
Compiling Dynamic Mappings with Array Copies
�TR EMP CRI A ���� To appear in PPoPP��	


Fabien Coelho �coelho�cri�ensmp�fr�

Centre de Recherche en Informatique� �Ecole des mines de Paris�
��� rue Saint�Honor�e� F�		�
� Fontainebleau cedex� France�
phone� �
��j
� � �� �� �� ��� fax� �
��j
� � �� �� �	 
�

URL� http���www�cri�ensmp�fr�pips

Abstract

Array remappings are useful to many applications on dis�
tributed memory parallel machines� They are available in
High Performance Fortran� a Fortran�based data�parallel
language� This paper describes techniques to handle dy�
namic mappings through simple array copies� array remap�
pings are translated into copies between statically mapped
distinct versions of the array� It discusses the language re�
strictions required to do so� The remapping graph which
captures all remapping and liveness information is pre�
sented� as well as additional data��ow optimizations that
can be performed on this graph� so as to avoid useless remap�
pings at run time� Such useless remappings appear for arrays
that are not used after a remapping� Live array copies are
also kept to avoid other �ow�dependent useless remappings�
Finally the code generation and runtime required by our
scheme are discussed� These techniques are implemented in
our prototype HPF compiler�

� Introduction

Array remappings� i�e� the ability to change array map�
pings at runtime� are de�nitely useful to applications and
kernels such as ADI �	
�� linear algebra solvers �	��� �d FFT
�	
�� signal processing �	�� or tensor computations ��� for ef�
�cient execution on distributed memory parallel computers�
HPF �	�� 	�� provides explicit remappings through realign
and redistributedirectives and implicit ones at subroutine
calls and returns for array arguments� This paper discusses
compiler handling of remappings and associated data �ow
optimizations�

�hpf� align with B�� A
�hpf� distribute B�block���

			
� A is remapped
�hpf� realign A�i�j� with B�j�i�
� A is remapped again
�hpf� redistribute B�cyclic���

Figure 	� Possible direct A remapping

�hpf� align with B�� C
�hpf� distribute B�block���

			
� C is remapped
�hpf� realign C�i�j� with B�j�i�
� C is remapped back to initial�
�hpf� redistribute B���block�

Figure �� useless C remappings

�hpf� align with T �� 

�hpf� A�B�C�D�E
�hpf� distribute T�block�

			 A B C D E 			
�hpf� redistribute T�cyclic�

			 A D 			

Figure �� Aligned array remappings

��� Motivation

Remappings are costly at runtime because they imply com�
munication� Moreover� even well written HPF programs
may require useless remappings� In Figure 	 the change
of both alignment and distribution of A requires two remap�
pings while it could be remapped at once from �block��� to
���cyclic� rather than using the intermediate ���block�
mapping� In Figure � both C remappings are useless because
the redistribution restores its initial mapping� In Figure �
template T redistribution enforces the remapping of all �ve
aligned arrays� although only two of them are used after�
wards� In Figure � the consecutive calls to subroutine foo
remap the argument on entry in and on exit from the rou�
tine� and both back and forth remappings could be avoided
between the two calls� Moreover� between calls to foo and
bla� array Y is remapped from �cyclic� to �block� and
then from �block� to �cyclic���� while a direct remap�
ping would be possible� All these examples do not arise
from badly written programs� but from a normal use of HPF
features� They demonstrate the need for compile�time data
�ow optimizations to avoid remappings at run time�



real Y��


�
�hpf� distribute Y�block�
interface
subroutine foo�X�
real X��


�

�hpf� distribute X�cyclic�
end subroutine
subroutine bla�X�
real X��


�

�hpf� distribute X�cyclic����
end subroutine

end interface
			 Y 			
call foo�Y�
call foo�Y�
call bla�Y�
			 Y 			

Figure �� Useless argument remappings

�hpf� template T��T�
�hpf� align with T� �� A

			 A 			
if �			� then

�hpf� realign with T� �� A
			 A 			

endif
�hpf� redistribute T�

			 A 			

Figure �� Ambiguity of remappings

��� Related work

Such optimizations to avoid useless remapping commu�
nications� especially interprocedural ones� have been dis�
cussed �		� 	��� It is shown �		� that the best approach
to handle subroutine calls is that callers must comply to
callee requirements� We follow this approach� In contrast
to these papers we rely on standard explicit interfaces to
provide the needed information about callees while enabling
similar optimizations� We do not expect real applications
to provide many remapping optimization opportunities at
the interprocedural level� Moreover requiring mandatory
interprocedural compilation is not in the spirit of the HPF
speci�cation� Also� the techniques presented in these papers
cannot be extended directly to HPF because HPF two�level
mapping makes the reaching mapping problem not as sim�
ple as the reaching de�nition problem� Both the alignment
and distribution problems must be solved to extract actual
mappings associated to arrays in the program�

The Static Distribution Assignment scheme �	�� to han�
dle dynamic array references is very similar to our approach
which uses distinct copies for each array mapping� Both
schemes have been developed concurrently� Such techniques
require well behaved programs� remappings should not ap�
pear anywhere in the program� to avoid references with am�
biguous mappings as shown in Figure �� We go a step further
by suggesting ��� that the language should forbid such cases�
This is supported by our experience with real applications
that require dynamic mappings� ambiguous mappings are
rather bugs to be reported�

Our approach is unique from several points� First� our

�hpf� distribute A�block�
			 A 			
if �			� then

�hpf� redistribute A�cyclic�
			 A 			

endif
			
� no reference to A
			

�hpf� redistribute A�cyclic��
��
			 A 			

Figure 
� Other ambiguity of remappings

optimizations are expressed on the remapping graph which
captures all mapping and use information for a routine� This
graph can be seen as the dual of a contracted control��ow
graph as noted in �	��� The advantage is that our graph
is much smaller than the usual control��ow graph� Second�
read and write uses of arrays are distinguished� enabling the
detection of live copies that can be reused without commu�
nication in case of a remapping� Third� our runtime can
handle arrays with an ambiguous mapping� provided that it
is not referenced in such a state� This requirement is weaker
than the one for well behaved programs �	�� 		�� since it
enables cases such as Figure 
�

��� Outline

This paper describes a practical approach to handle HPF
remappings� All issues are addressed� languages restrictions
�or corrections� required for this scheme to be applicable� ac�
tual management of simple references in the code� data��ow
optimizations� down to the runtime system requirements�
This technique is implemented in our HPF compiler ����

First� Section � presents the language restrictions� the
handling of subroutine calls and our general approach to
compile remappings� Second� Section � focuses on the de��
nition and construction of the remapping graph which cap�
tures all necessary remapping and liveness information on a
contracted control �ow graph� Third� Section � discusses
data��ow optimizations performed on this small graph�
These optimizations remove all useless remappings and de�
tect live or may�be�live copies to avoid further communica�
tion� Finally� Section � outlines runtime requirements im�
plied by our technique� before concluding�

� Overview

This paper focuses on compiling HPF remappings with array
copies and on suggesting optimization techniques to avoid
useless remappings� The idea is to translate a program
with dynamic mappings into a standard HPF program with
copies between di�erently mapped arrays� as outlined in Fig�
ure �� the redistribution of array A is translated into a copy
from A� to A�� the array references are updated to the ap�
propriate array version�

��� Language restrictions

In order to do so� the compiler must know statically about
mappings associated to every array references� Thus the

�



�
� dynamic mappings
�
�hpf� distribute A�cyclic�

			 A 			
�hpf� redistribute A�block�

			 A 			

�
� static mappings
�

allocatable A��A�
�hpf� distribute A��cyclic�
�hpf� distribute A��block�

allocate A�
			 A� 			

� remapping
allocate A�
A� � A�
deallocate A�

� done
			 A� 			

Figure �� Translation from dynamic to static mappings

HPF language must be restricted to enable the minimum
static knowledge required to apply this scheme� Namely�

	� References with ambiguous mappings due to the
control��ow of the program are forbidden� Hence the
compiler can �gure out the mapping of array references
and substitute the right copy�

�� Interfaces describing mappings of arguments of called
subroutines are mandatory� Thus all necessary infor�
mation is available for the caller to comply to the ar�
gument mapping of its callees�

�� Transcriptive mappings associated to subroutine argu�
ments are forbidden� This feature can be replaced by a
more precise mapping descriptions �
�� or could be en�
abled but would then require an interprocedural com�
pilation such as cloning �	���

Condition 	 is illustrated in Figure �� Array A mapping is
modi�ed by the redistribute if the realign was executed
before at runtime� otherwise A is aligned with template T�
and get through T� redistribution unchanged� However there
may be an ambiguity at a point in the program if the array
is not referenced� in Figure 
 after the endif and before the
�nal redistribution the compiler cannot know whether Array
A is distributed block or cyclic� but the mapping ambiguity
is solved before any reference to A�

With these language restrictions the bene�t of remap�
pings is limited to software engineering issues since it is
equivalent to a static HPF program� It may also be ar�
gued that expressiveness is lost by restricting the language�
However it must be noted that� �	� software engineering
is an issue that deserves consideration� ��� the current sta�
tus of the language de�nition is to drop remappings as a
whole �by moving them out of the core language as sim�
ple approved extensions �	��� because they are considered
too di�cult to handle� ��� we have not encountered any
real application so far that would bene�t from the full ex�
pressiveness of arbitrary �ow�dependent remappings� Thus

�
� implicit remapping
�

interface
subroutine CALLEE�A�
intent�in�� real�� A��


�

�hpf� distribute A�block�
end subroutine

end interface

real B��


�
�hpf� distribute B�cyclic�

			
call CALLEE�B�
			

�
� explicit remapping
�

real B��


�
�hpf� dynamic B
�hpf� distribute B�cyclic�

			
�hpf� redistribute B�block�
� liveness� B is read

call CALLEE�B�
�hpf� redistribute B�cyclic�

			

Figure �� Translation of a subroutine call

it makes sense to keep the simple and interesting aspects of
remappings� Further powerful extensions can be delayed un�
til applications need them and when compilation techniques
are proven practical and e�cient�

These language restrictions are also required to compile
remappings rather than to rely on generic library functions�
Indeed� for compiling a remapping into a message passing
SPMD code ��� both source and target mappings must be
known� Then the compiler can take advantage of all avail�
able information to generate e�cient code� The implicit
philosophy is that the compiler handles most of the issues
at compile time� with minimum left to run time� But the
language must require the user to provide the necessary in�
formation to the compiler� If not� only runtime�oriented ap�
proaches are possible� reducing the implementor�s choices�
but also performances�

��� Subroutine arguments

Subroutine argument mappings will be handled as local
remappings by the caller� This is possible if the caller knows
about the mapping required by callee dummy arguments�
hence the above constraint to require interfaces describ�
ing argument mappings� The intent attribute �in� out or
inout� provides additionnal information about the e�ects
of the call onto the array� It will be used to determine live
copies over call sites without interprocedural techniques�

Subroutine calls are translated as explicit remappings in
the caller as suggested in Figure �� Our scheme respects
the intended semantics of HPF argument passing� the ar�
gument is the only information the callee obtains from the
caller� Thus explicit remappings of arguments within the

�



callee will only a�ect copies local to the subroutine� Un�
der more advance calling conventions� it may be thought of
passing live copies along the required copy� so as to avoid
further useless remappings within the subroutine�

��� Discussion

The current HPF speci�cation includes features �inheritdi�
rective for transcriptive mappings� possible ambiguous map�
pings� etc�� that make the runtime approach mandatory�
at least for handling all cases� Another side�e�ect of op�
tional interfaces� transcriptive mappings and weak descrip�
tive mappings is that the compiler must make the callee
handle remappings as a default case� But the callee has
both less information and optimization opportunities �		��

These features improve expressiveness� but at the price
of performance� Delaying to run time the array mapping
handling of references means delaying the actual address
calculations and reduces compile time optimizations which
are mandatory to cache�based processors� Also compiling for
an unknown mapping makes many communication optimiza�
tions impractical� Expensive and more complex techniques
can be used to generate good code when lacking information�
partial or full cloning of subroutines to be compiled with dif�
ferent assumptions� that requires a full interprocedural anal�
ysis and compilation �	��� Another technique is run time
partial evaluation that dynamically generates an optimized
code once enough information is available ���� However even
though there are overheads and the runtime is complex�

As HPF is expected to bring high performance� tran�
scriptive and ambiguous mappings seem useless� They re�
strict the implementor choices and possible optimizations�
Moreover no real�life application we have encountered so far
require them to reach high performance levels�

� Remapping graph GR

This section de�nes and describes the construction of the
remapping graph� This graph is a subgraph of the control
�ow graph which captures remapping information such as
the source and target copies for each remapping of an array
and how the array is used afterwards� that is a liveness in�
formation� Subsequent optimizations will be expressed on
this small graph�

��� De�nition

In the following we will distinguish the abstract array and its
possible instances with an associated mapping� Arrays are
denoted by capital typewriter letters as A� Mapped arrays
are associated a subscript such as A�� Di�erently subscripted
arrays refer to di�erently mapped instances�

The remapping graph is a very small subgraph of the
control �ow graph� The vertices of the graph are the remap�
ping statements whether explicit or added to model implicit
remappings at call sites� There is a subroutine entry point
vertex v� and an exit point ve� An edge denotes a pos�
sible path in the control �ow graph with the same array
remapped at both vertices� The vertices are labeled with
the remapped arrays� Each remapped array is associated
one leaving copy and reaching copies at this vertex� Arrays
are also associated a conservative use�information� Namely
whether a given leaving copy may be not referenced �N��
fully rede�ned before any use �D�� only read �R� or maybe
modi�ed �W��

A f	� �g
R
� �

Figure �� Label representation

Figure � shows a label representation� Array A remap�
ping links reaching copies f	� �g to the leaving mapping ��
the new copy being only read �R�� The vertex is a remap�
ping for array A� It may be reached with copies A� and A� and
must be left with copy A�� As this copy will only be read� the
compiler and runtime can decide to keep the reaching copy
values which are live� A shorthand is used in some �gures
when several arrays share the same reaching and leaving
mappings� All concerned arrays are speci�ed as a pre�x�
and the use information over the arrow is speci�ed for each
array� respectively�

This provides a precise liveness information that will be
used by the runtime and other optimizations to avoid remap�
pings by detecting and keeping live copies� However it must
be noted that this information is conservative� because ab�
stracted at the high remapping graph level� The collected
information can di�er from the actual runtime e�ects on the
subroutine� an array can be quali�ed as W from a point and
not be actually modi�ed� The remapping graph de�nition
is more formally presented in Appendix A�

��� Construction

The remapping graph described above holds all the remap�
ping and liveness information� The next issue is to build
this graph� The construction algorithm builds the remap�
ping graph and updates the control graph to �	� switch array
references to the appropriate copy� distributed as expressed
by the program� ��� re�ect implicit remappings of array ar�
guments through explicit remappings and ��� check the con�
ditions required for the correctness of our scheme�

Subroutine argument mappings are handled as local
remappings by the caller� Implicit remappings are trans�
lated into explicit ones at call site in the caller� The actual
array argument is copied if needed into a copy mapped as the
corresponding dummy argument before the call� and may
be copied back on return� The intent attribute �in� out or
inout� provides information about the e�ects of the call onto
the array and will be used to determine live copies� Within
the subroutine compilation� three added vertices �call vc� en�
try v� and exit ve� model the initial and �nal mappings for
the dummy arguments and local variables� Dummy argu�
ments and local arrays are associated their initial mapping
on exit from vertex v�� vc and ve allow to attach dummy
arguments the use information derived from the intent at�
tribute to model imported and exported values�

Then the construction starts by propagating the initial
mapping copy of the array from the entry point of the sub�
routine� The GR construction algorithm pushes array ver�
sions along the control graph and extract a simpler graph
to re�ect the needed runtime copies to comply to the in�
tended semantics of the program� This construction can
be described as a set of data��ow problems detailed in Ap�
pendix B� Mappings are propagated from the entry point
and updated at remapping statements� This can be de�
composed into two data�ow problems� one for alignments
and one for distributions� However our implementation per�
forms both propagation concurently� focussing directly on

�



array mappings� The propagation tags array references with
their associated mappings and performs some transforma�
tions to handle subroutine calls� Second� the use informa�
tion is propagated backwards from references to remapping
statements� Finally the contracted graph is de�ned by prop�
agating remapping statements over the control graph�

��� Example

Let us focus on the routine in Figure 	
� It contains four
remappings� thus with the added call� entry and exit ver�
tices there are seven vertices in the corresponding remapping
graph� There are three arrays� two of which are local� The
sequential loop structure with two remappings is typical of
ADI�

Figure 		 shows the resulting remapping graph� The
liveness information is represented above the arrow� The
rationale for the 	 to E and � to E edges is that the loop
nest may have no iteration at runtime� thus the remappings
within the array may be skipped� Since all arrays are aligned
together� they are all a�ected by the remapping statements�
Four di�erent versions of each array might be needed with
respect to the required di�erent mapping� However� the live�
ness analysis shows that some instances are never referenced
such as B� and C��

� Data �ow optimizations

The remapping graph GR constructed above abstracts all the
liveness and remapping information extracted from the con�
trol �ow graph and the required dynamic mapping speci�ca�
tions� Following �		� we plan to exploit as much as possible
this information to remove useless remappings that can be
detected at compile time� or even some that may occur un�
der particular run time conditions� These optimizations on
GR are expressed as standard data �ow problems �	�� 	�� 	��

��� Removing useless remappings

Leaving copies that are not live appear in GR with the N �not
used� label� It means that although some remapping on an
array was required by the user� this array is not referenced
afterwards in its new mapping� Thus the copy update is not
needed and can be skipped� However� by doing so� the set
of copies that may reach latter vertices is changed� Indeed�
the whole set of reaching mappings must be recomputed�
It is required to update this set because we plan a compila�
tion of remappings� thus the compiler must know all possible
source and target mapping couples that may occur at run
time� This recomputation is a may forward standard data�
�ow problem� It is detailed in appendix C� First useless
remappings are removed �unused leaving mappings�� Sec�
ond reaching mappings are computed again from remaining
leaving mappings� This optimization is shown correct� All
remapping that are useless are removed� and all those that
may be useful are kept� Thus it is optimal� provided that
remappings remain in place�

Figure 	� displays the remapping graph of our example
after optimization� From the graph it results that array A
may be used with all possible mappings f
� 	� �� �g� but array
B is only used with f
� 	g and array C with f
� �g� Array C
is not live but within the loop nest� thus its instantiation
can be delayed� and may never occur if the loop body is
never executed� Array B is only used at the beginning of the
program� hence all copies can be deleted before the loop�

Figure 	�� Example after optimization

The generation of the code from this graph is detailed in
Section ��

��� Dynamic live copies

Through the remapping graph construction algorithm� array
references in the control graph GC were updated to an array
version with a statically known mapping� The remapping
graph holds the information necessary to organize the copies
between these versions in order to respect the intended se�
mantics of the program� The �rst idea is to allocate the
leaving array version when required� to perform the copy
and to deallocate the reaching version afterwards�

However� some copies could be kept so as to avoid useless
remappings when copying back to one of these copies if the
array was only read in between� The remapping graph holds
the necessary information for such a technique� Let us con�
sider the example in Figure 	� and its corresponding remap�
ping graph in Figure 	�� Array A is remapped di�erently in
the branches of the condition� It may be only modi�ed in
the then branch� Thus� depending on the execution path
in the program� array copy A� may reach remapping state�
ment � live or not� In order to catch such cases� the liveness
management is delayed until run time� dead copies will be
deleted �or mark as dead� at the remapping statements�

Keeping array copies so as to avoid remappings is a nice
but expensive optimization� because of the required mem�
ory� Thus it would be interesting to keep only copies that
may be used latter on� In the example above it is useless
to keep copies A� or A� after remapping statement � because
the array will never be remapped to one of these distribu�
tion� Determining at each vertex the set of copies that may
be live and used latter on is a may backward standard data
�ow problem� leaving copies must be propagated backward
on paths where they are only read� This is detailed in Ap�
pendix D�

��� Other optimizations

Further optimization can be thought of� as discussed in �		��
Array kill analysis� for instance based on array regions ��� ���
tells whether the values of an array are dead at a given point
in the program� This semantical analysis can be used to

�



subroutine remap�A�m� � C

parameter�n������
intent�inout��� A
real� dimension�n�n��� A�B�C

	hpf
 align with A�� B�C
	hpf
 distribute � A�block��� � �

��� B written� A read
if ����B read� then

	hpf
 redistribute A�cyclic��� � �
��� A p written� A B read

else
	hpf
 redistribute A�block�block� � �

��� p written� A read
endif
do i��� m
p

	hpf
 redistribute A�block��� � �
��� C written� A read

	hpf
 redistribute A���block� � �
��� A written� A C read

enddo
end subroutine remap � E

Figure 	
� Code example Figure 		� Remapping graph for Figure 	


	hpf
 distribute A�block� � �
��� A read
if ����� then

	hpf
 redistribute A�cyclic� � �
��� A written

else
	hpf
 redistribute A�cyclic���� � �

��� A read
endif

	hpf
 redistribute A�block� � �
��� A read
end

Figure 	�� Flow dependent live copy Figure 	�� Corresponding GR

avoid remapping communication of values that will never be
reused� Array regions can also describe a subset of values
which are live� thus the remapping communication could
be restricted to these values� reducing communication costs
further� However such compile�time advanced semantical
analyses are not the common lot of commercial compilers�
Our prototype HPF compiler includes a kill directive for
the user to provide this information� The directive creates
a remapping vertex tagged D�

Remappings can be moved around in the control �ow
graph� especially out of loops� From the code in Figure 	�
we suggest to move the remappings as shown in Figure 	
�
This di�ers from �		�� the initial remapping is not moved
out of the loop� because if t � 	 this would induce a useless
remapping� The remapping from block to cyclic will only
occur at the �rst iteration of the loop� At others� the run�
time will notice that the array is already mapped as required
just by an inexpensive check of its status�

	 Runtime issues

The remapping graph information describing array versions
reaching and leaving remapping vertices must be embedded
into the program through actual copies in order to ful�ll the
requirements� Some optimizations described in the previous
sections rely on the runtime to be performed�

interface
subroutine foo�X�

	hpf
 distribute X�block�
end subroutine

end interface
	hpf
 distribute A�cyclic�

��� A
if ����� then

	hpf
 redistribute A�cyclic����
��� A

endif
	 A is cyclic or cyclic���
	 foo requires a remapping

call foo�A�

Figure 	�� Subroutine calls

	�� Runtime status

Some data structure must be managed at run time to store
the needed information� namely� the current status of the
array �which array version is the current one and may be
referenced� and the live copies�

The current status of an array can be kept in a descrip�
tor holding the version number� By testing this status� the
runtime is able to notice which version of an array reaches
a remapping statement� what may be �ow�dependent� This






	hpf
 distribute A�block�
��� A
do i��� t

	hpf
 redistribute A�cyclic�
��� A

	hpf
 redistribute A�block�
enddo
��� A

Figure 	�� Loop invariant remappings

	hpf
 distribute A�block�
��� A
do i��� t

	hpf
 redistribute A�cyclic�
��� A

enddo
	hpf
 redistribute A�block�

��� A

Figure 	
� Optimized version

	 save the reaching status
reaching�A��status�A�

	hpf
 redistribute A�block�
call foo�A�

	 restore the reaching mapping
if �reaching�A���� then

	hpf
 redistribute A�cyclic�
elif �reaching�A���� then

	hpf
 redistribute A�cyclic����
endif

Figure 	�� Mapping restored

descriptor enables the handling of programs with ambiguous
mappings provided that no actual reference to such an array
is performed before a remapping� In order to test whether
a version of a given array is live at a point� a boolean in�
formation to be attached to each array version� It will be
updated at each remapping vertex� depending of the latter
use of the copies from this vertex�

If interpreted strongly� Constraint 	 may imply that ar�
rays as call arguments are considered as references and thus
should not bare any ambiguity� such as the one depicted in
Figure 	�� However� since an explicit remapping of the ar�
ray is inserted� the ambiguity is solved before the call� hence
there is no need to forbid such cases� The issue is to restore
the appropriate reaching mapping on return from the call�
This can be achieved by saving the current status of the ar�
ray that reached the call as suggested in Figure 	�� Variable
reaching�A� holds the information� The saved status is then
used to restore the initial mapping after the call�

	�� Copy code generation

The algorithm for generating the copy update code and live�
ness information management from the remapping graph is
outlined in Figure 	�� Copy allocation and deallocation are
inserted in the control �ow graph to perform the required
remappings� using the sets computed at the GR optimization
phase�

The �rst loop inserts the runtime management initializa�
tion at the entry point� All copies are denoted as not live�
No copy receives an a priori instantiation� The rationale for
doing so is to delay this instantiation to the actual use of
the array� that may occur with a di�erent mapping or never�
as Array C in Figure 	
� The second loop nest extracts from
the remapping graph the required copy� for all vertex and all
remapped arrays� if there is some leaving mapping for this
array at this point� Copies that were live before but that are
not live any more are cleaned� i�e� both freed and marked
as dead� Finally a full cleaning of local arrays is inserted at
the exit vertex� Figure �
 shows a generated copy code for

for A � S�v��
append to v� �status�A����
for a � C�A�

append to v� �live�Aa��false�
end for

end for
for v � V�GR�� fvcg

for A � S�v�
if �LA�v� ���� then

append to v �if �status�A��� LA�v�� then�
append to v �allocate ALA�v� if needed�
append to v �if �not live�ALA�v��� then�
if �UA�v� �� D� then

for a � RA�v�� fLA�v�g
append to v �if �status�A��a� ALA�v��Aa�

end for
end if
append to v �live�ALA�v���true�
append to v �endif�
append to v �status�A��LA�v��
append to v �endif�

end if
for a � C�A��MA�v�

append to v �if �live�Aa�� then�
append to v � free Aa if needed�
append to v � live�Aa��false�
append to v �endif�

end for
end for

end for
for all A

for a � C�A�
append to ve �if �live�Aa� and needed� free Aa�

end for
end for all

Figure 	�� Copy code generation algorithm

if �status�A����� then
allocate A� if needed
if �not live�A��� then
if �status�A���� A��A�
if �status�A���� A��A�
live�A���true

endif
status�A���

endif

Figure �
� Code for Figure �

�



the remapping vertex in Figure ��
It must be noted that dead arrays �D� do not require any

actual array copy� thus none is generated� avoiding commu�
nication at run time� Moreover� there is no initial map�
ping imposed from entry in the subroutine� If an array is
remapped before any use� it will be instantiated at the �rst
remapping statement encountered at runtime with a non
empty leaving copy� Finally� care must be taken not to free
the array dummy argument copy which belongs to the caller�

Another bene�t from this dynamic live mapping man�
agement is that the runtime can decide to free a live copy
if not enough memory is available� and to change the corre�
sponding liveness status� If required latter on� the copy will
be regenerated� i�e� both allocated and properly initialized
with communication� Since the generated code does not as�
sume that any live copy must reach a point in the program�
but rather decided at remapping statements what can be
done� the code for the communication will be available�


 Conclusion

In this paper� we have shown a pratical approach to compile
HPF dynamic mappings� It consists of substituting dynamic
arrays by static ones� and of inserting simple array copies
between these arrays when necessary� Implicit remappings
at call site are translated into explicit ones in the caller� We
have discussed the language restrictions needed to apply this
scheme� and argued that no high performance application
should miss the restricted features� We have also presented
optimizations enabled by our technique� to remove useless
remappings and to detect live copies that can be reused with�
out communication� Finally runtime implications have been
discussed�

Most of the techniques described in this paper are
implemented in our prototype HPF compiler ���� It is
available from http���www	cri	ensmp	fr�pips�hpfc	html�
The standard statically mapped HPF code generated is then
compiled� with a special code generation phase for handling
remapping communication due to the explicit array copies�

Acknowledgment

I am thankful to Corinne Ancourt� B�eatrice Creusillet�
Fran�cois Irigoin� Pierre Jouvelot and to the anonymous
referees for their helpful comments and suggestions�

References

�	� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman�
Compilers Principles� Techniques� and Tools� Addison�
Wesley Publishing Company� 	��
�

��� Jean�Yves Berthou and Laurent Colombet� Experi�
ences in Data Parallel Programming on Cray MPP ma�
chines� First High Performance Fortran �HPF� Users
Group Conference� Santa Fe� NM� USA� February 	����

��� Fabien Coelho� Contributions to High Performance
Fortran Compilation� PhD thesis� �Ecole des mines de
Paris� October 	��
�

��� Fabien Coelho� Discussing HPF Design Issues� In Euro�
Par���� Lyon� France� pages I���	�I����� August 	��
�
LNCS 		��� Also report EMP CRI A����� Feb� 	��
�

��� Fabien Coelho and Corinne Ancourt� Optimal Com�
pilation of HPF Remappings� Jounal of Parallel and
Distributed Computing� ������������
� November 	��
�
Also TR EMP CRI A���� �October 	�����

�
� Fabien Coelho and Henry Zongaro� ASSUME directive
proposal� TR A ���� CRI� �Ecole des mines de Paris�
April 	��
�

��� Charles Consel and Fran�cois No�el� A General Approach
for Run�Time Specialization and its Application to C�
In Symposium on Principles of Programming Language�
pages 	���	�
� January 	��
�

��� B�eatrice Creusillet� Array Region Analyses and Appli�
cations� PhD thesis� �Ecole des mines de Paris� Decem�
ber 	��
�

��� B�eatrice Creusillet and Fran�cois Irigoin� Interprocedu�
ral array region analyses� Int� J� of Parallel Program�
ming 	special issue on LCPC
� ���
���	����
� 	��
�

�	
� S�K�S� Gupta� C��H� Huang� and P� Sadayappan� Im�
plementing Fast Fourier Transforms on Distributed�
Memory Multiprocessors using Data Redistributions�
Parallel Processing Letters� ������������� December
	����

�		� Mary W� Hall� Seema Hiranandani� Ken Kennedy� and
Chau�Wen Tseng� Interprocedural Compilation of For�
tran D for MIMD Distributed�Memory Machines� In
Supercomputing� pages �������� 	����

�	�� HPF Forum� High Performance Fortran Language
Speci�cation� Rice University� Houston� Texas� Novem�
ber 	��
� version ��
�

�	�� Ken Kennedy� A survey of data �ow analysis tech�
niques� In S� Muchnick and N� Jones� editors� Program
Flow Analysis� Theory and Applications� pages �����
Prentice�Hall� Inc�� Engelwood Cli�s� 	����

�	�� Gary A� Kildall� A uni�ed approach to global program
optimization� In Symposium on Principles of Program�
ming Language� pages 	����

� 	����

�	�� Charles Koelbel� David Loveman� Robert Schreiber�
Guy Steele� and Mary Zosel� The High Performance
Fortran Handbook� MIT Press� Cambridge� MA� 	����

�	
� Ulrich Kremer� Automatic Data Layout for Distributed
Memory Machines� PhD thesis� Rice University� Hous�
ton� Texas� October 	���� Available as CRPC�TR���
����S�

�	�� Peter G� Meisl� Mabo R� Ito� and Ian G� Cumming�
Parallel synthetic aperture radar processing on work�
station networks� In International Parallel Processing
Symposium� pages �	
����� April 	��
�

�	�� Daniel J� Palermo� Eugene W� Hodges IV� and Prithvi�
raj Banerjee� Interprocedural Array Redistribution
Data�Flow Analysis� In Language and Compilers for
Parallel Computing� pages aa�	�aa�	�� August 	��
�
San Jos�e� CA�

�	�� Lo��c Prylli and Bernard Tourancheau� E�cient Block
Cyclic Data Redistribution� In Euro�Par���� Lyon�
France� pages I�	���I�	
�� August 	��
� LNCS 		���
Also INRIA RR ��

�

�



�hpf� distribute T���block�
�hpf� align A�i�j� with T�i�j�

if �			� then
�hpf� realign A�i�j� with T�j�i�

endif
�hpf� redistribute T�block���

Figure �	� Several leaving mappings

A Remapping Graph De�nition

If G is a graph then V�G� is its set of vertices and E�G� its set
of edges� Successors of a vertex are designated by succ�v�
and predecessors by pred�v��

vertices V�GR�� the vertices are the remapping statements�
They can be explicit �realign� redistribute� or
added in place of implicit remappings at call sites�
There is a subroutine entry point vertex v� and an exit
point ve�

edges E�GR�� each edge denotes a possible path in the con�
trol �ow graph with the same array remapped at both
vertices and not remapped in between�

labels� in the remapping graph� each vertex v is associated
S�v�� the set of remapped arrays�

For each array A � S�v� we have some associated infor�
mation �depicted in Figure ���

LA�v�� The �or none� noted �� leaving array copy� i�e�
the copy which must be referenced after the remap�
ping� note that HPF allows several leaving mappings
as depicted in Figure �	� array A is remapped at the
redistribute to �block��� or ���block� depending
on the execution of the realign�

We assume that no such cases occur to simplify this
presentation�

RA�v�� the set of reaching copies for the Array A at Vertex
v�

In the general case with several leaving copies� distinct
reaching copy sets must be associated to each possible
leaving copy�

UA�v�� describes how the leaving copy might be used after�
wards� It may be never referenced �N�� fully rede�ned
before any use �D�� only read �R� or modi�ed �W�� The
use information quali�ers supersede one another in the
given order� i�e� once a quali�er is assigned it can only
be updated to a stronger quali�er� The default value
is N�

This provides a precise live information that will be
used by the runtime and other optimizations to avoid
remappings by detecting and keeping live copies� How�
ever it must be noted that this information is conserva�
tive� because abstracted at the high remapping graph
level� The collected information can di�er from the ac�
tual runtime e�ects on the subroutine� an array can be
quali�ed as W from a point and not be actually modi�
�ed�

Each edge is labelled with the arrays that are remapped
from at the sink vertex when coming from the source vertex�
A�v� v��� Note that

A � A�v� v�� � A � S�v� and A � S�v��

B Remapping Graph Construction

Here is a data �ow formulation of the construction algo�
rithm� First� let us de�ne the sets that will be computed by
the data�ow algorithms in order to build GR�

Reaching�v�� the set of arrays and associated mappings
reaching vertex v� these arrays may be remapped at
the vertex or left unchanged� thus going through the
vertex�

Leaving�v�� the set of arrays and associated mappings leav�
ing vertex v� one leaving mapping per array is assumed
for simplifying the presentation�

Remapped�v�� the set of arrays actually remapped at vertex
v� �note that if several leaving array mappings are al�
lowed� this information is associated to array and map�
ping couples instead of just considering arrays��

EffectsOf�v�� the proper e�ect on distributed variables of
vertex v� i�e� these variables and whether they are
never referenced� fully rede�ned� partially de�ned or
used� This basic information is assumed to be avail�
able�

EffectsAfter�v�� the distributed variables and associated
e�ects that may be encountered after v and before any
remapping of these variables�

EffectsFrom�v�� just the same� but including also the ef�
fects of v�

RemappedAfter�v�� the distributed variables and associ�
ated remapping vertices that may be encountered di�
rectly �without intermediate remapping� after v�

RemappedFrom�v�� just the same� but including also v�

The following function computes the leaving mapping
from a reaching mapping at a given vertex�

Aj � impact�Ai� v�� the resulting mapping of A after v when
reached by Ai� For all but remapping vertices Ai � Aj�
i�e� the mapping is not changed� Realignments of A or
redistributions of the template Ai is aligned with may
give a new mapping� The impact of a call is null�

array�Ai��A� the function returns the array from one of its
copies�

operator �� means but those concerning� that is the opera�
tor is not necessarily used with sets of the same type�

Now� here is the construction algorithm expressed as a
set of data �ow equations�

�



intent UA�vc� UA�ve�
in D N

inout D W
out N W

Figure ��� Array argument use

Figure ��� Initial GR

Input to the construction algorithm

� control �ow graph GC with entry v� and exit ve vertices

� the set of remapping vertices VR� which includes Vertex
v� and Vertex ve�

� the proper e�ects of vertices on distributed variables
EffectsOf�v� �the default for VR is no e�ects��

� for any remapped array at a vertex� there is only one
possible leaving mapping� This assumption simpli�es
the presentation� but could be removed by associating
remapped information to array mappings instead of the
array�

Updating GC �arguments�

�rst let us update GC to model the desired mapping of ar�
guments�

� Add call vertex vc and an edge from vc to v� in GC �

Reaching and Leaving mappings

They are computed starting from the entry point in the
program� Propagated mappings are modi�ed by remapping
statements as modeled by the impact function� leading to
new array versions to be propagated along GC � This propa�
gation is a may forward data�ow problem�

initialization�

� Reaching � 	

� Leaving � 	

� add all argument distributed variables and their asso�
ciated mappings to Leaving�vc� and Leaving�ve��

� update EffectsOf�vc� and EffectsOf�ve� as sug�
gested in Figure ��� If values are imported the array is
annotated as de�ned before the entry point� If values
are exported� it is annotated as used after exit� This
models safely the caller context� The callee is assumed
to comply to the intended semantics�


 call foo�A� �

vb 
 �Afig
W
� k���y


 call foo�Ak���y
va 
 �Afkg � i�

Figure ��� Call with a prescriptive inout�intended argument

� add all local distributed variables and their associated
initial mapping to Leaving�v���

Figure �� shows the initial remapping graph with an
inout intended array argument A and a local array L�

propagation�

� the array mappings reaching a vertex are those leaving
its predecessors�

Reaching�v� �
�

v��pred�v�

Leaving�v��

� the array mappings leaving a vertex are updated with
the statement impact on the array mappings reaching
this vertex�

Leaving�v� � Leaving�v� �
�

a�Reaching�v�

impact�a� v�

Updating references

For all vertices v � V�GC�� VR so that EffectsOf�v� on
is not N�

� if jfm � Leaving�v��array�m� � Agj � 	 then issues
an error� because there is more than one mapping for
a given array

� else substitute the references with the corresponding
array copy�

� note that there may be none if some piece of code is
dead�

Remapped arrays

They are directly extracted from Reaching� they are those
transformed by impact�

Remapped�v� �
�

�
�
pt�m�Reaching�v�m��impact�m�v�

array�m�

Updating GC �calls�

� calls with distributed arguments are managed as shown
in Figure ���

pred�vb� � pred�v�� succ�vb� � fvg� pred�va� �
fvg� succ�va� � succ�v��pred�v� � fvbg� succ�v� � fvag

Remapped�vb� � fAg

� VR is updated accordingly� VR � VR � fvb� vag

	




Summarizing e
ects

This phase summarizes the use information after remap�
ping statements� and up to any other remapping statement�
Hence it captures what may be done with the considered
array copy�

This phase is based on proper e�ects that are directly ex�
tracted from the source code for direct references� or through
intent declarations in subroutine explicit interfaces� De�
pending on the intent attribute associated to a subroutine
argument the corresponding e�ect is described in Figure ���

intent e�ect
in R

inout W
out D

Figure ��� Intent e�ect

Remapping statements but vc and ve have no proper ef�
fects�

�v � VR � fvc� veg�EffectsOf�v� � 	

This is a may backwards data�ow problem�

initialization� no e�ects 

� EffectsAfter � 	

� EffectsFrom � 	

propagation�

� the e�ects leaving a vertex are those from its successors�

EffectsAfter�v� �
�

v��succ�v�

EffectsFrom�v��

� the e�ects from a vertex are those leaving the vertex
and proper to the vertex� but remapped arrays�

EffectsFrom�v� �

�EffectsAfter�v� �EffectsOf�v��

� Remapped�v�

Computing GR edges

As we expect few remappings to appear within a typical
subroutine� we designed the remapping graph over the con�
trol graph with direct edges that will be used to propa�
gate remapping information and optimizations quickly� This
phase propagates for once remapping statements �array and
vertex couples� so that each remapping statement will know
its possible successors for a given array�

This is a may backwards data�ow problem�

initialization�

� RemappedAfter � 	

� initial mapping vertex couples are de�ned for remap�
ping statement vertices and arrays remapped at this
very vertex�

RemappedFrom�v� �
�

a�Remapped�v�

f�a� v�g

propagation�

� the remapping statements after a vertex are those from
its successors�

RemappedAfter�v� �
�

v��succ�v�

RemappedFrom�v��

� the remapping statements from a vertex are up�
dated with those after the vertex� but those actually
remapped at the vertex�

RemappedFrom�v� �

RemappedFrom�v� �

�RemappedAfter�v��Remapped�v��

Generating GR

From these sets we can derive the remapping graph�

� VR are GR vertices

� edges and labels are deduced from RemappedAfter

� S��� R�� and L�� from Remapped� Reaching and
Leaving

� U�� from EffectsAfter

Discussion

All the computations are simple standard data �ow prob�
lems� but the reaching and leaving mapping propagation�
Indeed� the impact function may create new array map�
pings to be propagated from the vertex� The worst case
complexity of the propagation and remapping graph algo�
rithm described above can be computed� Let us denote
n is the number of vertices in GC� s the maximum num�
ber of predecessors or successors of a vertex in GC � m the
number of remapping statements �including the entry and
exit points�� p the number of distributed arrays� With the
simplifying assumption that only one mapping may leave a
remapping vertex� then the maximum number of mappings
to propagate is mp� Each of these may have to be prop�
agated through at most n vertices with a smp worst case
complexity for a basic implementation of the union opera�
tions� Thus we can bound the worst case complexity of the
propagation to O�nsm�p���

C Removing useless remappings

Leaving copies that are not live appear in GR with the N
�not used� label� It means that although some remapping
on an array was required by the user� this array is not refer�
enced afterwards� Thus the copy update is not needed and
can be skipped� However� by doing so� the set of copies that
may reach latter vertices is changed� Indeed� the whole set
of reaching mappings must be recomputed� It is required
to update this set because we plan a compilation of remap�
pings� thus the compiler must know all possible source and
target mapping couples that may occur at run time� This
recomputation is a may forward standard data��ow prob�
lem�

		



Remove useless remappings

Done simply by deleting the leaving mapping of such arrays�

�v � V�GR���A � S�v�� UA�v� � N� LA�v� ��

Recompute reaching mappings

initialization� use 	�step reaching mappings

�v � V�GR�� �A � S�v��

RA �v� �
�

�
�
pt�v��pred�v�A�A�v��v��UA �v

����N

LA �v��

Reaching mappings at a vertex are initialized as the
leaving mappings of its predecessors which are actually
referenced�

propagation� optimizing function

�v � V�GR�� �A � S�v��

RA�v� � RA�v� �
�

�
� pt�v

��pred�v�A�A�v��v��UA�v
���N

RA�v
��

The function propagates reaching mappings along
paths on which the array is not referenced� computing
the transitive closure of mappings on those paths�

The iterative resolution of the optimizing function is increas�
ing and bounded� thus it converges�

Let us assume O�	� basic set element operations �put�
get and membership�� Let m be the number of vertices in
GR� p the number of distributed arrays� q the maximum
number of di�erent mappings for an array and r the maxi�
mum number of predecessors for a vertex� Then the worst
case time complexity of the optimization� for a simple iter�
ative implementation� is O�m�pqr�� Note that m� q and r
are expected to be very small�

Correctness and Optimality

This optimization is correct and the result is optimal�

Theorem � The computed remappings 	from new reach�
ing to remaining leaving
 are those and only those that are
needed 	according to the static information provided by the
data �ow graph
�

�v � V�GR�� �A � S�v�� UA�v���a � RA�v��


v� and a path from v
� to v in GR�

so that a � LA�v
�� and A is not used on the path�

Proof sketch� construction of the path by induction on the
solution of the data �ow problem� Note that the path in GR
re�ects an underlying path in the control �ow graph with
no use and no remapping of the array�

D Dynamic live copies

Keeping array copies so as to avoid remappings is a nice
but expensive optimization� because of the required memory�
Thus it would be interesting to keep only copies that may be
used latter on� In the example in Figure 	�� it is useless to
keep copies A� or A� after remapping statement � because the
array will never be remapped to one of these distribution�
Determining at each vertex the set of copies that may be
live and used latter on is a may backward standard data
�ow problem� leaving copies must be propagated backward
on paths where they are only read� Let MA�v� be the set of
copies that may be live after v�

initialization� directly useful mappings

�v � V�GR���A � S�v��MA�v� � LA�v�

propagation� optimizing function

�v � V�GR�� �A � S�v�� UA�v� � fN�Rg�

MA�v� � MA�v� �
�

�
� pt�v

�
�succ�v�A�A�v�v��

MA�v
��

Maybe useful copies are propagated backwards while
the array is not modi�ed �neither W nor D��

	�


