occurrence or co-citation.

Intuitively, link analysis is the study of the authoritativeness of a document

based on its links. Consider Documents d1 and d2. A link from d1 to d2 implies an

endorsement of d2 from d1. This implication provides the basis for an important body

28

of research into link analysis. In the following sections we will discuss the

development of this domain and describe key algorithms.

2.1.1 Library Science

Foundational work

Link analysis has its origins in library and information science. Garfield

(Garfield, 1973) performed a systematic analysis of journal citation patterns across the

science and technology domain. He used the Science Citation Index (SCI) which was

a database covering 2400 journals that contained 27 million references to about 10

million different publications. He discovered that the majority of references cited

only a few journals. Based on this, he postulated that a good multidisciplinary journal

collection does not have to contain a large number of titles to adequately cover the

domain (Garfield, 1973). See Figure 7.

Salton (Salton, 1975) extended Garfield’s work by combining keyword

evidence with citation evidence to improve document retrieval performance. Small

and Koeng (Small et al, 1977) provided an algorithm that improved the clustering of

journals by the use of two-step bibliographic coupling linkages, instead of one-step

linkages, which were the norm at the time.

29

AA BB
Graphics

C

A

Graphics

Software

Bibliographic
citation to

document A

D

A

Software

F

A

Software

E

B

Graphics

Figure 7 According to Salton's and Garfield's research document A is more important

due to the number of references.

Our work

In our work, we rely heavily on link analysis. Garfield’s and Salton’s work

are foundational to the field on link analysis. The concept of gleaning and analyzing a

set of documents solely by their links is a predecessor to present day Internet search

techniques. Although we use link analysis, Salton’s extension is closer to our work as

we use a combination of link and content analysis to determine proximity. We will

discuss other work influenced by this combinational approach in the next section.

2.1.2 Internet Applications

With the explosive growth of the internet in the 90’s, link analysis was soon

applied to the problem of internet searching. Two well-know approaches, Kleinberg’s

HITS algorithm (Kleinberg, 1998) and the Google PageRank algorithm (Brin et al,

30

1998), are eigenvector methods. Essentially, they compute the eigenvectors of

particular matrices related to the adjacency graph to find the importance of a

document. In the next few subsections, we will discuss the HITS and PageRank

algorithms. We will also describe various improvements that have been proposed.

2.1.2.1 Eigenvectors

Both the HITS and PageRank algorithms use eigenvectors in their

calculations. Hence we provide a brief review of the subject in preparation of our

discussions on the two algorithms.

Let M be an n x n matrix. The number λ is the eigenvalue of M if there exists

a non-zero vector v


 such that

.vvM
  [2.1]

In this case, v


 is called the eigenvector of M that corresponds to λ.

2.1.2.2 HITS

Kleinberg considered broad-topic queries which produce thousands of

relevant pages on the WWW. He identified this situation as the Abundance Problem:

The number of pages that could reasonably be returned as relevant is far too large for

a human user to digest.(Kleinberg, 1998) His approach to address this problem was

to filter these types of responses by identifying authoritative pages. By this distilling

process, users would be given not only a set of relevant pages, but a smaller (and

hopefully more manageable) set of more authoritative pages.

Though an analysis of the link structure of the Internet, Kleinberg found that

one could discern not only authoritative pages, but also hub pages. He defined hub

pages as web pages that point to good authoritative pages. Similarly, authoritative

pages are pointed to by hub pages. Hence, similar to Garfield’s work Kleinberg found

that all web-pages do not have the same importance. Authoritative and hub pages are

more valuable.

31

Original algorithm

Kleinberg presented the Hyperlinked-Induced Topic Search (HITS) algorithm

which consisted of the following steps. (1) Use a search engine, such as MSN search

or AltaVista, to form a root set of pages as a start point; (2) Create the base set by

adding pages that either point to or are pointed by the root pages; (3) Total the

authority and hub weights of each page in the base set with an iterative algorithm.

Specifically, we can describe the HITS algorithm as follows: For each page

let a(p) and h(p) indicate its authority and hub weights respectively, which can be

determined as below:





pq

qhpa)()(and 



qp

qaph)()([2.2]

Let M  ijm denote the adjacency matrix of the base set where ijm =1 if page i

has a link to page j, else 0 otherwise. We can then find the authority and hub scores

by calculating the eigenvector of the matrix MTM and MMT respectively.

HITS Extensions

In (Chakraborit et al, 1998) the authors modify the HITS algorithm to consider

also keyword-based evidence. Bharat and Henzinger (Bharat et al, 1998) also added

content evidence to the HITS algorithm, but they computed the relevance using the

whole document instead of just a window surrounding the hyperlink. Lempel and

Moran (Lempel et al, 2001) introduced SALSA, a stochastic approach for link-

structure analysis. They proved that their approach was computationally efficient and

showed that their algorithm did better than HITS in Tight Knit Community (TKC)

effect situations.

Our work

Our work is related to Kleinberg’s in that we employ a similar iterative

approach in one of our implementations. We initialize our system with local

proximity values for all elements. Then we iterate through the system, calculating the

total proximity at step i + 1 using proximity values from step i. Instead of

32

determining the hub or authority scores, we determine the proximity. As we discuss

in Chapter 5, our iterative approach stabilizes quickly.

Our work has more similarities to Chakroborit and Bharat in that they both

considered content in the search algorithms. However, since our approach to content

analysis for proximity measurement is generic, the domain specific parts of our

calculations are in the content or ‘local’ proximity measures. We apply a more plug

and play approach. The domain content measure is user-defined depending on the

domain in which Linea is being applied. The results are then combined with the

linked proximity measurements.

2.1.2.3 PageRank

Original algorithm

PageRank is the core algorithm for the Google search engine (Google, 2004).

When a page u has a hyperlink to page v, it is assumed that the author of u considers

page v an authority on a certain topic. This is a key assumption in the approach that

PageRank finds relevant pages. Now let Nu represent the number of pages that u

points out to, and R(u) denote the rank score of page u. The hyperlink uv implies

uN/1 units of rank for page v.

We then iteratively execute the following computation to determine the rank

vector for all webpages:




 
vu

uiiv NuRvR
B

/)()(1 and)()(lim uRuR n
n 

 [2.3]

We let Bv equal the set of pages pointing to v. As we iterate over the set of

web-pages, the successive rank scores are recursively calculated from the previous

ranks scores of all other pages pointing to them.(Ingongngam et al, 2004)

The PageRank algorithm has an intuitive basis in random walks on graphs.

This initial equation is a simple implementation and corresponds to the probability

distribution of a random walk on the Web graph. In this Web context, we can

33

consider the behavior as that of a random surfer. The random surfer just keeps

clicking on successively clicking on links. However, if the surfer gets into a loop of

web pages, then the model collapses. It will simply stay in this ‘island’ of linked web

pages. A real Web surfer is unlikely to continue to in the loop indefinitely. Instead

he will jump to another page. A similar challenge is Web pages with no outbound

links. In both cases, the random surfer model that the ‘simplified’ PageRank

algorithm represents, fails.

 The solution that Page and Brin suggested was to prune the nodes with no

outbound links and add random jumps to the surfer process in PageRank. Hence the

following equation:

  


 
vu

uiiv NuRvR
B

/)(1)(1  [2.4]

We call  the damping factor used to modify the transitional probability of the

random surfer model.

PageRank extensions

There are several proposed improvements to the PageRank algorithm.

Ingongngam and Rungsawang (Ingongngam et al, 2004) propose modifying the

PageRank algorithm by propagating a portion of the scores of the source web pages to

the destination pages in accordance with the content found on both ends. Although

very interesting, their results were inconclusive. In (Xue, et al, 2003) the authors

propose an approach that constructs implicit links by mining user access patterns.

These implicit links are then incorporated into the PageRank calculations. The

authors show a 20% improvement, but only for small web searches.

Ng (Ng et al, 2001) applied the ‘reset’ functionality of the PageRank

algorithm to HITS in their Randomized HITS. Their goal was to improve the stability

of HITS to small perturbations of a document collection.

Our work

We used three approaches to implementing the Linea agent: naïve, iterative

and bottom-up. We discuss each of these implementations in chapter 5. The iterative

34

implementation quickly reaches a fix point due to a large eigenvalue, as in PageRank.

However, instead of traversing the entire graph structure to rank pages, we recursively

define proximity measurements based on the measurement of elements in the previous

node. This difference stems from the fact that our node does not represent the item

we intend to measure. Instead, it represents the class of items that we are measuring.

2.2 Proximity Searching in Metric Space

Our work is also influenced by the field of metric space distance algorithms.

This active domain seeks to find close objects under an appropriate similarity

function, among a finite set of elements. (Chávez et al, 2001).

Consider a universe of objects. Furthermore, let

:d [2.5]

denote a distance function over the objects. Also let  represent a subset of the

universe that must have the following properties:

),(),(),(

),(),(

0),(

yzdzxdyxd

xydyxd

yxyxd





[2.6]

Chávez (Chávez et al, 2000b) identifies three typical types of queries:

Range queries: retrieve all objects which are within distance r from query
object q. Or,  rqpdp ),(| .

Nearest neighbor (NN) queries: retrieve the closest objects to q . Or,
 ),(),(,|)(qedqpdepqnn 

k-NN queries: retrieve the k closest objects to q . Or, return a set A
such that kA  and).,(),(,, uqdsqdAuAs 

There are several approaches to answering these three typical queries. We

will discuss some of the most common ones in the following sections.

35

r

q q
d

a

qd1

a

b

c

d2d3

Range query Nearest Neighbor K-Nearest Neighbors

Figure 8 Examples of types of queries. a) Range b) Nearest Neighbor, and c) k-nearest

neighbors

2.2.1 Pivot techniques

In metric space similarity searches, pivots are a common approach to more

efficiently calculating distances. The term pivot refers to any type of object that can

be used to prune the search space. Consider (S,d) which represents a metric space S

that is covered by the distance function d. A pivot Sp is a reference point in S

from which we can ascertain distance information from at least some objects in S. Let

'S be the set of objects associated with pivot p. See figure 6. We can then say that for

SSu  ' we know

1. the exact value of),(upd ,

2. that),(upd falls within a certain range of values, or

3. that u is closer to p than to some other object Su '

36

(S,d)

Pivot p

S' u

Figure 9 Example of a pivot in a metric space

By exploiting the triangular inequality property between the pivot, query and other

objects in S, search spaces can be pruned and hence performance enhanced.

It is well known that pivot selection affects the performance of the algorithm.

When considering two same-sized pivot sets, the set with the better chosen pivots will

perform better. Also, a well chosen small set of pivots that require less space can

perform as well as a much larger set of pivots. However, most methods choose pivots

at random. Bustos (Bustos et al, 2001) nevertheless proposed a technique for

selecting efficient pivot sets.

There are several algorithms that use pivots. They include Fixed-Queries Tree

(FQT) (Baeza-Yates et al, 1994), Fixed Height Tree (Baeza-Yates et al, 1994),

Vantage Point Tree (VPT) (Yianilos, 1993), Approximate Eliminating Search

Algorithm (AESA) (Vidal, 1986), and Linear AESA (LEASA) (Micó et al, 1994).

37

2.2.2 Clustering

Clustering is the process of grouping a set of objects into categories based on

similarity. This similarity function can vary but normally based on cosine distance,

Euclidean or a similar variant. Data clustering is a well researched field with many

areas of application. Most recently, it has gained attention in the data mining and

document search domains. However, a significant amount of research has also been

performed in other areas such as image segmentation, object recognition, and

computational biology. This reflects its broad appeal and effectiveness as an

important step in data analysis.

Approaches

There are various approaches to data clustering. Figure 10 provides a

taxonomy of these clustering approaches. There are other taxonometric clustering

representations, but our description is based on (Jain et al, 1999). We will discuss

them in the following sections.

38

Clustering

Hierarchical Partitional

K-means Graph
Theoretic

Expectation
Maximization

Model
Fitting

Figure 10 A clustering taxonomy

Hierarchical

There are basically two approaches to clustering data: hierarchical and

partitional clustering techniques. Hierarchical techniques produce a tree-like nested

sequence of partitions that have singleton clusters as leaves and a signal all-

encompassing cluster as the root. Each intermediate level is a combination of the

nested clusters at the next lower level. This tree-like structure is called a dendogram.

There are two approaches to creating hierarchical clustering. The agglomerative

approach starts with individual elements as clusters and progressively forms clusters

by merging the most similar or closest pair of clusters. Contrarily, the divisive

approach begins with one all-inclusive cluster and progressively divides until there

are only singletons. See Figure 9. Agglomerative approaches are most common. The

basic algorithm is as follows:

39

1. Compute the similarity between all pairs of clusters (hence a

similarity matrix where the ijth element holds the similarity measure

between the ith and jth clusters);

2. Merge the most similar two clusters;

3. Update the similarity matrix to reflect the pair-wise similarity

between the new cluster and the original clusters;

4. Repeat steps 2 and 3 until only 1 cluster remains (Steinbach et al,

2000).

1 2 3 4 5 6 7 8 9

1 & 2 closest

1 2 3 4 5 6 7 8 9

6 & 7 closest

1 2 3 4 5 6 7 8 9

8 & 9 closest

1 2 3 4 5 6 7 8 9

3 & 1-2 group closest

1 2

3 4 5 6 7 8 9

4 & 5 closest

1 2

3 4 5 6 7 8 9

6-7 & 8-9 groups closest

1 2

3 4 5

6 7 8 9

1-2-3 & 4-5 groups closest

1 2

3 4 5

6 7 8 9

1-2-3-4-5 & 6-7-8-9
groups closest

1 2

3 4 5

6 7 8 9

A
g

g
lo

m
er

at
iv

e
A

g
g

lo
m

er
at

iv
e

D
iv

isiv
e

D
iv

isiv
e

Figure 11 Hierarchical clustering

Zhoa and Karypis in (Zhoa and Karypis , 99) provided a survey of hierarchical

clustering algorithms. They also presented an efficient technique, called constrained

agglomerative, that employs both divisive and agglomerative features that faired well

in terms of quality with larger datasets compared to standard techniques. Mandhani

40

(Mandhani et al, 2003) also proposed a hybrid technique employing a density-based,

partitional-agglomerative technique with a document-word co-cluster. The

partitioning step identified dense sub-matrices to partition the respective row set of

the complete matrix. The hierarchical agglomerative step involves merging the

similar sub-matrices to a predefined k cluster (for flat clusters) or a single complete

matrix (for hierarchical clusters).

Partitional

In contrast to the hierarchical techniques, partition clustering creates a single-

level partitioning of datasets. There are several partition clustering techniques, but the

most common is K-means which divides the data set into K clusters. To do so, K

points are chosen that represent centroids. Through an interative approach, the

algorithm stabilizes on K clusters. A basic algorithm for K-means is as follows:

1. Select K points as initial centroids;

2. Assign all the points to the closet centroid using a distance function;

3. Recompute the centroid for each cluster;

4. Repeat steps 2 and 3 until the centroids stabilize (Steinbach et al,

2000).

Hammouda and Kamel in (Hammouda et al, 2003) proposed an incremental

clustering algorithm based on maintaining cluster cohesiveness. They employed a

cluster similarity histogram, a concise statistical representation of the pair-wise

similarities within each document. Clusters needed to maintain a high cohesiveness

as documents are added. The authors accomplished this by enabling the algorithm to

reassign documents to clusters that where perhaps created after the documents were

introduced. In effect, they presented a dynamic k-means approach to clustering.

In (Dhillon et al, 2003), the authors extend the k-means approach in a 2-step

manner. First, for each current cluster, they execute a first variation, in which either a

single or a string of document moves between clusters that will increase the overall

clustering score. Second, they perform a standard spherical k-means iteration globally

41

to further increase the score. This dual iterative approach performed best in clustering

high-dimensional and sparse text data.

Chávez et al in (Chávez et al, 2000a) presented a clustering technique to index

metric spaces that recursively partitions the space into asymmetrical internal and

external circular buckets, see Figure 11a. Given the asymmetry of the data structure

they are able to prune the search space in two directions. First, one searches

exhaustively inside the internal (I) bucket only if the query ball has some intersection

with the search space ball c. Equally, if the query ball is totally contained in the

search space ball c, there is no need to consider elements in the external (E) space, see

Figure 11b. This asymmetrical structure and double pruning feature significantly

increases the efficiency over standard pivot and clustering metric space techniques.

42

q3

q3

q1

c

r

r

r1

r3

c3

c2

c1

r2

a b

Figure 12 a. Recursive asymmetrical partitions b. search space and query balls

Zha, Ding and Gu in (Zha et al, 2001) presented a graph-theoretic partitioning

scheme to data clustering. Their method uses an underlying bi-partite graph. The

partition is constructed by minimizing a normalized sum of the edge weights between

unmatched pairs of nodes in the bi-partite graph. They show that an approximate

solution to the minimization problem can be obtained by computing the singular value

decomposition (SVD).

Finally, Lin and Kondadadi in (Lin et al, 2001) introduced a soft clustering

algorithm called SISC (SImilarity-based Soft Clustering), that improves on the

Expectation Maximum approach by using a similarity function instead. This frees the

algorithm from relying on any underlying probability assumptions. In many cases it

outperformed k-means approaches.

Our work

As we have seen, proximity means different things to people depending on the

domain. In this section we have discussed current research on proximity measures in

43

metric spaces. This approach for finding the similarity between objects is similar to

our work because we also measure this proximity. However, we also consider the

proximity of items related to the objects we are measuring. This distinction is what

sets our approach apart from pure proximity calculations in metric spaces.

2.3 Recommender systems

Recommender systems traditionally deal with applications that have two

entities, users and items. After obtaining an initial set of ratings, the recommender

system tries to estimate the rating function R

RatingsItemsUsersR : [2.7]

for the (user, item) pairs that have not yet been rated by users (Adomavicius et al,

2005). Conceptually, once R is estimated for the entire ItemsUsers space, a

recommender system can select the item ui with the highest rating for a user u and

recommend that item or items to the user:

),(maxarg, iuRiUsersu
Itemsi

u


 [2.8]

Instead of estimating the unknown ratings from the entire ItemsUsers space (which

would be quite expensive) various methods have been developed to finding more

efficient solutions requiring smaller computational efficiency such as (Goldberg et al,

2001). According to (Balabanovic and Shoham, 1997) the recommender system

domain is divided into three areas: content-based, collaborative and hybrid.

Content-Based Recommender Systems

The rating R(u, i) of item i for user u is normally determined based on ratings

R(u, i) given by the same user u to other items i Items that are similar to item i in

terms of content (Adomavicius et al, 2005).

Content-based recommender systems have their short-comings. First they are

limited to domains where content can be extracted automatically (Shardanand and

Maes, 1995). Secondly, they suffer from the new-user problem. If the user has rated

only a small number of items, the content-based recommender system may not

44

understand his preferences and suggest good recommendations (Adomavicius et al,

2005). Finally, since the user is being recommended only items that are similar to

ones he has already highly rated, content-based recommender systems can suffer from

‘over-specialization.’ For example, the user could be recommended different articles

about the same event in a news-feed system (Adomavicius, et al, 2005).

Collaborative Recommender Systems

Collaborative recommender systems make their recommendations for a

particular customer based on how other customers had previously rated the item. The

rating R(u, i) of item I for user u is calculated by considering the ratings R(u , i)

given by users u who are similar to user u.

The similarity measure between u and u is used as a weight for the ratings.

The higher the similarity measure for user u , the higher the weight value given.

There have been several approaches measuring the similarity between users. The two

most popular approaches are the correlation-based (Resnich et al, 1994) and

(Shardanand and Maes, 1995):

,
)()(

))((

),(
2

,
2

,

,,















rrrr

rrrr

yxsim
sy

Ss
sx

Ss
ysyxsx

xy

xy [2.9]

and the cosine-based approach (Bresse et al, 1998) and (Sarwar et al, 2001):

,),cos(),(
2
,

2
,

,,

22 











xyxy

xy

Ss
sy

Ss
sx

Ss
sysx

rr

rr

YX

YX
YXyxsim [2.10]

where YX  is the dot product of the rating vectors of the respective users.

Furthermore sxr , and syr , are the ratings of item s of users x and y respectively,

   sysxxy rrItemssS ,,| is the set of all items rated by both users x and y

(Adomavicius et al, 2005).

Collaborative recommender systems share the new user problem with content-

based recommender systems. Collaborative systems also suffer from the new item

45

problem since they rely solely on rating data to make recommendations. Finally the

lack of a sufficient number of ratings is another challenge for these types of rating

systems.

Hybrid Recommender Systems

Hybrid systems usually combine content and collaborative methods to

overcome some of the weaknesses discussed in earlier sections. There are several

approaches that have been proposed.

One technique for combining content and collaborative methods is by (1)

learning and maintaining user profiles based on content analysis using content-based

techniques or information retrieval methods and (2) then directly comparing the

profiles to find similar users in order to make collaborative recommendations. The

Fab system (Balabanovic and Shoham, 1997) and the ‘collaboration via content’

approach in (Pazzani, 1999) apply this hybrid technique.

Implementing separate collaborative and content-based recommender systems

is another approach to building hybrid recommender systems. One can either

combine the ratings from individual recommender systems into a final

recommendation (Claypool et al, 1999) and (Pazzani, 1999) or we can use one of the

recommender systems and at a given instance choosing to use the one that is better

than others based on some recommendation quality matrix. For example (Tran and

Cohen, 2000) choose the one that is more in line with the user’s past ratings.

A third hybrid approach uses the combined content-based and collaborative

methods about both users and items in a single recommendation model. This

approach was broached in (Condliff et al, 1999) and (Ansari et al, 2000) where they

both used Baysien mixed-effects regression models for parameter estimation and

prediction.

Finally Adomavicius and Tuzhilin (Adomavicius and Tuzhilin, 2001a)

proposed a multidimensional approach to recommendations which extended the

traditional user/item paradigm. The additional dimensions capture the context in

46

which recommendations are made. This approach was proven more accurate in

certain situations than 2-dimensional approaches in (Adomavicius et al, 2005).

Our work

Our work is related to recommender systems in three ways. First, the Linea

algorithm can be applied to the user similarity calculations for the traditional

collaborative recommender systems. However, this use may not be the most

interesting since these methods use a 2-dimensional approach that doesn’t take into

account other dimensions which is Linea’s strong point.

Second, we can apply the correlation-based or cosine-based approaches

suggested in the collaborative approach recommendation systems as local proximity

implementations. These implementations not only would apply well to recommender

systems but to any domain that can be represented as vectors.

Finally, our approach extends the present hybrid methods. When a user is

given a recommendation, say for a book in an online bookstore scenario such as

Amazon, it is the result of other users actually buying the recommended book. In set

theory terms, the recommended items is always the result of an intersection of the set

A of books that the user is planning to purchase and the set B of books that other users

have purchased. The set of recommendations comes for B – A. In other words, for a

book to be recommended, it has to have been purchased with another book that is in

set A. However, there may be items that can not be ascertained based on an

intersection. There may be items that are closely related to the item about to be

purchased. Linea can take better advantage of the multi-dimensional data making up

the context to provide a recommendation.

2.4 Conclusion

As we have shown, our work is grounded in three research domains: link

analysis, metric space distance algorithms and recommender system. We have

47

discussed each of these domains in detail and noted some of the important work in

these areas.

With its foundation in library science, link analysis has become a major

domain of research with the expansion of the internet. The PageRank and HITS

algorithms and their derivatives are important advancements in this area. Our

approach extends these domains, combining them in a generic way that allows our

proximity calculations to be applied to many areas.

Proximity searching in metric space seeks to find close objects under an

appropriate similarity function. We discussed current research in two broad sub-

domains: pivot techniques and clustering.

Finally we discussed recommender systems which have found wide use on the

internet. This domain is broken into three areas. Content-based systems provide

recommendations based on ratings given by the same user to items that are similar to

the item being recommended. While collaborative-based systems base their

recommendations for an item based on the recommendations of other users who are

similar to the user who is receiving the recommendation. Both approaches have their

strengths and weakness. Hybrid systems, the third area, seek to combine facets of the

previous two approaches in a way that minimizes their inherent weaknesses.

Our work extends the body of research in two ways. First we combine link

analysis and proximity searching in a novel, generic way to determine the proximity

between objects. Secondly, our work extends present hybrid models. Since our

approach is multi-dimensional, we are able to determine similarity without having an

intersection of sets. This flexibility allows users to find (and make recommendations

for) items that are similar to other items that would not be apparent with current

approaches.

48

Proximity CalculatorProximity Calculator

Link analysis
Metric space

distance

Generic approach

Recommender
systems

Figure 13 Our work

49

Chapter 3

Mathematical Preliminaries

The development of this thesis depends on both graph and set theory. In this

chapter we will define key terms used throughout the work and then present the

mathematical concepts that underpin the proximity framework.

3.1 Terminology

To better communicate our approach, we provide definitions for terminology

used in calculations throughout this work. A node represents a class of entities within

a problem domain. Also, nodes contain elements, which are specific instances of the

type of entity described by the node. Please note that the proximity, p(x, y), is the

proximity between elements x and y. See Figure 14.

50

Node

x

y

Proximity p(x,y)

Element

Figure 14 Node

We define an association as an affiliation between objects in the graphs.

Furthermore there are two types of associations: relationships and links. A link is an

association between elements. And a relationship is an association between nodes.

We also define an image set. To do so, first consider Node A and Node B. Node A

contains Elements x and y. Node B contains Elements t and u. Element x has a link

to Elements t and u. Hence, we define the set that consists of t and u as the image set

of x in Node B. See Figure 15.

51

x

y

Link
Image Set of
element x

Relationship

Node AA
Node BB

t

u

Figure 15 Relationships & links

A relationship can either be outbound or inbound. An inbound relationship is

a directed association into the referenced node, and an outbound relationship is a

directed association out of a referenced node. Finally, we define Γ(A) as the set of

nodes associated with Node A via outbound relationships from Node A. See Figure

16.

52

Node AA

Node DD

Node CC

Node BB
Node EE

Node AA inbound relationship

Node AA outbound
relationship

Γ(AA)

Figure 16 Inbound and outbound relationships

Considering the collection of nodes and relationships, we use a graph structure

to represent problem domains for our proximity calculations. This allows us to

exploit graph properties when implementing the proximity calculations. See Figure

17.

53

EE

AA

BB

CC

DD

Graph

Figure 17 Graph representing a problem domain

3.2 Metric Space Distance Properties

Our main objective with this research centers on finding how close one object

is to another. To perform this kind of measure, we want to operate in a space X that

has the properties of metric spaces. First, the distance d between any two elements is

at least zero. Negative distances cannot exist.

0),(1,,  yxdXyx [3.1]

We also assume a normalized distance between 0 and 1 since our sets will always be

finite.

Second, the distance between any two elements must be symmetric:

),(),(,, xydyxdXyx  [3.2]

Next, the metric space must support reflexivity:

54

0),(,  xxdXx [3.3]

Finally, the distance within the metric space should adhere to the triangular inequality

property:

),(),(),(,,, yzdzxdyxdXzyx  [3.4]

3.3 Metric Space Proximity Properties

The metric space properties we discussed apply to distances. Our work is with

a normalized proximity. We define the relationship between a distance d and

proximity p as follows:

),(1),(yxdyxp  [3.5]

We assume that the distance d is normalized. Furthermore, we define the following

characteristics for a proximity p:

1),(xxp [3.6]

and 0),(yxp , if x or y is an isolated element (see below). [3.7]

The proximity of an element to itself is one. In Equation [3.7], we assume that

one of the elements is isolated. We define an isolated element as an element that has

no relationship with any other values in the domain. We can consider it a null value.

We therefore define the proximity between an isolated element and any other element

as zero. Hence, the proximity approaches one the closer two objects are to each other.

Additionally, proximity retains the same metric space properties as for a distance.

The non-negative, symmetric and reflexivity properties follow from Equations [3.1],

[3.2], [3.3], and [3.5].

1),(0  yxp , non-negativity [3.8]

),(),(xypyxp  , symmetry [3.9]

1),(xxp , reflexivity [3.10]

We provide a more in-depth discussion for triangular inequality. Consider the

triangular inequality for distance d

),(),(),(,,, yzdzxdyxdXzyx  [3.11]

55

Now, we can substitute p(x,y) for d(x,y) according to the relationship we defined in

Equation [3.5].

))],(1()),(1[(),(1 yzpzxpyxp  [3.12]

We can algebraically rearrange the equation as follows:

)],(),()[1()11(),(1 yzpzxpyxp  [3.13]

)],(),()[(1(),(1 yzpzxpyxp  [3.14]

),(),(),(1 yzpzxpyxp  [3.15]

Hence, we have the proximity property for triangular inequality

1),(),(),( yzpzxpyxp [3.16]

which we apply to our normalized proximity. Let us consider the boundary values.

Consider that x and y are the same. Hence, 1),(yxp . If 1),(zxp and 1),(yzp ,

then the triangular inequality would still hold. Any other values of),(zxp and

),(yzp would still hold since all values would be less than one. Consider the case

when 0),(yxp . This implies that either x or y (or both) are isolated elements. Let

x be the isolated element. Since x is an isolated element, 0),(zxp also. Then the

values for the triangular inequality for proximity are

100   [3.17]

where  is the value of),(yzp . Since 10   , the above relation holds true.

3.4 Graph Properties

We represent the problem domain using a directed graph. Accordingly, we

present some basic graph properties, along with definitions that support our algorithm.

Consider Graph G = {V, E}, where V is the set of vertices and E is the set of

edges. Throughout this work we refer to vertices as nodes and edges as relationships.

We do this for clarity as we have multiple things represented within one graph. This

will become more apparent when we introduce the Linea agent in the next chapter.

Within our domain, V represents the set of entities that make up the domain.

56

Likewise, E represents the set of relations between entities. Each node vV

represents a class of objects in the domain, e.g. People from our example in Figure 1.

In our proximity algorithm, we work with the set  (v) of nodes that are linked

to a node v via an outbound relationship from v. Hence, we define  (v) as follows:

 Ey),(|V)( vyv [3.18]

where (v,y) represents an outbound relationship from v to y.

Finally, consider two nodes v, z  V. Let v contain the element x. Further, let

Relationship t be the outbound relationship from v to z. Then we define the function

r(x) as the set of elements in z that are associated with xv. We further define this set

of elements in z as the image set of x in z. See Figure 18.

Image set of x

v z
t

x

r(x)
Image set

Figure 18 Image Set of x

3.5 Similarity Measures

3.5.1 Finite number of attributes

The proximity used in the Linea calculator consists of two parts: the local

proximity and the image proximity. The local proximity will vary with the domain to

which the proximity calculator is applied. Our design goal was to enable this

algorithm to be used easily in various domains. This calls for a plug and play

57

approach to the local proximity calculations. This suggests various approaches to

measuring the local proximity. There is a large amount of research on similarity

measures. We will discuss a few in this section as a means of illustrating the different

areas in which the proximity calculator can be applied. Similarity and distance are

inversely related; the greater the similarity, the smaller the distance. Hence we will

use the terms interchangeably during our descriptions.

Probably the most well know distance measure is the Euclidean distance. It

measures the shortest distance between two points. It is also referred to as the

Standard metric:

  



n

i
ii yxd

1

2

Another distance measure is the City Block or Manhattan distance. It is

named this way because in most American cities it is not possible to move from point

a to point b in a straight line. Instead, it is necessary to follow the grid like city

blocks.

5 units

4
u

n
it

s

Figure 19 City Block distance

The equation for the City Block distance is as follows:

58





n

i

ii yxd
1

[3.19]

It is best suited for measuring discrete data. Distances are measured between 2 points

as if someone would move along city blocks.

The Chebyshev distance measures only the 2 elements from the two vectors

(or sets) that are farthest apart.

ii
ni

yxd 
1

max [3.20]

Hence, it measures the greatest distance between 2 vectors. This measure is very

useful when computational efficiency is a priority.

The Minkowski distance can be seen as a type of meta-distance:

  


 
n

i

p
d ii

p

yx
1

/11

[3.21]

When p=1, it is the same as the City Block distance. When p=2, it is the

Euclidian distance. As p increases, the metric approaches the Chebyshev distance.

(Patel, 2004)

3.5.2 Relationships

In information retrieval, there are 5 common similarity measures (Van

Rijsbergen, 2004). The simple matching coefficient measures the intersection

between 2 sets of elements. It does not take into account the size of either set, thereby

providing only a non-normalized result. There are 4 other coefficients (Overlap,

Cosine, Jaccard and Dice) that are very similar.

59

 YX

YX

|min



2/12/1
YX

YX





YX

YX




YX

YX




YX 
Simple
Matching

Overlap

Cosine

Jaccard

Dice

Increasing
penalty
for non-
intersecting
elements

Figure 20 Similarity coefficients

The differences are the penalties they impose for non-intersecting elements. The

Overlap coefficient is the most lenient while the Dice coefficient gives the highest

penalty.

We also consider proximity distribution similarity measures. These types of

similarity metrics are often applied to information retrieval. Given a document set

with a probability distribution of words, we can compare two documents via their

proximity distributions to determine the probability of them being related. One such

metric is called the Jensen-Shannon divergence, which we can define as follows:

consider two probability distributions  )1()1(
2

)1(
1

)1(,...,, kpppp and

 )2()2(
2

)2(
1

)2(,...,, kpppp that satisfy the constraints, listed in Figure 21:

60

1
k

i

j
ip

10  j
ip

j = 1,2

)2()1(&

represent weights
of distributions)2()1(& pp

and

satisfies the constraints:

1)2()1(
10  j

Figure 21 Probability distribution constraints

Then the Jensen-Shannon divergence is

        )2()2()1()1()2()2()1()1()2()1(, pppppp EEED   [3.22]

where

  



k

i

ii ppE
1

2logp [3.23]

is the Shannon entropy of the probability distribution  kppp ,...,, 21p . (Grosse et al,

2002)

As we have described in this section, there are many options for measuring the

local proximity. The type selected is based on the domain. This flexibility in local

proximity measures lends significantly to the generic nature of the Linea agent.

61

3.5.3 Valued relationships

This type of similarity measure occurs in domains where we place a value on a

relationship. For example

--People movies and grading them

--Documents including words, each word appearing 0 or more times in

every document

If we have such values associated with relationships, we may define

similarities using the same formulas as in section 3.5.2 and also the correlation

method defined in Chapter 2.

3.6 Conclusion

We used this chapter to introduce the foundation concepts that we will build

upon through the dissertation. In particular we introduced the terminology to be used

throughout the remainder of the thesis. Next we discussed the basic distance

properties then converted them to proximity relationships. We then discussed the key

graph properties that support our work. We ended the chapter with a discussion of the

various similarity measures. These similarity measures are concrete examples of local

proximities that will be further explained in the following chapter.

62

63

Chapter 4

Linea Proximity Calculator

4.1 Introduction

The Linea proximity calculator that we propose consists of two parts. First,

we determine the local proximity, which is calculated between two elements x and y

within the same node v. This calculation uses the attributes of the elements in

question and is domain dependent. We discussed various approaches in the previous

chapter. Second, the image proximity considers the proximity between the image sets

of x and y for each node in  (v). Finally, we manage the balance between the local

and image proximities via a weight variable. The global proximity then, is the local

proximity combined to the imaged proximities, taking into account a user-defined

weight between the local and imaged proximity results. Hence, we define the Linea

proximity calculator as

),(PrIm)1(),(Pr)(,*)(yxoximityagedyxoximityLocalyxp aaaaa   [4.1]

where p*a(x,y) is the global proximity between x and y elements in Node a. In

addition, a is a weight variable with a value between 0 and 1, inclusive.

We present and compare three approaches to implementing the Linea agent.

They are the naïve, bottom-up and iterative variants. The difference between the

naïve and iterative approaches centers on recursion. In the naïve approach we stop

recursion artificially, whereas in the iterative method, it stabilizes naturally. The

64

bottom-up method is used for special case situations when the graph has no loops. In

the following sections, we describe each of these approaches in more detail.

For each of the three approaches, the local proximity measures are the same.

The choice of the local proximity algorithm is dictated by the domain. Please refer to

Section 2.2 for a discussion of the state of the art proximity measures that could be

applied. Section 3.4 discusses other approaches that can be local proximity measures

that are more traditional.

4.2 Naïve Algorithm

4.2.1 Definition

The naïve approach recursively visits the nodes linked to the source node

which contains the x and y elements for which we want to find the global proximity.

The algorithm moves to each node following the image set links. As the algorithm

functions within a graph structure with possible loops, we have to stop the recursion

somewhere. This algorithm is based on a heuristic determination of the visited

nodes. In short, if a node has been visited previously, we only consider the local

proximities of the elements of that node. This spanning tree approach is illustrated in

below.

65

x,yA

B

E

D

C

Red path: A,C,D,D
Blue path: A,C,A
Purple path: A,B,D,E,B
Green path: A,B,D,D

Previously visited node

A

B

E

D

C

D

D

B

A

D

Figure 22 Spanning tree induced by previously visited nodes. Nodes which are

already visited in a path do not recursively call any other node

computation

The original algorithm is changed slightly to keep track of paths. We write the

equation for the naïve approach as

),(PrIm)1(),(Pr)(,*)(yxoximityagedyxoximityLocalyxp aLaaLaaL   [4.2]

where L represents the set of nodes already visited in the current path. This variable

is used to implement the artificial fix point.

As discussed above, LocalProximity paL(x,y) will change by domain, but not

by implementation approach. Accordingly, we will focus our attention on the

implementation of the ImagedProximity. The two elements for which we are trying to

determine their proximity are related to other elements in other nodes. As discussed

earlier, we call these groups of elements image sets. The ImagedProximity considers

the set distance between the image set of each of the two elements in which we are

66

trying to determine the proximity. Thus, we state that the elements x and y in Node a

have the following ImagedProximity:

  



)(

* ,),(PrIm
aZ

ZLzaL YXPyxoximityaged  [4.3]

where X and Y represent the image sets of x and y in node Z respectively and

),(* YXPZL calculates the set distance between the two image sets. We sum the image

proximities for every node Z that is linked to a via an outbound relationship, or every

node)(aZ  . The variable Z is a weight function such that for any node v in Graph

G:

1
)(


 vZ

Z [4.4]

The value of Z is domain dependent. It represents the relative importance of each

node Z in Γ(v). In our examples we assumed that each Z was equal. We further

define),(* YXPZL as follows:

 


















),(

1

Lor Z 0)(,

,*

YXQ
YX

Zif
YX

YX

YXP

ZL

ZL

[4.5]

where

   









Yy

ZZL
XxXx

ZZL
Yy

ZL xypyxpYXQ),(max),(max),(*
}{

*
}{ [4.6]

If either the current node Z has no outbound relationships or the node has been

visited previously in the algorithm, we calculate the set distance by dividing the

cardinality of the intersection of the image sets by the cardinality of their union.

Otherwise, we calculate the set distance by recursively calling the global proximity

function for each pair of elements in the image sets. We also normalize this equation

to the total number of elements in both sets.

67

4.2.2 A Visual Example

We provide the following example to illustrate how the naïve algorithm

works. Although simple, the example illustrates all of the possible cases in our

algorithm. We define a directed graph G = (V, E). The nodes in V are a, b, c, and d.

The relationships in E are q, u, t, s, w. Each node represents a class of objects. The

actual instances are located in the set of elements within each node. Consider the

elements x and y located in a. We want to determine their proximity to each other

within this domain, which is described by the structure of the graph (see Figure 23).

xx
yy

.. ..
...

..

.. ..
...

.. ..
...

.. ..
...

.. ..
...

.. ..
...

..
.
...

.. ..
...

..

.
. q

t

u
s

w

ImagedProximityaL(x,y) = bL [P*b(X, Y)]

a
b

c

d

p*aL(x,y) = (δa)LocalProximityaL(x,y)+ (1-δa) ImagedProximityaL(x.y)

ImagedProximityaL(x,y)=  Z [P*ZL(X, Y)]
Z  Γ(a)

Figure 23 Detailed example –Node a

For brevity, we omit the LocalProximity variable, as it is a trivial calculation

and varies by domain. We also omit a and L updates for clarity. Hence, we focus

our attention on the ImageProximity for this example. To calculate the

ImagedProximity, we only consider the nodes that are linked to a via an outbound

68

relationship from Node a. Node a only has one outbound relationship, q, which links

Node a to b. So we calculate the set distance between the image set of x that is in b

and the image set of y that is in b. Since node b has outbound relationships and it has

not been visited yet in the algorithm, we use the recursive equation to determine the

set distance. In Figure 24 we assume that element k is in the image set of x and

Element h is in the image set of y. We take these two elements as an example and

recursively apply the global proximity function.

x
y

.. ..
...

.. ..
...

q

t

u
s

w

.. ..
...

..
.

...

.. ..
...

..

.
.

.. kk
.. ..

... hh

.. ..
...

.. ..
...

p*bL(k,h)

a
b

c

d

P*bL(X, Y) =
1

|X  Y| QbL (X,Y)

ImagedProximityaL(x,y) = 1 - bL [1 – P*b(X, Y)]

ImagedProximityaL(x,y)=  Z [1 – P*ZL(X, Y)]
Z  Γ(a)

X Y

Figure 24 Detailed example-node b

We continue this process, systematically walking through the graph, following

all outbound relationships from each node of interest. Hence, from Node b we would

calculate the set distance in Node c between the image sets of Node b’s elements k

and h (see Figure 25)

69

x
y

.. ..
...

.. ..
...

q

t

u
s

w

.. ..
...

..
.

...

.. ..
...

..

.
.

.. kk
.. ..

... hh

.. ..
...

.. ..
...

r(k)

r(h)

a
b

c

d

P*c(X, Y) = 1
|X  Y|

QcL(X,Y)

p*bL(k,h) = c [1 – P*c(X, Y)]

P*bL(X, Y) =
1

|X  Y| QbL (X,Y)

ImagedProximityaL(x,y) = 1 - bL [1 – P*b(X, Y)]

ImagedProximityaL(x,y)=  Z [1 – P*ZL(X, Y)]
Z  Γ(a)

X

Y

Figure 25 Detailed example-node c

Node c has three outbound relationships, s, u, and w; so we use the recursive

set distance calculation for this calculation also. As we follow the relationships s and

u, we return to Nodes a and b respectively which have already been visited. Hence,

we calculate the set distance between the image sets of m and n (that are located in

node c) by dividing the cardinality of the intersection of the sets by the cardinality of

their union. We do this as an artificial fix point to this recursive algorithm. We

perform the same type of calculation to determine the set distance of the image sets in

Node d. However, the reason we use this case here is because Node d has no

outbound relationships (see Figure 26).

70

x
y q

t

u
s

w

.. ..
...

..
.
...

.
.

.. ..
... mm

.. ..
... nn

.. ..
...

..

.. ..
...

..

.. ..
...

.. ..
...

r(n)

r(m)

Fake brakeFake brake

P*dL(X, Y) = |X  Y|
| X  Y|

||ΓΓ((d)| = 0d)| = 0

a
b

c

d

P*aL(X, Y) = |X Y|
| X Y|

P*bL(X, Y) = |X  Y|
|X  Y |

Z  Γ(c)
p*cL(m,n) =  Z [1 – P*ZL(X, Y)]

P*c(X, Y) = 1
|X  Y|

QcL(X,Y)

p*bL(k,h) = c [1 – P*c(X, Y)]

P*bL(X, Y) =
1

|X  Y| QbL (X,Y)

ImagedProximityaL(x,y) = 1 - bL [1 – P*b(X, Y)]

ImagedProximityaL(x,y)=  Z [1 – P*ZL(X, Y)]
Z  Γ(a)

X

Y

Figure 26 Detailed example-nodes a, b and c

4.2.3 The algorithm implementation

The naïve algorithm progresses through the graph structure beginning with the

source node that contains the x and y elements that we desire to find the proximity.

As it progresses through each node, it calculates both the local and imaged

proximities. It determines the image proximity by comparing the proximity between

the image sets of the x and y elements of the preceding node. During this image set

calculation, we measure the proximities between each element in one image set to the

each element in the other. It’s during these calculations that we recursively call the

global proximity procedure that moves us to the next Node n that is associated with

the current node by an inbound directed association. The algorithm’s fix point is

artificial and we stop the fix point calculation when we arrive at a node with no

outbound associations or if the node has already been visited for the current

calculation path. We define a calculation path as the path followed through recursive

calls from one node to another. Each outbound association from a Node n implies a

unique path.

71

4.2.3.1 Naïve algorithm helper procedure

The Calculate Global Proximity (CGP) procedure uses a helper procedure we

call Calculate Raw Proximity (CRP). The CRP procedure houses the actual recursive

call to CGP. Since the steps executed in CRP are called multiple times in CGP, we

put them into a separate procedure. Hence, we begin our discussion with CRP.

CRP(iSet1, iSet2, graph, alpha)

1 iSetMaxProximity 0

2 iSetProximity 0

3 1To2iProximity  0

4 for each element e1 in iSet1

5 for each element e2 in iSet2

6 iSetProximity CGP(e1, e2, graph, alpha)

7 if iSetProximity > iSetMaxProximity

8 iSetMaxProximity iSetProximity

9 1To2iProximity  1To2iProximity + iSetMaxProximity

10 iSetMaxProximity  0

11 return 1To2iProximity

Lines 1-3 initialize the internal variables used to keep track of the intermediate

image proximities between each pair of image sets and the eventual final image

proximity that is returned. The main body of the procedure is located in lines 5 – 10

where we loop through the set of elements in each image set to measure the proximity

between each pair. After recursively calling the CGP procedure in Line 6 (which we

will discuss next), the result is compared to the current maximum proximity value for

the current element in the first image set. After looping through all of the elements in

image set 2 (iSet2), the current maximum proximity value (iSetMaxProximity) is

added to the total image proximity (1To2iProximity) in Line 9. This procedure, as we

shall see shortly, is called twice in the CGP procedure for the same pair of image sets,

but the order is changed. Hence iSet1 is compared to iSet2. And then iSet2 is

compared to iSet1. This is done to implement the algorithm.

72

4.2.3.2 Naïve algorithm main procedure

The naïve algorithm main procedure, CGP, calculates the global proximity

between the elements x and y located in node n. It does so by recursively calculating

the image set proximities and global proximities in nodes)(nn  . The procedure

continues until each path that is followed arrives at an artificial fix point.

CGP(x, y, graph, alpha)

1 globalProximity  0

2 imagedProximity 0

3 localProximity  0

4 currentImagedProximity  0

5 for each node n in gamma(currentNode)

6 xImageSet  getImageSet(x, n)

7 yImageSet  getImageSet(y, n)

8 if |xImageSet| = 0 and |yImageSet| = 0

9 currentImagedProximity  1

10 else if |xImageSet| = 0 or |yImageSet| = 0

11 continue

12 else

13 if node n has already been visited or |gamma(n)| = 0

14 currentImagedProximity  calculateSetDistance(xImageSet,
yImageSet)

15 else

16 xToyIP CRP(xImageSet, yImageSet, graph, alpha)

17 yToxIP CRP(yImageSet, xImageSet, graph, alpha)

18 currentImagedProximity  (xToyIP + yToxIP)/| xToyIP | + | yToxIP
|

19 currentImagedProximity  currentImagedProximity * weight

20 imagedProximity  imagedProximity + currentImagedProximity

21 currentImagedProximity  0

22 globalProximity  alpha * localProximity + (1-alpha)*imagedProximity

Alter initializing the various proximity variables used in the algorithm, the

CGP procedure loops through all of the nodes n in Γ(currentNode). The

currentNode variable represents the node where the elements x and y reside. For each

73

image set pair, it first checks the size of both sets. If both image sets are empty and

the local proximity is 1, we set the currentImageProximity value to 1. If both image

sets are empty and the local proximity is any value less than 1 then we set the

currentImageProximity value to 0. If only one image set is empty, we continue,

leaving the currentImageProximity value initialized to zero, since the

currentImageProximity is reset to zero after each iteration of the loop (Line 21). If the

node n has previously been visited on this calculation path or |Γ(n)|=0, then in Line 14

we implement the artificial fix point calculation for determining the image proximity.

If all of the previous if statements are false, then we make the recursive call to the

CGP procedure for each image set in Lines 16 and 17. In Lines 18 and 19 we

normalize the results and factor in the weight value for the current node. The last

calculation in the loop at Line 20 is to add the current image proximity value to the

running total. The CGP procedure ends by calculating the global proximity using the

totaled imaged proximity, local proximity and alpha value.

We define a path as the sequence of nodes visited by the Linea algorithm until

it reaches either a previously visited node or a node n where Γ(n) = 0. Normally, a

domain graph is contains multiple paths. The order of the paths that Linea follows

does not affect the final score. We provide empirical evidence in Chapter 5 to support

this claim.

4.2.4 Time complexity

In order to estimate the time complexity of the proximity algorithm, we first

consider the base case. If there are no outbound relationships, this means there are no

image sets. Accordingly the only calculation would be the local proximity, which

would be constant C.

74

x y

CyxO ),(

Figure 27 Base case

In order to consider the follow-on cases, we must first look closer at how the

algorithm progresses. The proximity calculator works on a graph. It is a recursive

algorithm that follows the outbound relationships from the original node (that has the

x and y elements) outward. The algorithm stops in 2 cases: 1) when it reaches a node

that has already been visited on the current path, or 2) when it reaches a node that has

no outbound relationships. Given these two induced termination cases, any graph can

be represented as a tree. For example, Figure 22 shows a tree induced from a graph

due to previously visited nodes.

Similarly, Figure 28 shows a partial tree induced by a node that has no outbound

relationships.

75

B

A

B C

D

E

E

x,yA

B

E

D

C

No outbound relationships

Blue path: A,C,D,B,E
Red path: A,B,E

Figure 28 Tree induced by a node with no outbound relationships

With these two cases, any graph can be represented as a tree because eventually, as

the algorithm follows the outbound relationships of the nodes in a graph, it will either

reach a node it has previously visited, or it will reach a node that has no outbound

edges. We use this tree characteristic of our graph to determine the time complexity

upper-bound.

There are three variables that influence the time complexity of the algorithm.

First, consider R, which represents the number of outbound relationships from the

node that has the most outbound relationships in the graph. Then, let n equal the

number of elements in the node that has the most elements in the graph. Finally let h

be the height of the tree induced from the graph. As we shall show in Chapter 5, the

order of the paths that the algorithm follows has no effect on the end result.

Accordingly, the height h is simply the longest path in the graph. We define R and n

as the worst case to ensure we capture the upper-bound of our algorithm complexity.

76

In the base case we described earlier, there were no outbound relationships,

hence R was zero. Now, let us consider the case when R=2 and the height h of our

induced tree is 1. In the base case with node outbound relationships (R=0), the time

complexity is a constant c. This represents the calculation of the local proximity. As

we follow the outbound relationships, we must perform the image proximity

calculations. Let’s consider Node B. According to the proximity calculator

algorithm, we would consider the image sets for both x and y that are in Node B. To

capture the upper bound, we assume that the size of the image set of both x and y in B

is n. Hence we would perform 2n2c calculations in Node B to calculate both the local

proximity at constant time c and the image proximity. We would repeat this

calculation for each outbound relationship from Node A. Hence, since R=2, the time

complexity when h=1 is 2n2Rc+c. See Figure 29.

x,y

R=2 h=1

2n2Rc + c

Figure 29 Time complexity when R=2 and h=1

77

Now let’s consider the follow-on cases in order to detect a defining time

complexity equation. Assume we have now progressed in the induced tree to the h=2

level. At level h=1, we made 2n2Rc+c calculations. Each of those calculations

included a recursive call to the proximity calculator and the local proximity

calculation at a cost of constant c time. This involves the calculation of the image sets

in Γ(v) where v represents a node at level h=1. All nodes in Γ(v) will be located in

level h=2. So if we consider an arbitrary node in Γ(v), named v1, then the image set

calculation number will be as follows:

  cRn 2222 [4.7]

To perform the image set calculations in any node, it takes 2n2 calculations.

However, at level h=2, this calculation will be performed 2n2 times due to the

recursive calls from level h=1. Furthermore, at level h=2, there are a total of R2

outbound relationships from level h=1. This is a progressive calculation.

Accordingly, we must add this calculation to the previous one for level h=1. Hence

you would have the following:

  cRcncRn  2222 22 [4.8]

See Figure 30 for a visual representation of the equation at level h=2.

78

x,yR=2

h=12n2Rc + c

h=2

(2n2)2R2c+2n2Rc + c

Figure 30 Time complexity at h=2

We continue this process for an additional step. At level h=3, there would be

8 nodes added. See Figure 31. Hence we have

    cRcncRncRn  2222332 222 [4.9]

which now takes into consideration this new level. Similar to our calculations at level

h=2, at h=3, we must make the image set calculations 2n2 times for each node.

However, we must do this (2n2)2 times due to the recursive calls from level h=2.

79

x,yR=2

h=12n2Rc + c

h=2

h=3

(2n2)2R2c+2n2Rc + c

(2n2)3R3c+(2n2)2R2c+2n2Rc + c

Figure 31 Time complexity at h=3

At this point, we can begin to see a pattern develop. The height h of our

induced tree is related to the equation that describes the time complexity. For

example at h=3, the equation that represents the time complexity can be rewritten in

terms of h.

      ccRncRncRn hhhhhh
  2221122 222 [4.10]

The exponents for the (2n2) and R factors are tied to the value of h. Specifically, the

height h of the tree defines the largest exponent value for these 2 factors. Hence if

h=2, then the highest exponent values would be 2 or cRn 222)2(. Likewise, if h=5 then

the highest exponent value would be 5 or   cRn 5522 . We can rearrange equation

[4.10] by factoring out the constant c. We then have:

      cRnRnRn
hhh

1222
22122 


[4.11]

Accordingly, we can generalize this series to

      cRnRnRn
hh

1222
12122 


 [4.12]

80

which describes the complexity for any height h. This series can be now rewritten as

the summation

      1222)2(
1 12122

1

2 



 RnRnRnRn

c

hh
h

m

m  [4.13]

for values 1 through h. The constant c represents the value for h =0. This well known

summation has the following value:

12

1)2(
)2(

1
2

12

1

2










Rn

Rn
Rn

c

hh

m

m [4.14]

Hence, we state the time complexity for the recursive approach to the proximity

calculator as follows:

 
c

Rn

Rn
RhnT

h


















12

12
),,(

2

12

[4.15]

or

)]([2 hRn [4.16]

This is a worst case estimation. Given a graph, we chose n as the number of

elements in the node with the largest number of elements. We then assumed that each

node has this same number, n, of elements. Similarly, we defined R as the number of

outbound edges from the node with the most outbound edges. We then applied this

value for each node in the graph. The induced tree has a height h. Within the context

of the graph, h is the longest path in the graph. We assumed that every path length in

the graph was the same for as the longest path. Within the context of the induced tree,

that means that the induced tree is a complete ‘R-ary’ tree in which all leaves have the

same depth and all internal nodes have degree R.

This covers the worst case for our time complexity. In many cases, this value

will be much larger than in actuality. However, the time complexity depends on the

height, degree and number of elements in the node. We are unaware of a way to get a

closer approximation of the time complexity.

81

4.3 Bottom-up

The bottom-up approach works on a modified tree version of the domain

graph. This modified tree is developed either by using the artificial fix point method

from the naïve approach (section 4.2) or from directed graphs with no loops in them.

In this latter approach, we arrange the graph into a modified tree (explained later)

with nodes n with |Γ(n)| = 0 as leaves. Once the graph has been converted to a

modified tree, we pre-process the image set calculations and hence improve the

efficiency of the algorithm.

4.3.1 Proximity of an element to an image set

In order to improve the speed of the algorithm, we do not directly compute the

proximities of image sets, but we first compute the proximities of elements to image

sets. Before we continue, we shall provide a couple of definitions.

S: is the image set, located in Node X, of Zu 

),(SxX : is the proximity of an element Xx to the image set S

For instance, consider node X and parent nodes Y and Z which have relationships

towards Node X. Given any element Xx , and given any image set S, we compute

the proximity

)),((max),(* txpSx X
St

X 
 [4.17]

We take the maximum of the global proximities,),(* txpX between the given element x

and each element t in the image set S.

Another way to look at the proximities between image sets and elements is to

consider the element of origin of the image set. For example S, located in Node X, is

the image set of Element u which is located in Node Z. Hence, we wish to define the

proximities between S and elements in X from the perspective of u. Accordingly,

consider

 )(Im,),(uageSetxux XXZ  [4.18]

82

which captures this representation. The subscript X is the node where the image set

resides. Whereas the second subscript, Z, represents the source node of the image set

found in Node X. Next, x is the element in Node X and u represents the source

element located in Node Z of the image set located in Node X.

x

ZZ

YY
u

XX

v

'
1u

'
5u

'
4u

'
2u

'
3u '

1v

'
5v

'
4v

'
2v '

3v

S

Figure 32 Computing the distance of any element x of X to image sets of all elements

u of Y or Z

4.3.2 Proximity of 2 image sets

After computing the proximities of the image sets of elements u and v of node

Z to any element in the child node, it is easy to compute the proximities of image sets

of elements u and v : those are given by :








 


 
 Vv

X
Uu

X
Z

Ximage UvVu
VU

VUp),(),(
1

),([4.19]

The two image sets U and V that are located in Node X. They are image sets

of a pair of elements located in Node Z. To find the proximity between these two

83

image sets, we sum the proximities between each element u in the image set U and

image set V. Similarly, we also sum the proximities between each element v in the

image set V and the image set U. See Figure 33 below. After adding the two

summations, we normalize the result by dividing by the total number of elements in

each image set.

U

V

u'

v'

v'
v'

v'

v'v'
u'

u'

u'

u'u'

Node X

Node Z
a

b

Figure 33 Elements of an image set proximity measure

4.3.3 The algorithm

As mentioned in the beginning of this section, we convert the given graph into

a modified tree. For cyclic graphs we convert them into trees using either nodes with

no outbound edges or nodes that have already been visited as leaves. In the case of a

directed acyclic graph G, we can transform G into a modified tree by only considering

nodes with no outbound edges. So in effect, acyclic graph conversion is a special

84

case of the naïve approach conversion method. We call it modified because children

nodes are allowed to have multiple parents, such as the case for Node E in Figure 28.

CC

EE

BB

DD

AA AA

CC

EE

BB

DD

Figure 34 Directed graph with no loops converted into modified tree

The bottom-up algorithm follows two phases. Phase 1 collects image sets for

each node and moves in a downward direction. It begins at the source node, the node

that has the original 2 elements for which we want to find the proximity. Phase 2 then

starts at the leaves and calculates proximities between elements and image sets in an

upward direction until the source node.

Fore each coupe of nodes A and B, where  AB  , phase 2 includes 2 steps:

 Step 1: for each element Bb and for each element Aa ,

o Compute  abBA , according to equations [4.17] and [4.18]

 Step 2: for each couple of elements  aa , with Aa

o Compute     aageSetaageSetp A
Bimage Im,Im , using [4.19]

85

The algorithm that implements Phase 1, collecting image sets for all elements,

is named CollectIS(n) and takes a Node n. This algorithm employs a data structure

IS(p,e) that holds image sets of individual elements. IS is accessible in Phase 1 and

Phase 2. Finally, we use the function Γ(n) that returns the set of nodes that have an

inbound relationship from Node n. Hence the algorithm is stated as

CollectIS(n)

1 for each p  Γ(n)

2 for e  n

3 compute IS(p,e)

4 if not examined(p)

5 CollectIS(p)

6 examined(n) = true

This algorithm is called recursively starting with the top node:

CollectIS(TopNode). The algorithm then ends when we reach leaf nodes or nodes

that have already been examined.

The goal of Phase 2 is to use the image sets collected in Phase 1 to calculate

the global proximity between two elements. We accomplish this by starting at the

bottom of the modified tree and working upwards. As in Phase 1 above, we employ

supporting data structures in this phase. A Proximity Element Image Set (PEI) table

is used to globally keep track of element to image set proximity measures. See

equation [4.17]. This table also holds the element node identifying information.

4.3.4 Time complexity

Let N1, N2, …, Nk be the k nodes in graph G. Furthermore, let n1, n2, … , nk

there sizes. The total number of elements of the graph is n = n1 + n2 + … + nk. The

time required for ordering the nodes in a bottom-up manner is a constant O(c).

Consider now step 1 of the algorithm for some upper node Ni and some lower

node (son) Nj. Remember that step 1 applies equation [4.17]. Computing the

proximity of an element of Nj to the image set of an element of Ni takes at most nj

86

operations. Doing this for each element of Ni and for each element of Nj takes at most

ni* nj² operations.

Consider now step 2 of the algorithm. Computing the proximity of 2 image

sets of Ni requires at most
hjjj nnn  ...

21
 operations, where h is the number of

child nodes of Ni and j1, j2, …, jh are the sons of Ni. For each couple of nodes i,j where

i is the parent of child node j, the time component is nj. If we do this operation for any

2 nodes of Ni, we get ni² * nj operations. To summarize, the time of the algorithm is

the sum of  ijji nnnn 22  for any relationship (i , j) where i designates the parent node

of the relationship and j the child node.

We may roughly say that O(n3) is a higher bound of the algorithm, which may

be considered better than the recursive algorithm of section 4.2, but which may be

improved in practice because of the sparse data available.

Take for instance a collaborative filtering problem like the one given on the

site http://www.grouplens.org/ This site has collected data about rating of movies by

moviegoers. Two databases are given on this site: one of 100,000 ratings for 1682

movies by 943 users. The second one consists of approximately 1 million ratings for

3900 movies by 6040 users. Pure applications of the complexity formula n1²n2 + n2²n1

would give enormous numbers.

Step 1 of the algorithm requires each link between N1 and N2 to be examined

only once for each element of N2. Step 2 requires each link to be examined only once

for each element of N1. L12 being the number of links from node N1 towards N2, step

1 of the algorithm has a time reduced to n2* L12, and step 2 has its time reduced to n1*

L12. Thus, the time is only L12(n1 + n2). With the above examples, this represents a

gain of time between 15 and 18 due to the sparsity of the matrix of links. In the case

of k classes, with n = n1 + n2 + … + nk elements, the total complexity is O(nL).

87

4.4 Iterative

In this section I will explain the time complexity for the iterative approach to

solving the proximity calculations.

4.4.1 Algorithm description

The algorithm given in this section solves the general problem expressed in

equations [4.1] – [4.5]. The graph may include several nodes with loops. Our

equations may be written in the vector form:

cxMx


)([4.20]

where:

x


: is a vector representing the total proximity.

M: is an operator containing the coefficients and max, addition and
multiplication operands from proximity equations

c


: is a constant vector

We employ, under certain restrictions, some theorems and properties of linear algebra.

See (Elsner and Driessche, 1999).

If we look at the linear-max equation system represented by the M object and

the c


vector, it has the following properties by construction:

1) The diagonal elements are all ones

2) All coefficients are positive

3) The sum of all row coefficients other than the diagonal coefficient is less

than or equal to one.

4) The c


vector has all of the coefficients in the [0, 1] range.

Property 3 is usually referred to as ‘diagonal dominance’ in linear algebra. It

is well know that a linear system holds the form

cxMx


 [4.21]

where M is a strictly diagonally dominant matrix and is solvable by iterative methods

called relaxation algorithms in the following way:

88

1) Choose any 0x


2) Compute cxMx mm


1 starting with m=0 and continuing until

convergence.

(Press et al, 1995) shows that convergence may be slow, but in practice it gets

faster as the sum of the non-diagonal coefficients of matrix M becomes significantly

lower than the rank of the matrix.

Because of the similarity of linear algebra and max-plus algebra, we are

entitled to use the same iterative method of equation solving, known as the Gauss-

Jacobi Algorithm. Compute:

 
  ...12

01

cxMx

cxMx







4.4.2 Time complexity

We use the same notation found later in the bottom-up algorithm. First p is

the size of the x


 vector. The size of the matrix-like M object is p x p, where

)1(...)1()1(2211  kk nnnnnnp [4.22]

with k being the number of nodes in our graph and 1n being the number of elements in

one node. So p is of the order of ,... 22

1 knn  however M is a very sparse object as we

have already seen.

An iteration of our algorithm consists of computing the mx


vector elements

using 1mx


. Remember that the size of x


is p (see above). Using the same algorithm

from 4.3.3, we get a computation time of nL for each basic step where:

knnn  ...1 [4.23]

and L is the total number of links of any element to any other element. Iterating r

times, the total complexity is given by:

)(rnLOt  [4.24]

Intuitively, the convergence speed is determined by the sum of all non-

diagonal elements of M. For instance, in the example presented in Annex A, the rank

89

of M is 4 and the sum of all non-diagonal elements is 7/4. Convergence speed is

related to the ratio of this sum and the rank (7/16 in our example). The time needed to

converge decreases as this ratio decreases.

4.4.3 Proof of convergence

The convergence of this relaxation algorithm can be established in the same

way as if M was a true matrix and  xM


was the usual matrix-vector multiplication.

We will first review the pure linear case in section 4.4.3.1, then introduce the max

operator in section 4.4.3.2 and finally conclude on some graph characteristics which

guarantee absolute convergence.

4.4.3.1 Pure linear equations without max operators

Suppose that

cxMx


 [4.25]

would be a pure linear equation with:

 A constant matrix M

 A constant vector c


 A vector of unknown x


The iterative method described in section 4.3.1 is then the so called power method.

Given a matrix M with all positive elements, convergence of this method requires the

highest eigenvalue to be less than one. However, as we know that the sum of each

row is less than or equal to 1, we can deduce that the highest eigenvalue is less than or

equal to one. For example, see (Pillai, 2005). Relaxation equations such as:

cxMx nn 
 1 [4.26]

can be detailed as:

  

j
i

n
jij

n
i cxmx 1 [4.27]

We consider the difference 1 nn xx


of the values of x


 at two consecutive iterations.

The following vector norm measures the distance between consecutive values of x


90

)max(11   n
j

n
j

nn xxxx


[4.28]

which is the maximum of the absolute values of the components. Now we should

show that

1,211   kxxkxx nnnn 
[4.29]

which proves the absolute convergence of 0x


, 1x


,… nx


. For any i, we have:

   
j

n
j

n
jij

n
i

n
i xxmxx 211 [4.30]

21

21












n
j

n
jij

j

n
j

n
jij

xxm

xxm



Thus, 11 max   n
i

n
i

i

nn xxxx


 which is less than or equal to 21   nn xx


 because

1
j

ijm

Under which conditions can the symbol ‘ ’ be replaced by ‘ ’, which

guarantees absolute convergence? This will be discussed in section 4.4.3.3.

4.4.3.2 Equations with max operators

The proof of convergence of the previous section can be easily transposed into

our equations which include maxes, pluses and multiplications by constants. The

Linea model has equations like the following:

   

j
i

n
j

n
j

n
jij

n
i cxxxmx

k

111 ,...,,max
21

[4.31]

where  kjjj ,..., 21 is a set of indices of vectors x


, given as a function of j. Remember

that  
j

ijm 1.

We are still using the following measure of distance of two successive

approximations of  n
j

n
j

j

nn xxxxx   max1
. For any i, we have:

      
j

n
j

n
j

n
i

n
jj

n
i

h
i kk

xxxxmxx 22111 ,...,max,...,max
11

[4.32]

Observe now that if a, b, c, and d are four positive numbers, it is always true that:

91

     dbcadcba  ,max,max,max [4.33]

Thus,

   
j

n
j

n
j

n
j

n
jj

n
i

n
i kk

xxxxmxx 21211 ,...,max
11

[4.34]

 2121  







  nnnn

j
j xxxxm



Thus,

211   nnnn xxxx


[4.35]

Of course, absolute convergence can only be achieved if strict ‘<’ inequality is

guaranteed, like in equation [4.27].

4.4.3.3 Equations of graph structures to achieve absolute convergence

First remember that, for every equation like

  
j

ijjiji cxxmx
k

,...,max
1

[4.36]

we have, by construction of the Linea model

 
j

iij cm 1 [4.37]

We shall call ic the “constant term” of the ith equation. If, for all equations, the

constant term ic is equal to zero, there is no convergence of the relaxation algorithm.

If some equations have 0ic and some other are not, we have to eliminate all

variables i such that 0ic , by row additions. If variables eliminate trivially, the

system is degenerate and hence we can replace these variables by zero. At the end of

the elimination process, every equation has non-zero constant. Thus,

1
j

ijm [4.38]

for any i.

It may of course happen that some zero-constant variables may not be

expressed in terms of non-zero constant variables. Here is one example:

92

  

5.7.

5.5.

5.,max5.








wy

wx

yxw

uv

vu

Note that u and v are given by equations where there is a zero-constant term, and

cannot be expressed as functions of w, x, nor y. There values are undetermined.

Practically, we give them a value of zero. This situation is quite common in

recommendation systems with 2 classes: fans and movies. If fan A saw movie K and

fan B saw movie L, and neither A nor B saw any other movie, and K and L were not

seen by any other fans. See Figure 35.

AA

BB LL

KK

Fans Movies

Figure 35 Movie recommendation system example with undetermined values

Considering this example and assuming all local proximities are zero, we have the

following equations

93

),(* BAPu 

),(* LKPv 

uv

vu




which have no unique solution. Thus we set u and v to zero. With two classes (fans

and movies in this example), a non-zero constant factor appears in the equations as

soon as two elements of one class share the same element in the same element in their

image sets within the image set node. See Figure 36.

AA

BB
FF

CC
DD

EE

GG
HH

Figure 36 With the intersection of the two image sets at E, we are assured a non-zero

constant

The equation giving the proximity of A and B includes a constant element. In this

example, the constant is 1/12 because the image set cardinalities of A and B are 3 and

4 respectively.

94

If we still have two classes and there exists a path between two elements A

and B of the same class, their proximity can be computed. Here is one example:

AA

BB

KK
DD

EE
LL

MM

Figure 37 The proximity between A and B can be computed due to the path between

them created from the links and intersections of the other elements.

The equations giving P*(A,D), P*(K,L), P*(D,E), P*(L,M), P*(E,B) have

non-zero constants. Therefore P*(A,E) can be computed from P*(K,L), P*(K,M) can

be computed from P*(A,E) and P*(A, B) can be computed from P*(K,M).

However, this kind of ‘path reasoning’ can not be generalized with more than

2 classes. Here is an example with 3 classes:

95

AA BB CC

aa22

aa11

aa33

aa44

bb11

bb22

bb33

cc22

cc11

cc33

cc44aa55

Figure 38 Three class example

Proximities of b1 and b2 can be computed and the proximities of b2 and b3 can also be

computed. However, the proximity of b2 and b3 cannot be computed without other

connected elements.

4.5 Conclusion

In this chapter we have introduced the Linea proximity calculator. In doing

so, we described three implementation approaches—naïve, bottom-up and iterative.

Furthermore, we provided time complexity estimations for each approach and

provided a proof convergence for the iterative method. In chapter 5 we will discuss

our experiments and their results as they pertain to each of the three methods

mentioned in this chapter.

96

97

Chapter 5

Experiments

5.1 Introduction

In this chapter we will present the various experiments we conducted with the

Linea proximity calculator. We will start with a description of the data we worked

with during our experiments. Next, we will compare the results between various

approaches we employed with the proximity calculator. Specifically, we will first

measure the accuracy of the three approaches as compared to the manual results.

Next, we will compare their performance. Finally, we will make some conclusions

and recommendations for algorithm choice.

5.2 Data description

For our experiments, we refer to data from two different domains. The first

one is a simple data-store that represents a set of web pages. We used this set of data

because it allows us to manually perform the proximity calculations for verification.

The second set of data is more complicated. It contains sample information

representing employees of research and development (R&D) division of Électricité de

France (EDF), a large French corporation. I will discuss both databases in detail.

98

5.2.1 Web pages

The web pages data-store provides a simple representation of a set of web

pages. There are two entities: web pages and terms. There are three associations.

Web pages contain terms. Terms are contained in web pages. And web pages point

to other web pages.

Web PagesWeb Pages TermsTerms
Contains

Contained in

Points to

Figure 39 Web pages data model

The web pages data store consists of 27 elements in total. Specifically, there

are 17 web pages and 10 terms. There are 6 web pages that have terms in their image

set. Likewise, there are 6 web pages that have other web pages in their image set.

Finally, there are 4 terms that have web pages in their image sets.

Since this is such a small dataset, we use it mainly for comparisons between

manual and automated methods. For more robust testing, we use the corporate data

structure described in the next section.

99

5.2.2 Corporate

The corporate data set contains sample information representing employees of

the R&D division of EDF. This data set is more complicated mainly due to two

factors. First, it contains many more elements. Second, there are seven associations in

the graph, significantly more than in web pages. There are three entities modeled by

the corporate data store: persons, competences and groups. There are bi-directional

associations between all entities. In addition, there is a reflexive association in

groups, which represents a super/sub group association.

The source node used throughout our experiments is the person node. The

structure of the data contained in the corporate data sets has a much lower percentage

of image set intersections. Accordingly, we can expect that the proximity results will

be lower than those of the web pages database. In the following paragraphs, we

provide a detailed description of the corporate data set that provides support to our

conclusion of lower expected proximity scores.

100

PersonsPersons CompetenciesCompetencies
Persons_Competencies

Groups_Competencies

SuperGroups_SubGroups

GroupsGroups

Persons_Groups

Figure 40 Corporate Data model

There are 2573 people represented in the corporate database. There are also

214 groups and 128 competences. On closer examination, other interesting

characteristics of the data emerge. First, only 193 of the 2573 corporate personnel

have a listed competence. Of this population, 99 have only one competence.

Afterwards, there are 33 people who have three competences. There is one person

who has six competencies, the most in the database.

101

Competencies per Person

0

20

40

60

80

100

120

1 2 3 4 5 6

Competences

 P
eo

p
le

Figure 41 Competences per Person comparison

Inversely, of the 128 competences listed, 24 are not associated with a person.

Of the 104 competences associated with people, 22 of them were associated with 1

person only. Equally, 22 competencies were associated with 2 persons. There were

three competences associated with 11 or more people. The most common

competency, Networked Computer Systems & Telecommunications, was associated

with 15 people.

When we consider the image sets of elements in persons in the competences,

we can see that the chances of overlap between different image sets are low. The

effect will be a lower overall proximity measure as a result of competences. As we

move further away from the source node, in this case people, the effects of image set

overlap are lower. Accordingly, although there is a higher chance of image set

overlaps when taking competencies as the originating node and persons as the image

set node, the positive effects are lesser since we are considering image sets node

102

directly associated with persons. In this case, there is a intermediate node,

competences, between the source node (persons) and the node containing the image

sets (persons).

Figure 42 Competencies per Person comparison

When comparing groups to people, we found that most people, by far,

belonged to only one group. In fact, out of the 2545 people in the corporate data store

that are associated with a group, 2512 were members of only a single group. An

additional 30 people belonged to 2 groups while only 3 people belonged to either 3 or

4 groups. No one was associated with more than 4 groups.

The distribution of people among groups is more disperse than people with

competences. Whereas most people tend to have one or two competencies, the

Competencies per Person

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

People

Competencies

103

number of people per group follows more of a normal distribution. There are 16

groups that have 15 people in them. At the extremes, only 1 populated group contains

the lowest number of people: one. Similarly, there is only 6 groups contain 29 or

more people including the outlier group that has 58 members.

When we consider image sets in node groups, which originate in the persons

node, there is a higher chance of set intersection since the vast majority of people

belong to a group and many groups contain 15 or more people. Accordingly, image

set proximity scores here should be higher.

Figure 43 Groups per Person comparison

Groups can also contain other groups. There are 30 groups that contain other

groups. Most of these super-groups contained between 4 and 9 sub-groups. However

Groups per Person

0

2

6

8

10

12

14

16

18

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

People

Groups

104

there is one case in which a group contains 20 sub-groups. Also there is one instance

in which a sub-group is a member of 2 super groups. Finally, there are 26 super-

groups that are also a sub-group of another.

Of the 214 groups in the corporate data store, 30 have sub-groups. Hence less

than 15% of the groups have subgroups. If we consider groups as the originator node

for image sets contained in subgroups, we can conclude that this structure feature also

lends itself to lower proximity scores.

Figure 44 Super-groups per Sub-group

In the corporate database 20 groups have competences. The majority of these

groups had 8 or fewer competences. There were 2, however, that had 12.

Super-groups per Sub-group

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sub-groups

Super-groups

105

Figure 45 Groups per Competency

Out of the 128 competences in the database, 120 were associated with a group.

Furthermore, each competency was associated with only one group.

As we have considered all permutations for image sets, we can expect to have

lower proximity scores. (~.25 and lower) This analysis helps us to have an

expectation of values when we run the experiments.

5.3 Accuracy

In this section, we discuss the accuracy of all three implementations. First we

confirm for this example the consistency of our results regardless of the order in

Groups per Competency

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12

Competencies

Groups

106

which the paths were followed by the algorithm. We then compare results from the

different implementations to the manual results

5.3.1 Intuitive Accuracy Experiment

The naïve implementation is different from the other approaches in several

ways. One of these differences is that the naïve implementation is tied to the structure

of the graph. In other words, the implementation follows the relationships from node

to node based on the location of current elements’ image sets. This attachment to the

graph structure led to a hypothesis that we needed to confirm through

experimentation.

5.3.1.1 Recursive tree consistent proximity results

With the naïve implementation of the proximity calculator, the algorithm

follows paths outward from the initial node, which contains the x and y elements

whose proximity we are interested in obtaining. Since the results of each path’s

calculation are added to the next path’s calculation, the order in which the paths are

calculated should not change the result of the proximity calculation.

107

x,y

Path 3

Path 4

Path 1

Path 2

A

B

E

D

C

Figure 46 Calculation paths

 To confirm this, we decided to run some experiments to compare the results

from calculations made from following paths in different order. We defined two

simple heuristics. We then developed an application that analyzed the graph structure

of the problem domain and ordered the paths according to the desired heuristic. We

then ran the calculations over each heuristic, collected the results and then compared

them. We did this for both data sets (Web pages and corporate). The results were

inline with our hypothesis. This, in turn provided a partial validation of the

correctness of our implementation.

5.3.1.1.1 Heuristics

Our first step was to define differentiable heuristics for calculating the global

proximity between two elements. The global proximity included both the local and

image proximities. The local proximity is a static calculation, in that there is only one

way to calculate it. Regardless of the implementation, the local proximity should

108

remain consistent. However, the image proximity consists of recursive calls that

follow a path through the graph based on image sets. During the recursive step of an

element proximity calculation, there may be several image sets, each located in

distinct nodes. Hence there lies the possibility of different paths. How does the

proximity calculator determine which image set to calculate next? Initially it was

random. There were no heuristics.

In turn, we proposed two heuristics: shortest-to-longest and longest-to-

shortest. As the names imply, the shortest-to-longest heuristic chooses the shortest

path first (assuming multiple paths) then progressively chooses the next longer path.

Conversely, longest-to-shortest heuristic chooses the longest path first then

progressively chooses the next shorter path.

109

Path 3: 3 links

Path 4: 4 links

Path 1: 2 links

Path 2: 2 links

Shortest to
longest path length order

x,y
A

B

E

D

C

Figure 47 Heuristics

5.3.1.1.2 Approach

Until this point, we were not concerned with path lengths. Hence, the

proximity calculator had no facilities to analyze them. Accordingly, our first task was

to add a feature to the proximity calculator which would allow us to consider path

lengths. Next we ran the algorithm over the Websites and corporate data sets. For

each graph we chose one node to work with. In this node we measured the proximity

between an element and every other element in the node. We then repeated this

process for every element in this node. We stored all of the results on disk for later

access. We did these calculations for each heuristic.

5.3.1.1.3 Software Implementation

Adding the path following functionality to the proximity calculator was

accomplished by first implementing a path manager function. We then implemented

an experiment class which ran the various calculations.

110

Path
Manager

Experiment
Driver

Proximity Calculator

EE
AA

BB

CC

DD

DAO

RDMS

Domain
Graph

Figure 48 Experimentation software architecture

5.3.1.1.3.1 Path Manager

The path manager class is the heart of the experimentation software. First,

given a start node in a graph, it identifies and catalogs each path in the graph by

length. Then it arranges and stored the paths in both increasing and decreasing order.

These actions are done during the construction of the path manager object.

Afterwards, the experiment class calls on the path manager when calculating the

proximities.

111

Figure 49 Path Manager Class Diagram

Within the image proximity implementation, we adjusted the software to make

a call to the path manager when considering the next image set to process. The next

image set provided by the path manager correlates to the heuristic used.

As an example, consider Figure 50. Assume we are following a shortest to

longest path heuristic and the start Node is A. Furthermore, we have arrived at Node

D for the first time. We are at the step in the algorithm where we are recursively

calculating the global proximities of each element in the two image sets located in

Node D. There are 2 outbound relationships from D: a reflexive relationship back to

D and a relationship to Node E. The path that would take us to Node D is 3 links.

The path that would take us to Node E is 4 links. Since we are following a shortest to

longest heuristic, the next node to consider for calculating image sets is Node D.

112

Path 3: 3 links
Path 4: 4 links

Path 1: 2 links
Path 2: 2 links

Shortest to
longest path length order

x,y
A

B

E

D

C

Start node

CurrentCurrent
nodenode

Figure 50 Path manager example

This is exactly how the path manager interacts with the proximity calculator.

At each point in the algorithm where the proximity calculator has more than one

possible node to step to for image set calculations, it calls the path manager to

determine the correct node, based on the current heuristic.

5.3.1.1.3.2 Experiment Driver

The code that drives the experiment is encapsulated in the ExperimentDriver

method. This simple method makes the necessary calls to 1) initialize the proximity

calculator with the proper graph, 2) instantiate a PathManager object 3) run the

multiple iterations of the proximity calculations and 4) store the results to disk. The

principal methods in this class are listed in Figure 51.

113

Figure 51 ExperimentDriver class diagram

5.3.2 Manual calculations

We first examine the accuracy of the proximity calculator as compared to a

manual approach. We use the Web Pages data set to perform our experiments. We

structured our experiments with three representative examples, based on the measure

of proximity. More specifically, we consider the cases when there is a partial,

complete and absence of imaged proximity.

The first example is of partial image proximity. We obtain our sample

elements from the Web Pages node. The two Web Pages are WP2950 and WP2951.

In the manual calculation we need to follow all of the links based on image set

relationships. Both WP2950 and WP2951 contain terms and point to other Web

Pages. The following series of diagrams show the progression of the algorithm as we

manually calculated the proximity between WP2950 and WP2951. In Figure 52, you

can see the terms that WP2950 and WP2951 are associated with. These two set of

terms make up the image sets of WP2950 and WP2951 in the Node Terms.

114

WP 2950
WP 2951

Term 6

Term 7

Term 8

Web Pages
Terms

Figure 52 Terms related to WP2950 and WP2951

Next we calculated the set distance between the two image sets in Terms. In

doing so, we must calculate the total proximity between the set Term 6 and Term 7

and the set consisting of Term 7 and 8. Calculating the total proximity requires

finding both the local and image proximities. Hence, identify the image sets of the

two groups in the Node Web Pages. See Figure 53.

115

WP 2959

WP 2960

WP 2961

Term 6

Term 7

Term 8

Web Pages
Terms

Figure 53 Proximity calculations in the Node Terms

The image sets in the Web Pages node intersect on one Web Page: WP2960.

Furthermore, since the Web Page node has already been visited, we do not consider

image sets; we only calculate the local proximities when determining the proximity

between the image sets.

At this point, we have followed the path: Web Pages-Terms-WebPages. We

must also consider the other path from Web Pages: Web Pages-Web Pages. The

calculations are the same; we just follow the links of image sets over the identified

path.

116

WP 2950
WP 2951

Web Pages
Terms

WP 5 WP 6 WP 7

Figure 54 Second path starting at Web Pages

In this second path, we consider the same 2 original Web Pages (WP2950 and

WP2951) and identify the other Web Pages to which they point. See Figure 54. We

calculate the proximity between the 2 image sets in Web Pages in the same manner as

above when we arrived at a previously visited node: we consider only the local

proximities when determining the set distance.

We performed the same manual calculations on Web Pages that had both a

complete overlap on their image proximity and that had no image proximity. The

results of the manual calculations are listed in the table below.

117

Manual Results

0.125WP 2950WP 2949

0.500WP 2952WP 2949

0.281WP 2951WP2950

Web Page 1 Web Page 2 Proximity

Figure 55 Manual Proximity Results for Web Pages

Note that the proximity between WP2949 and WP2950 is greater than zero.

This is the case because the secondary image sets (from Terms back to Web Pages)

have image sets that overlap.

5.3.3 Accuracy of Automated methods vs. Manual

After determining the proximities manually, we then determined the

proximities using each of the implantation methods (naïve, relaxed iterative and

bottom-up). Before presenting the results, a discussion of the precision for the

relaxed iterative method is due.

Recall that with the relaxed iterative method, iteration stops with the

difference between np and 1np is less than the precision variable ε where 10   .

In our implementation, we compared the average ε for all proximity values in the

graph. We randomly chose a ε default value of .01 for our calculations. In practice,

118

this value will adjust based on the needs of the application. We found that at ε = 0.01,

the proximity results were consistent with the other methods to 5 decimal places. All

three automated results were consistent with the manual calculations.

5.4 Performance

In this section we compare the performances of the three implementations. In

particular, we consider both initiation time and proximity calculation time for each

version of the Linea proximity calculator.

5.4.1 Approach

To capture the times, we added timing methods during object initialization and

during the actual proximity calculations. We then stored all of the timing information

in a convenient data structure we created to manage the results of our experiment

runs. After the each run we then collected the timing data for further analysis.

5.4.2 Impact of precision on iterative method

In the relaxed iterative method, the performance is influenced by the precision

variable ε. As ε decreasing, the calculation time increases until the algorithm

stabilizes. As discussed in chapter 4, our relaxed iterative algorithm was expected to

stabilize quite quickly due to the diagonal dominance of the system of equations. We

can see this behavior reflected in the calculation time. After seven to ten iterations,

the calculation time levels out. See Figure 56.

119

Figure 56 Calculation time versus precision

5.4.3 Results

We then calculated the proximities of the entire Web Pages node using the

NodeProximity data structure found in chapter 6. We performed these calculations

using each of the three Linea implementations. During each run of the experiment,

we captured the time.

0

0.5

1

1.5

2

2.5

3

3.5

4

.5 .4 .3 .2 .1 .01 .001 .0001 .00001 .000001

Precision

Time

120

306670

130102

.0165

0

0

.0165

5.458Bottom-up

0Iterative

5.458Naïve

Implementation
Approach

System Initialization
time

Initial Answer
time

Subsequent
Answer

time

Figure 57 Comparison performance results experiments

To better see the behavior of the algorithms, we divided the times into three

classes: 1) system initialization 2) initial answer time and 3) subsequent answer time.

The system initialization time describes the time needed for any initializing steps such

as the graph class initialization. The initial answer time captures the time needed to

produce the first answer while the subsequent answer time describes the time needed

to calculate each result afterwards.

The naïve and bottom-up approaches take the same amount of time for system

initialization as they both use the graph structure in their calculations. The naïve

approach’s initial and subsequent times to calculate a result are both .0165 seconds.

This is as to be expected since each calculation (whether initial or subsequent) is

performed the same way. The bottom-up approach’s initial calculation time is much

larger than the naïve approach. However, the subsequent times to calculate a result

are negligible as the computational significant calculations are performed while

gathering all of the proximity results for the initial calculation. Finally, we see that

121

the iterative approach has by far the most costly calculation time for the initial

calculation. This is due to the fact that we calculate all of the proximities in the graph

multiple times. Note though that the subsequent calculation time is negligible.

5.5 Conclusions

Each of the implementation approaches has both their advantages and

disadvantages. They have different situations in which they would be best employed.

We compare each approach’s advantages and disadvantages and suggest the situation

in which it would best be used. In order to accomplish this we compare the results of

the EDF dataset run with 1 calculation to 1000 calculations.

0

0

16.5

306670Bottom-up

130102Iterative

5.458Naïve

Implementation
Approach 1 Request

1000
Requests

Figure 58 Experiment result insights

As we can see from Figure 58 the naïve approach becomes costly as the

requests increase. By contrast the iterative and bottom-up methods are extremely

122

efficient time-wise for multiple calculations. Their time costs are concentrated in the

initial calculation. Finally, the iterative approach is some about more than twice as

fast as the bottom-up approach. Accordingly, for problems that involve one or only a

few calculations, the naïve approach is the best suited. However, for problems which

call for many proximity calculations, the iterative approach is the best choice.

123

Chapter 6

Implementation

6.1 Introduction

In this chapter, I will discuss the software implementation of the proximity

calculator. I will first give an overview of the system architecture, pointing out the

major components and the communications. Next, I will discuss the multi-tier

approach employed to implement this application. Afterwards, I will discuss in some

detail the design of the underlying database and its implementation. Finally, I will

touch on some implementation improvements that have been made over the course of

development.

6.2 System Architecture Overview

6.2.1 Introduction

The key factor in driving the design of the proximity calculator was flexibility.

Given that our partner, I-nova was interested in applying the proximity calculator to

several domains, it was imperative that we design the calculator for easy adaptability.

For the most part, we accomplished this by applying software best practices including

abstraction and encapsulation. Another factor that influenced the system design was

the eventual need for extendibility. Accordingly, we applied several features of the

124

Java 2 Enterprise Edition J2EE architecture. In other cases we designed the software

to be easily scaled to support larger applications, which will be discussed in the Multi-

tier section.

In this section I present the overall system architecture, explaining the various

components. Afterwards, I will discuss the sequence of communications between the

system elements during a normal operation.

6.2.2 Architecture Elements

The key to the system is the actual proximity calculator. It performs the

calculations that measure the proximity between 2 given elements. However, there

are several other parts to the system that are also crucial to the proximity calculator.

The supporting graph that’s used by Linea is implemented as a java object. When the

graph class is instantiated, the Data Access Object (DAO) accesses the Relational

Database Management System (RDMS) and populates the graph class with the proper

graph. The Path Manager controls the path the proximity calculator follows based on

the chosen heuristic. Finally, the proximity calculator can be accessed from various

sources: web browsers, java applications and web services clients.

125

Web
services
clients

Web
browsers

Java
applications

Proximity Calculator
EE

AA
BB

CC

DD

DAO

RDMS

Path
Manager

Domain
Graph

Figure 59 Proximity Calculator System Architecture

6.2.2.1 Proximity Calculator

The proximity calculator does one function. It calculates the proximity

between 2 elements in a node of a graph. Accordingly, its public interface contains

only one method:

GlobalProximity(Element x, Element y, Graph graph, Double alpha,
PathManager pathManager)

The CalculateGlobalProximity method takes the 2 elements between which we want

to obtain the proximity. It also takes a graph object that contains the elements and a

value for the alpha, which is between 0 and 1, and provides the weight between the

local and image proximities. An alpha value of 0 would mean only the image

proximity would count. An alpha value of 1 would mean that only the local proximity

would count. An alpha value of .5 would give the local and image proximities equal

weight. Finally, the method also takes a Path Manager object which manages the

126

order of the paths followed during calculation. The CalculateGlobalProximity

method returns a proximity result as BigDecimal object.

There is also a set of helper classes that have been added for managing larger

sets of proximity calculation results. By using these classes, a client, with one

request, can obtain all of the proximity measurements in a domain graph. In addition,

the results are returned in a single data structure for easy manipulation.

A foundation class is the ProximityDataElement, see Figure 60. For a

proximity calculation, we identify the two elements in question as either the source or

destination element ID. This data structure contains the destination elementID. It

stores the proximity result. This data structure is never instantiated directly by a

client application. Instead, it is either subclassed or contained in another class.

The ProximityDataElementPair extends ProximityDataElement, adding the

source element ID. See Figure 60. This class holds the information for a complete

proximity calculation. Hence, a client could actually use this class directly.

127

Figure 60 ProximityDataElement and ProximityDataPair

The ElementProximity class also uses the ProximityDataElement. However,

instead of sub-classing it, the ElementProximity contains a collection of

ProximityDataElements. This class holds all of the proximity measurements from one

element to all of the other elements in a node. See Figure 51.

Following a logical progression, the NodeProximity class holds an

ElementProximity for each element in the node. This gives a client application, in

one data structure, all of the proximity calculations from any element in a node to any

other element. See Figure 61.

128

Figure 61 ElementProximity and NodeProximity

 Finally, there is GraphProximity class which holds a NodeProximity for each

node contained in the graph. These data structures allow a client application to

request possibly thousands of proximity calculations with one method call and in

addition receive a data structure in response that has all of the results available for

further manipulation.

129

Figure 62 GraphProximity

6.2.2.2 Path Manager

As described in the Experiments chapter, the Path Manager class provides the

means for controlling the order in which the paths are followed during the proximity

calculation process. We developed this class to support the experiments where we

wanted to strengthen the conjecture that the order in which the paths were followed

had no impact on the proximity calculation results. The experimental results

supported our hypothesis.

The path manager also analyzes the path structure of the graph. It captures all

of the paths that exist in a directed graph given a reference node. The path manager

also orders the paths by length. Given these additional features, we decided to keep

the path manager functionality.

130

6.2.2.3 Graph Class

The Graph Class models a directed graph and provides the environment in

which the proximity calculator performs its calculations. The Graph class contains a

set of node and edge objects.

Other than the getter and setter methods, the Graph class also has some

methods especially tailored for the proximity calculator. The getInboundWeight()

method is used to get the weight for a particular node when calculating the image

proximity.

There is also a set of methods that track when a node has been visited

(addVisitedVertice(int VerticeID), addVistiedVertices(Collection items),

clearVisitedVertices()) which is used to determine if a node has been visited in the

current path. If it has been visited, then we consider the path ended.

6.2.2.4 RDMS

We used the MySQL Server 4.1 database system for our application. It is a

fast and simple open source database system. Also, several advanced features, such

as subquery and join, have been added to this version that were crucial for the

proximity calculator implementation.

6.3 Multi-tier approach

The proximity calculator is a web-based agent written with the J2EE facilities.

The system was developed following a three-tier approach. There is a thin interface

tier developed using Java Server Pages (JSP) technology. The middle tier houses the

business logic and is written in Java. The final tier is the data-access level.

131

6.3.1 Introduction

The proximity calculator system uses a 3-tier design for separating software

functions. In this section, I will discuss the benefits of this approach. I will also

discuss the DAO functionality in more detail.

Web
services
clients

Web
browsers

Java
applications

Servlets Java class libraries

DAO DAODAO

RDMS

Presentation

Business
Logic

Data
Access

Permanent
Data Store

Client
Tier

Middle
Tier

Information
Tier

Figure 63 Multi-tier architecture

6.3.2 Benefits of the approach

This separation simplifies design and development and software packaging.

The multi-tier approach enhances code separation, encapsulation and scalability.

6.3.2.1 Code separation

By following the multi-tier approach in developing the proximity calculator

application, code can be separated by function. Code in the Information tier was

concerned only with assessing or storing permanent data. Likewise, software written

132

for the middle tier was concerned with the actual proximity calculations. Similarly,

the applications developed in the presentation-tier were focused on displaying results.

The code separation helped tremendously with software organization. It

allowed for a logical grouping of software functionality. Furthermore, we employed

J2EE standards such as Java Database Connectivity (JDBC), JavaBeans, Servlets and

Java Server Pages (JSPs) to simplify inter-tier communications.

6.3.2.2 Encapsulation

We employed encapsulation to isolate and hide complex software

functionality. For example, the GlobalProximityCalculator class only works on a

Graph object to perform the proximity calculations. The GlobalProximityCalculator

knows nothing about the underlying database that actually houses the data in the

graph object. This allowed us to focus on the implementation of the

GlobalProximityCalculator without having to be concerned about the operations of

the underlying database. The separation of code by functionality not only simplified

development, but improved maintainability.

6.3.2.3 Scalability

We have used many tenants of the J2EE standard, but not all. Enterprise

JavaBeans (EJBs) are also part of the J2EE standard. An EJB is a body of code that

implements modules of business logic (Armstrong, 2004). EJBs are always deployed

within an EJB container which provides support services for distributed applications,

such as security protocols, authentication and distributed resource directory services.

We designed the proximity calculator application to easily incorporate EJBs.

133

6.3.3 DAO

6.3.3.1 Purpose

The data access layer is implemented using a data access object (DAO). The

DAO is the interface between permanent storage and the middle layer. All of the

database specific code is contained here. The advantage of this approach is that it

hides the details of the database access from the business layer. Furthermore, through

the use of generic classes, one is able to switch database implementations without any

modifications to the business layer.

6.3.3.2 Structure

The DAO actually consists of an interface and the database specific concrete

class that implements it, and another interface that defines the data access methods

available to client applications. When a client application wants to instantiate a graph

object that is in the database, it works through the DistanceManager interface. The

client application must pass it a DAO object that extends the GenericDAO interface.

The GenericDAO interface defines the database operations required to support the

DistanceManager. The DAO classes that extend the GenericDAO interface house the

database vender specific code for accessing that particular database. For example, we

use the MySQL database system. The class we developed (MySQLDAO) that

extends the GenericDAO contains all of the SQL statements specifically suited for the

MySQL database management system.

134

Figure 64 DAO related classes

6.4 DB Design and Implementation

6.4.1 Introduction

We chose the Unified Modeling Language (UML) to capture the design of the

database that supports the Linea agent. UML is a broadly accepted standard for

modeling software applications. It is extremely rich and flexible, able to express

diverse aspects of a development project. Accordingly, we were able to consistently

use UML for not only the database design, but for the entire system. Using one, rich

language simplified the analysis and design of the entire system.

In this section, we will detail the steps we took in designing the database.

Specifically, we will discuss our analysis with object modeling and use case diagrams.

We will also explain the class diagram development. Finally, we will discuss our

technique for converting class diagrams into database schemas.

135

6.4.2 Object modeling

When designing the Linea database, we followed the basic practices of Object

Oriented Analysis (OOA). We started by considering our domain and then extracting

descriptive nouns and verbs.

• A graph contains nodes

• A graph contains edges

• Nodes contain elements

• Elements have image sets

We then used these phrases to construct a first cut of our data object model.

We did so by converting all nouns to classes. Next we created associations between

the classes whenever we had a verb phrase containing the names of the classes.

136

Figure 65 Data object model - first cut

However, as the name implies, this is only a first step. We performed more

analysis to capture other data requirements that may not have been apparent from the

noun-verb analysis. The next step we performed was use case analysis.

6.4.3 Use cases

We use a use case diagram to capture the functional aspects of the database

within the context of the entire system (Chitnis et al, 2005). Rather than looking at

the problem of proximity calculations, with use cases, we focus on how we calculate

the proximity calculation. Use cases are another way we can consider the problem

that can possibly provide more insight on data requirements.

In Figure 66, we provide an example of the Linea use case. This simple use

case contains 2 actors, a client who wishes to know the proximity between 2 elements

and the database. The primary use case associated with the Linea client is calculate

proximity. This use case includes 2 other use cases: calculate local proximity and

137

calculate image proximity. These 2 included use cases are associated with the

database actor in order to obtain the domain graph information.

Figure 66 Linea use case diagram

Through this analysis, we realized that we needed to capture the local

proximity measures between elements in a node. For this work, we stored local

proximities in the database. Hence, this needed to be captured in our finalized data

model.

6.4.4 Class diagrams

We used the class diagram to provide a logical view of the database design. It

is based on the original object model we developed, with consideration for other

138

analysis such as the use case diagrams. We can consider the object model we

developed in the previous section a ‘first draft’ while the class diagram is the ‘final

cut.’ As you can see in Figure 67 we have extended the original object model to

include the local proximities. We also included attributes for each class.

Figure 67 Database class diagram

6.4.5 Database schema conversion

The bridge for our design and implementation was the conversion of the UML

diagram into schema. We employed the UML-to-schema guide developed by the

author while teaching a database design course at the United States Military Academy

at West Point. The guide consists of a set of pattern matching rules that allows a

class diagram to be translated to a database schema almost automatically. The rules

139

are organized with the most frequently used and necessary ones first. The two most

basic conversion rules, for strong classes and many-to-many associations are shown in

Figures 68 and 69

if key-attributesA = { keyAttr1, …, keyAttrj }
and other-attributesA = { singleAttr1, …, singleAttrk }
then A-schema = (key-attributesA, other-attributesA)

Figure 68 Guide to converting a strong class to table schema

140

if A-schema = (key-attributesA, other-attributesA)

and B-schema = (key-attributesB, other-attributesB)

then R-schema = (key-attributesA, key-attributesB, other-attributesR)

with a foreign key from R-schema.key-attributesA to A-schema.key-attributesA

and a foreign key from R-schema.key-attributesB to B-schema.key-attributesB

Figure 69 Guide to converting a many-to-many association to table schema.

In the last section of the guide, there are ways to optimize the schema. An

example, which is to drop an association table when the association is an existence

dependency, is shown below. If the many-to-many association was an existence

dependency association, the association table could be dropped and the table schema

representing the class on the many side of the association (in this case A-schema)

would be altered.

141

if A-schema = (key-attributesA, other-attributesA)

and B-schema = (key-attributesB, other-attributesB)

and R-schema = (key-attributesA, key-attributesB, other-attributesR)
with foreign keys and unique constraints as defined earlier

then drop R-schema

and alter A-schema=(key-attributesA, other-attributesA, key-attributesB, other-attributesR)
with a foreign key from A-schema.key-attributesB to B-schema.key-attributesB

and a unique constraint on A-schema.key-attributesB

Figure 70 Guide to optimizing the schema by eliminating unneeded many-to-one table

schema.

Given this guide (which can be found in annex B), we present the schema that

we developed from our class diagram. The database used throughout our system was

implemented from this schema.

142

Strong classes
Graph_schema = {graphID, name}
Edges_schema = {edgeID, name}
Elements_schema = {elementID, name}
Nodes_schema = {nodeID, name}

Many-many
element-node_schema = {elementID, nodeID}

foreign key reference from foreign key reference from elementIDelementID --> > Elements.elementIDElements.elementID
foreign key reference from foreign key reference from nodeIDnodeID --> > Nodes.nodeIDNodes.nodeID

edge-node_schema = {edgeID, nodeID}
foreign key reference from foreign key reference from edgeIDedgeID --> > Edges.elementIDEdges.elementID
foreign key reference from foreign key reference from nodeIDnodeID --> > Nodes.nodeIDNodes.nodeID

element_imagedElement = {elementID, imagedElementID}
foreign key reference from foreign key reference from elementIDelementID --> > Elements.elementIDElements.elementID
foreign key reference from foreign key reference from imagedElementIDimagedElementID --> > Elements.elementIDElements.elementID

localProximities = {firstElementID, secondElementID, localProximityValue}
foreign key reference from foreign key reference from firstElementIDfirstElementID --> > Elements.elementIDElements.elementID
foreign key reference from foreign key reference from secondElementIDsecondElementID --> > Elements.elementIDElements.elementID

Many-one
edge-graph = {edgeID, graphID}

foreign key reference from foreign key reference from edgeIDedgeID --> > Edges.elementIDEdges.elementID
foreign key reference from foreign key reference from graphIDgraphID --> > Graphs.nodeIDGraphs.nodeID

graph-node = {nodeID, graphID}
foreign key reference from foreign key reference from nodeIDnodeID --> > Nodes.nodeIDNodes.nodeID
foreign key reference from foreign key reference from graphIDgraphID --> > Graphs.nodeIDGraphs.nodeID

Figure 71 Table schema for the graph database

6.5 Implementation Improvements

Throughout the development of the Linea agent, there were some

implementation inefficiencies that needed to be overcome. Specifically, we addressed

problems with object instantiation and initialization.

6.5.1 Object instantiation efficiency

The first challenge we encountered was that the system continuously crashed

during initialization in certain situations. For small data sets, such as the web pages

database, the system would run fine. However, for larger data sets, such as the

corporate database, it would crash.

After extensive debugging we discovered that we had inadvertently developed

the software to instantiate a new DAO every time an element was pulled from the

database into the graph object. For small databases, this didn’t pose a problem.

143

However, for the corporate database with over 2700 elements and 6 million local

distance values, memory was quickly depleted.

We easily corrected our oversight and adjusted the software by only

instantiating one DAO object per application and reusing it for all database accesses.

After making the correction, the system did not crash at initiation anymore.

6.5.2 Lazy local proximity initialization

Shortly after solving the problem with object initialization, we discovered

another challenge. The system continued to crash with large data sets. After

performing more program analysis, we discovered the root cause to be the

initialization of the local proximity values. The graph object contains nodes and

edges. A node contains a set of elements called a payload. This payload object

contains a collection of local proximity values of type BigDecimal collected from the

database at initialization. For the corporate data set, this included over 6 million

items. As with the object initialization, the system ran out of memory at instantiation.

Upon further analysis, we determined that all of the local proximity values were not

needed to start the proximity calculations. As a result, we implemented a ‘lazy’ local

proximity initialization scheme. In effect, when a graph was instantiated, the local

proximity values would not be read in. Instead, they would only be read in if needed.

More specifically, we created an n x n table for each node where n was the number of

elements in the node. The table was initialized to -1. During the proximity

calculations, when there was a need for a local proximity value, this table is

consulted. If the value was -1, then the system would make a database call to fetch

the value and then store it into the table. If a non-negative value was already in the

table, then it would simply be read.

After this adjustment, the system worked without problems. In hindsight, we

believe the ‘lazy’ initialization is a better approach since it not only reduces the need

for memory, but also improves speed by only making a database access when needed.

144

6.6 Conclusion

In this chapter, we presented the software implementation of the Linea

proximity calculator. We first gave an overview of the system architecture. Next we

explained our multi-tier development approach. And after a detailed discussion of our

supporting database, we concluded with some implementation improvements that

have been made.

145

146

Chapter 7

Conclusion

We have presented through this dissertation the Linea algorithm, a new

approach for measuring the proximity between 2 objects in a linked metric space.

This linked metric space is represented within a graph. The algorithm is generic and

has been designed to be easily applied to various domains.

Along with the algorithm we presented three implementation approaches:

naïve, iterative and bottom-up. The naïve approach implements the theoretical

algorithm and uses an artificial fix point. The bottom-up works on a modified tree

version of the support domain graph. In this case, we are able to take advantage of

certain preprocessing steps that improve our efficiency. Finally, the iterative

approach begins with an initial value for all proximities in the graph then iterates until

the difference between successive proximity values in the system is less than a pre-

defined precision limit. We compared the three approaches and provided insight on

the situations they are best used in.

7.1 Summary of Contributions

7.1.1 A novel approach to metric space calculations

The Linea algorithm is a novel approach to measuring metric space

calculations. It provides an efficient and generic way of determining the proximity

147

between two objects in a linked metric space. It is optimized for linked environments

with minimal, semi-structured text. From our research of the domain, we have found

no other approaches that combine both the direct proximity measurements and the

link analysis. Our work, in partnership with I-nova, will be applied to developing

innovative and flexible solutions for I-nova’s many and diverse customers.

7.1.2 A comparison of implementation methods

We also proposed and provided a comparison of implementation methods. In

addition, we described situations when a particular approach is best used. In

particular we found that the naïve approach was good for single (or a few)

calculations. This is because the naïve approach had very little preprocessing time.

By contrast we found that the iterative approach was best for large numbers of

calculations such as batch jobs. Although the one-time preprocessing step was long,

all subsequent calculations were negligent.

7.1.3 Linea implementation

The Linea algorithm is implemented and can be used for further research. We

have a version for each of the three implementation methods described in this work.

7.2 Directions for Future Research

There are various areas of improvement and further research. They include

Response integration, Netfires, parallelization, and web services.

7.2.1 Response integration

This work was performed in partnership with I-nova. A design goal was for

Linea to be able to be integrated into various domains. One of those domains is

helpdesk support. Response, a European Union funded research project, has a goal of

applying artificial intelligence technologies to the helpdesk support domain. In

148

particular, the Response system employs case-based reasoning and Bayesian analysis

techniques to help determine whether a new incident received at a helpdesk is a

known case with a solution.

How to employ Linea into the Response project is an interesting area of

research. There are two areas to consider. In order to determine if a group of

incidents make-up a case, the project will use clustering techniques. Can Linea be

used effectively as the proximity algorithm when determining clusters? Second, can

Linea be used to measure the proximity between a new incident and an already

established case? This area of research could further support the generic nature of the

Linea agent

7.2.2 Netfires

Netfires is a next-generation munitions project sponsored by DARPA. Since

the times of Napolean, artillery has been an important weapon on the battlefield.

When friendly forces would come under attack from the adversary, artillery rounds

would often be fired in response with devastating effectiveness. Nevertheless, there

always has been the time delay between when friendly forces needed the support from

artillery and when it actually arrived on target. Through many communication

advancements over the last two centuries, this delay has been minimized. However,

there still exists the delay because normally, artillery forces are not located on the

front-line. Instead they are often several kilometers behind lines. Hence, even if

artillery units receive a request of support, the time it takes for a round to travel after

being fired can be minutes.

DARPA seeks to radically change the way artillery, or more generally,

indirect fires are executed. Instead of waiting for a request from friendly forces for

indirect fire, artillery units would fire their rounds before a unit becomes engaged

with the enemy. However, instead of traveling point to point, like a bullet from a gun,

the next-generation rounds would loiter over the battlefield, awaiting a request from

149

friendly forces below. The rounds would exhibit intelligent behavior by flying in a

flocking formation. Once there is a request for artillery fire, the loitering rounds

decide among themselves who is best qualified and the chosen round or rounds then

fall from the sky. The response time now reduces from minutes to seconds.

One area of research is how do the rounds decide among themselves to

respond to the request for fire support? Another way to look at the problem is to

frame it differently. The problem can be seen as a proximity question. How do you

determine which round is closest to the target of the fire request? Proximity in this

case is not limited to physical distance between the round and the target. It would

also include type of round, type of target, and remaining fuel on the round, among

others. Hence, Linea could also be applied to this domain.

7.2.3 Parallelization

The iterative and bottom-up approaches have potential applications in web-

based applications that require many proximity calculations. However, the initial

calculation step is very expensive. There are opportunities to improve Linea’s

performance with parallelization. An interesting problem would be to investigate and

apply various parallelization techniques to the iterative and bottom-up

implementations and compare their performances.

7.2.4 Web Service

The Linea agent is generic by design. It would be very interesting to extend it

as a web service. This would allow it to be used by various applications much

simpler. The interface would need to be analyzed to determine how to support a web

services interface. We have already implemented the Linea agent as a JavaServlet.

150

Bibliography

Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A. “Incorporating
contextual information in recommender systems using a mulitdimenstional
approach.,” ACM Transactions on Information Systems, Vol. 23, No. 1, January
2005, pp. 103-145.

Adomavicius, G., Tuzhilin, A., “Multidimensional recommender systems: a data
warehousing approach,” Proceedings of the 2nd International Workshop on
Electronic Commerce (WELCOM’01). Lecture Notes in Computer Science, vol
2232, Springer-Verlag, 180-192.

Amato G., Rabitti F., Savino P., Zezula P., “Approximate Similarity in Metric Data
by Using Region Proximity” First DELOS Network of Excellence Workshop—
Information Seeking, Searching and Querying in Digital Libraries, Zurich,
Switzerland, 11-12 December 2000, Sophia Antipolos, Editions ERCIM, p 101-
106.

Ansari, A., Essegaier, S., Schaal, S. “Internet recommendation systems.” Journal of
Market Research, vol 37, no 3, 2000, pp. 363-375.

Armstrong, E., J. Ball, S. Bodoff, D. Carson, I. Evans, D. Green, K. Haase, E.
Jedrock. The J2EE™ 1.4 Tutorial, Second Edition. Boston: Addison-Wesley,
2004.

Arya S., Mount D., Nethanyahu N., Silverman R., Wu A., “An Optimal Algorithm for
Approximate Nearest Neighbor Searching in Fixed Dimensions” Journal of the
ACM, vol. 45, n◦ 6, November 1998, p. 891-923.

Baeza-Yates, R., Cunto, W., Manber, U., Wu, S. “Proximity matching using fixed-
query trees. Proceedings of the 5th Combinatorial Pattern Matching (CPM’94),
LNCS 807, pages 198-212, 1994

Balabanovic, M. and Shoham, Y. “Fab: Content-based, collaborative
recommendation.” Communications of the ACM, Vol. 40, o. 3, 1997, pp. 66-72.

Berry W., Raghavan P., Zhang X., “Symbolic Preprocessing Techniques for
Information Retrieval Using Vector Space Models” Computational Information
Retrieval, Berry, M., ed., SIAM, Philadelphia, 2001.

Bharat K., Henzinger M., “Improved Algorithms for Topic Distillation in a
Hyperlinked Environment” Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval,
Melbourne, Australia, 1998, p. 104-111.

151

Blom, K., Ruhe, A., “Information Retrieval Using Very Short Krylov Sequences.”
Computational Information Retrieval, Berry, M., ed., SIAM, Philadelphia, 2001.

Breese, J, Heckerman, D., Kadie, C. “Empircal analysis of predictive algorithms for
collaborative filtering,” Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, Madison, WI, 1988.

Brin S., Page L., “The Anatomy of a Large-Scale Hypertextual Web Search Engine”
Proceedings of the World Wide Web Conference 1998, Brisbane, 1998.

Bustos, B., Navarro, G., Chávez, E. “Pívot Selection Techniques for Proximity
Searching in Metric Spaces” Proceedings of the XXI Conference of the Chilean
Computer Science Society (SCCC'01), pages 33-40. IEEE CS Press, 2001.

Chahlaoui Y., Galivan K., Van Dooren P., “An Incremental Method for Computing
Dominant Singular Spaces” Computational Information Retrieval, Berry, M., ed.,
SIAM, Philadelphia, 2001.

Chakrabarti S., Dom B., Raghavan P., Rajagopalan S., Gibson D., Kleinberg J.,
“Automatic resource compilation by analyzing hyperlink structure and associated
text.” Proceedings of the World Wide Web Conference 1998, Brisbane, 1998.

Chávez, E., Navarro, G. “An Effective Clustering Algorithm to Index High
Dimensional Metric Spaces” Proceedings of the Seventh International
Symposium on String Processing and Information Retreival(SPIRE’00),
September 27 - 29, 2000 ,Coruña, Spain.

Chavez E., Navarro G., Baeza R., Marroquin J., “Searching in Metric Space” ACM
Computing Surveys, Vol. 33, No. 3, September 2001, p. 221-273.

Chitnis, M., Tiwari, P., Ananthamurthy, L. “Creating use-case diagrams,” found on-
line at develop.com accessed from
http://www.developer.com/design/article.php/2109801, 19 March 2005.

Condliff, M., Lewis, D., Madigan, D., Posse, C. “Bayesian mixed-effects models for
recommender systems,” ACM Special Interest Group on Information Retrieval
(SIGIR’99) Workshop on Recommender Systems: Algorithms and Evaluation.
1999.

Dhillon, I,. Guan, Y., Kogan, J. “Iterative Clustering of High Dimensional Test Data
Augmented by Local Search.” Proceedings of the 2002 IEEE International
Conference on Data Mining. December 9 - 12, 2002. Maebashi TERRSA,
Maebashi City, Japan.

Ding C., “A Probabilistic Model for Latent Semantic Indexing in Information
Retrieval and Filtering” Computational Information Retrieval, Berry, M., ed.,
SIAM, Philadelphia, 2001.

Elsner, L., Driessche, P. “On the Power Method in Max Algebra,” "Linear Algebra
and its Applications, Vol 302-303, No. 1-3, 1999, pp 17-32.

Garfield E., “Citation Analysis as a Tool in Journal Evaluation” Science, Vol. 178,
No. 4060, 1972, p. 471-479.

Google, http://www.google.com, 2004.

152

Grosse, I., Bernaolo-Galván, P., Carpena, P., Román-Roldán, R., Oliver, J., Stanley,
H. “Analysis of symbolic sequences using the Jensen-Shannon divergence.” The
American Physical Society, Vol. 65, 2002

Hammouda, K., Kamel, M. “Incremental Document Clustering Using Cluster
Similarity Histogram” Proceedings of the IEEE/WIC International Conference on
Web Intelligence 2003. October 13-16 2003, Halifax, Canada.

Haveliwala T., Gionis A., Klein D., Indyk P., “Evaluating Strategies for Similarity
Search on the Web,” Proceedings of the World Wide Web Conference 2002,
Honolulu, Hawaii USA 2002.

Holt F., Wu J., “Information Retrieval and Classification with Subspace
Representations” Computational Information Retrieval, Berry, M., ed., SIAM,
Philadelphia, 2001.

Huggins, K., Carteret, D. “A graph-based, metric space proximity calculator for
Internet objects,” Colloque International sur la Fouille de Textes (CIFT’2004), La
Rochelle, France 23-25 June 2004.

Ingongngam, P., Rungsawang, A. “Topic-Centric algorithm: A novel to web link
analysis,” Proceedings of the 18th International Conference on Advanced
Information Networking and Application (AINA’04), March 29 - 31, 2004.
Fukuoka, Japan

Jain, A., Murty, M., Flynn, P. “Data Clustering: A Review,” ACM Computing
Surveys, Vol. 31, No. 3, September 1999.

Kleinberg J., “Authoritative Sources in a Hyperlinked Environment,” Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 25-27
January 1998, San Francisco, CA USA.

Kogan J., “Clustering Large Unstructured Document Sets.” Computational
Information Retrieval, Berry, M., ed., SIAM, Philadelphia, 2001.

Lempel R., Moran S., “SALSA: The Stochastic Approach for Link-Structure
Analysis” ACM Transactions on Information Systems, Vol. 19, No. 2, April 2001,
pp. 131-160.

Lin, K, Kondadadi, R. “A Similarity-Based Soft Clustering Algorithm for
Documents” Proceedings of the Seventh International Conference on Database
Systems for Advanced Applications. April 18 - 21, 2001. Hong Kong, China.

Mandhani, B., Sachindra, J., Kummamuru, K. “A Matrix Density Based Algorithm to
Hierarchically Co-Cluster Documents and Words.” Proceedings of the WWW
20003. May 20-24, 2003, Budapest, Hungary.

Micó, L., Oncina, J., Vidal, E. “A new versión of the nearest-neighbor approximating
and eliminating search (AESA) with linear preprocessing-time and memory
requirements” Pattern Recognition Letters, 15:9-17, 1994.

O’Mahony, M., Hurley, N., Kushmerick, N., Silvestre, G. “Collaborative
Recommendation: A Robust Analysis.,” ACM Transactions on Internet
Technology, Vol. 4, No. 4, November 2004, pages 344-377.

Park H., Jeon M., Ben Rosen J., “Lower Dimensional Representation of Text Data in
Vector Space Based Information Retrieval.” Computational Information Retrieval,
Berry, M., ed., SIAM, Philadelphia, 2001.

153

Patel, M. “Distance Measures,” accessed on 9 August 2004 from
http://www.ucl.ac.uk/oncology/MicroCore/HTML_resource/Distances_detailed_p
opup.htm.

Pazzani, M. “A framework for collaborative, content-based and demographic
filtering,” Artificial Intelligence Review, Vol. 13, No. 5/6, 1999, pp. 393-408.

Pillai, S., Suel, T., Cha, S. “The Perron-Frobenius Theorem,” IEEE Signal Processing
Magazine, March 2005, pages 62-75.

Pottenger W., Yang T., “Detecting Emerging Concepts in Textual Data Mining.”
Computational Information Retrieval, Berry, M., ed., SIAM, Philadelphia, 2001.

Press, W., Teukolsky, S., Vetterling, W., Flannery, B. Numerical Recipes in C – The
Art of Scientific Computing. New York: Cambridge University Press, 1995.

Resnick, P., Iakovou, N. Sushak, M., Bergstrom, P., Riedl, J. “GroupLens: An open
architecture for collaborative filtering of netnews,” Proceedings of the 1994
Computer Supported Cooperative Work Conference.

Salton G., Wong A., Yang C.S. “A Vector Space Model for Automatic Indexing”
Communications of the ACM Vol. 18, No. 11, November 1975.

Saraw, B., Karypis, G., Konstan, Riedl, J. “Item-based collaborative filtering
recommendation algorithms,” Proceedings of the 10th International WWW
Conference, 2001.

Shardanand, U., Maes, P. “Social information filtering: Algorithms for automating
‘word of mouth’,” Proceedings of the Conference on Human Factors in
Computing Systems, 1995.

Small H., Koeinig M. “Journal clustering using bibliographic coupling method.”
Information Processing & Management, Vol. 13, Issue 5, 1977, pp. 277-28.

Steinbach, M., Karypis, G., Kumar, V. “A Comparison of Document Clustering
Techniques,” The Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-200), August 20 - 23, 2000 Boston, MA, USA.

Van Rijsbergen, C., “Information Retrieval” accessed from http://
www.dcs.gla.ac.uk/~iain/keith/index.htm 2 October 2004

Vidal, E. “An algorithm for finding nearest neighbors in (approximately) constant
average time” Pattern Recognition Letters, 4:145-157, 1986.

Yianilos, P. “Data structures and algorithms for nearest neighbor search in general
metric spaces. Proceedings of the 4th ACM-SIAM Symposium on Discrete
Algorithms (SODA’93), pages 311-321, 1993.

Zha, H., Ding, C., Gu, M. “Bipartite Graph Partitioning and Data Clustering”
CIKM’01, November 5-10, 2001, Atlanta, Georgia, USA.

154

Annex A

A Simple Example

We give a simple example of constructing proximity equations and solving

them using various approaches. Consider two nodes with 3 elements each.

A.1 Example and its graph

We show the individual links between the elements (instead of showing

relationships between nodes). Each directed link points to an element in the image set

of the element from which the link originated. For example, in Figure 62, Element a

in Node 1 has two image set elements in Node 2. They are elements x and y.

155

•

a

b

c

y

z

x

•

• •

•

•

Node 1 Node 2

Figure 72 Sample graph

A.2 Equations of the Linea model for this graph

For this annex, we simplify the notation as follows:

xy: is the proximity between elements x and y.

a[bc]: is the proximity between element a to the set of elements {b, c}

a[bc]=  acab,

(ab)(cd): is the proximity between the sets {a, b} and {c, d}

We handle this example model with the assumptions that all local proximities

are zero except for the identity case, which is one. The basic equations we begin with

are:

xy = (ab)(a)

yz = (a)(bc)

xz = (ab)(bc)

ab = (xy)(xz)

ac = 0

156

bc = 0

A.3 Solving the equations

We observe that:

(ab)(a) = 1/3 (a[ab] + aa + ba)

 = 1/3 (2 + ab)

Transferring the equations using the same method gives:

xy = 1/3 (2 + ab)

yz = 1/3 (ab + ac + a[bc]) = 2/3 ab

xz = ¼ (2 + a[bc] + c[ab]) = ¼ (2 + ab)

ab = ¼ (2 + y[xz] + z[xy])

ac = 0

bc = 0

Now observe that:

y[xz] =     



  ababxzxy

3

2
,2

3

1
,

Since 10  ab ,

y[xz]=  
3

2 ab

and thus:

z[xy] =  ab2
4

1

The equation given ab can be rewritten:

ab =  abab  2
16

1
)2(

12

1

2

1

thus giving the final values as:

ab = 38/41

xy = 40/41

yz = 76/123

xz = 30/41

157

A.4 Iterative approach to solving the equations

We will now present a solution that applies an iterative approach to solving

the equations. Our approach stabilizes very quickly.

Step 1 : We start with an initial vector of 6 values, all equal to 1 except for
those which have an already known value :

ab0=1

xy0=1

yz0=1

xz0=1

For convenience we do not repeat for each step that ac=0 and bc=0

We then compute the new values of the 4 unknown variables :

ab1= .5 + .25  00, xzxy + 25  00 , zyzx = 1

xy1= .333 (2 + ab0) = 1

yz1= .666 ab0 = .666

xz1 = .25 (2 + ab0) = .75

Step 2: using the same equations, we compute ab2, xy2, yz2, xz2, using the

values obtained at the end of step 1 :

ab2 = .5 + .25 + .25 x .75 = .938

xy2 = 1

yz2 = .666

xz 2= .75

Step 3 : we compute in the same way ab3, xy3, yz3, xz3, using the values

obtained at the end of step 2 :

ab3 = .938

xy3 = .979

yz3 = .625

xz3 = .735

Step 4 : it yields ab4 = .928, xy4 = .979, yz4 = .625, xz4 = .735 Notice that

these values are very close to those obtained by direct computation :

ab=38/41 , xy = 40/41 , yz = 76/123 , xz = 30/41

158

A.5 A completely linear approximation

In order to make the model completely linear, we may be can replace max

(a,b,c) with (a+b+c)/3. Of course, the model changes : this means that the proximity

of an Element x to a set is not more the max of the proximities of x to all elements of

the set, but the average proximity of x to these elements. We get a set of 6 linear

equations:

ab = 1/8 xy + ¼ yz + 1/8 xz + ½

ac = 0

bc = 0

xy = 1/3 ab + 2/3

yz = 2/3 ab

xz = ¼ ab + ½

Solving this system by a direct method, like for instance the Gauss-Jordan elimination

method, yields the exact solution:

xz = 3588/5037 = .712 , ab = .849 , yz = .506 , xy = .919

Of course we may also solve this system by the Gauss-Seidel iterative method. This

looks like the iterative method employed on the other system. Results are:

Initial values : ab = 1, ac=0 , bc = 0, xy = 1, yz = 1, xz = 1

Step 1 : ab = 1, xy = 1, yz = .666, xz = .75

Step 2 : ab = .884, xy = 1, yz= .666, xz = .75

Step 3 : ab = .884, xy = .961, yz = .589, xz = .721

Step 4 : ab = .857, xy = .961, yz = .589, xz = .721

Convergence is rather good, though a little bit slower than with the “max-plus”

algebra.

159

160

Annex B

UML to Schema guide

UML to Table Schema Conversion - Generating Rules

1. Convert strong classes to table schema.

Figure 73 Strong class

if key-attributesA = { keyAttr1, …, keyAttrj }

and other-attributesA = { singleAttr1, …, singleAttrk }

then A-schema = (key-attributesA, other-attributesA)

Important: Multi-valued attributes are covered in a separate rule.

2. Convert all weak classes to table schema.

161

Figure 74 Weak class

if A-schema = (key-attributesA, other-attributesA)

then B-schema = (key-attributesA, discriminatorsB, other-attributesB)

with a foreign key from B-schema.key-attributesA to A-schema.key-attributesA

and C-schema = (key-attributesA, discriminatorsB, discriminatorsC, other-
attributesC)

with a foreign key from C-schema.key-attributesA, discriminatorsB

to B-schema.key-attributesA, discriminatorsB

Important: "Chained" weak classes should be handled from "strongest to
weakest". Also, you don't need schema for the weak associations (R-schema & S-
schema).

3. Convert all super-/sub-classes to table schema.

Figure 75 Super/sub classes

if A-schema = (key-attributesA, other-attributesA)

162

then B-schema = (key-attributesA, other-attributesB)

with a foreign key from B-schema.key-attributesA to A-schema.key-attributesA

and C-schema = (key-attributesA, other-attributesC)

with a foreign key from C-schema.key-attributesA to A-schema.key-attributesA

also D-schema = (key-attributesA, other-attributesD)

with a foreign key from D-schema.key-attributesA to B-schema.key-attributesA

and E-schema = (key-attributesA, other-attributesE)

with a foreign key from E-schema.key-attributesA to B-schema.key-attributesA

4. Convert all many-to-many associations to table schema.

Figure 76 Many-to-many associations

if A-schema = (key-attributesA, other-attributesA)

and B-schema = (key-attributesB, other-attributesB)

then R-schema = (key-attributesA, key-attributesB, other-attributesR)

with a foreign key from R-schema.key-attributesA to A-schema.key-attributesA

and a foreign key from R-schema.key-attributesB to B-schema.key-attributesB

5. Convert all many-to-one associations to table schema.

163

Figure 77 Many-to-one associations

if A-schema = (key-attributesA, other-attributesA)

and B-schema = (key-attributesB, other-attributesB)

then R-schema = (key-attributesA, key-attributesB, other-attributesR)

with a foreign key from R-schema.key-attributesA to A-schema.key-attributesA

and a foreign key from R-schema.key-attributesB to B-schema.key-attributesB

Important: Handle one-to-many associations by reversing the roles of A and
B. Also, composition relationships may permit optimizations.

6. Convert all one-to-one relationships to table schema.

Figure 78 One-to-one associations

if A-schema = (key-attributesA, other-attributesA)

and B-schema = (key-attributesB, other-attributesB)

then R-schema = (key-attributesA, key-attributesB, other-attributesR)

with a foreign key from R-schema.key-attributesA to A-schema.key-attributesA

and a foreign key from R-schema.key-attributesB to B-schema.key-attributesB

and separate unique constraints on R-schema.key-attributesA & R-schema.key-
attributesB

164

7. Convert all multi-valued attributes to table schema.

Figure 79 Multi-valued attributes

if key-attributesA = { key-attr1, …, key-attrj }

then A-schema = (key-attributesA, single-attributesA)

and M1-schema = (key-attributesA, multi-attr1)

with a foreign key from M1-schema.key-attributesA to A-schema.key-
attributesA

and M2-schema = (key-attributesA, multi-attr2)

with a foreign key from M2-schema.key-attributesA to A-schema.key-
attributesA

. . .

and Mn-schema = (key-attributesA, multi-attrn)

with a foreign key from Mn-schema.key-attributesA to A-schema.key-
attributesA

165

UML to Table Schema Conversion - Optimizing Rules

8. Use existence dependencies to eliminate unneeded many-to-one

table schema.

Figure 80 Existence dependencies on many-to-one associations

if A-schema = (key-attributesA, other-attributesA)

and B-schema = (key-attributesB, other-attributesB)

and R-schema = (key-attributesA, key-attributesB, other-attributesR)

with foreign keys as defined earlier

then drop R-schema

and alter A-schema = (key-attributesA, other-attributesA, key-attributesB,
other-attributesR)

with a foreign key from A-schema.key-attributesB to B-schema.key-attributesB

9. Use existence dependencies to eliminate unneeded one-to-one

table schema.

166

Figure 81 Existence dependencies in one-to-one associations

if A-schema = (key-attributesA, other-attributesA)

and B-schema = (key-attributesB, other-attributesB)

and R-schema = (key-attributesA, key-attributesB, other-attributesR)

with foreign keys and unique constraints as defined earlier

then drop R-schema

and alter A-schema = (key-attributesA, other-attributesA, key-attributesB,
other-attributesR)

with a foreign key from A-schema.key-attributesB to B-schema.key-attributesB

and a unique constraint on A-schema.key-attributesB

10. Eliminate many-to-one and one-to-one table schema at the

"risk" of using NULLs.

Figure 82 Many-to-one reduction

if A-schema = (key-attributesA, other-attributesA)

and B-schema = (key-attributesB, other-attributesB) and R-schema exists

then drop R-schema

and alter A-schema = (key-attributesA, other-attributesA, key-attributesB,
other-attributesR)

with a foreign key from A-schema.key-attributesB to B-schema.key-attributesB

167

and (for one-to-one relationships only) a unique constraint on A-schema.key-
attributesB

Important: The A-schema.key-attributesB column may contain NULLs, which
may cause problems or unexpected results when used in many common
database/query operations

