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Abstract

Binding time analysis aims at determining which identifiers can be bound to their values at
compile time. This binding time information is of utmost importance when performing partial
evaluation or constant folding on programs. Existing binding time analyses are global in that they
require complete program texts and descriptions of which of their inputs are available at compile
time. As a consequence, such analyses cannot be used in programming languages that support
modules or separate compilation. Libraries have to be analyzed every time they are used in some
program. This is particularly limiting when considering programming in-the-large; any modification
of an application results in the reprocessing of all the modules.

This paper presents a new static analysis for higher-order typed functional languages that relies
on a type and effect system to obtain polyvariant and separate binding time information. By
allowing function types to be parametrized over the binding times of their arguments, different
uses of the same function can have different binding times via a straightforward instantiation of its
type. By using an effect system, binding time information can be propagated across compilation
boundaries.

This paper gives a complete description of this new binding time analysis framework, show how
both type and binding time information can be expressed and how they relate to the dynamic
semantics, and describes a type and binding time reconstruction algorithm which is proved correct
with respect to the static semantics.
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1 Introduction

Analyzing the binding time properties of identifiers in programs aims at determining when the value
of these identifiers can be computed. If it is at compile time, their binding time is said to be static;
otherwise, they are not known until run time and their binding time is said to be dynamic. The binding
time properties of identifiers in an expression determine whether it can be evaluated at compile time

or at run time. Given a program, binding time analysis is performed by propagating the binding time
properties of its inputs.

Existing binding time analyses (see Section 2) are global, i.e. the analysis can only be performed
on complete programs. As a consequence, such analyses cannot be used in programming languages
that support modules or separate compilation. Libraries have to be analyzed every time they are
used in some program. This is particularly limiting when considering programming in-the-large; any
modification of an application results in the reprocessing of all the modules.

To alleviate these drawbacks, this paper introduces a new approach for performing polyvariant and
separate binding time analysis in higher-order typed functional languages: the binding time behavior
of functions is independent of their applications. Our approach to binding time analysis relies on a
new type and effect system [20, 21] that allows function types to be parameterized over the binding
times of their arguments, thus permitting different uses of the same function to have different binding
times. A type and effect system is a static system that allows the dynamic properties of programs to
be estimated by a compiler. Types determine what expressions compute, while effects here determine
when expressions can be computed; effects denote binding times. Unlike previous work, the binding
times manipulated by the static system are not only defined by simple constants, such as static or
dynamic, but are also symbolically parameterized over binding times.

The paper is organized as follows. Section 2 surveys the prior work related to binding time anal-
ysis. Section 3 presents the syntax and dynamic semantics of the language. Section 4 describes the
binding time analysis type and effect system, together with its correctness with respect to the dynamic
semantics. Section 5 presents the type and effect reconstruction algorithm, together with a proof of
its correctness with respect to the static semantics. We discuss possible extensions to this work in
Section 6, and give some concluding remarks in Section 7.

2 Related Work

Binding time analysis is primarily used for partial evaluation [17] and optimizing compilation [1] where
it allows some evaluations to be performed at compile time, thus improving the overall efficiency. It
has been studied within the framework of abstract interpretation [2, 4, 6, 8, 9, 10, 13, 27] and type
systems [23, 24, 14, 15]. By using a more symbolic approach, our framework allows binding time
analysis to be expressed without the added complexity of the previous systems, in particular two-level
lambda-calculi and annotated terms. Also, contrarily to [14], function types are compatible with the
usual functionality of expressions since binding time properties are kept in effects; this is particularly
visible for dynamic lambdas. Finally, all previous analyses assume that the whole program text is
available, although admittedly two-level lambda-calculi could be adapted to modular design.

Effect systems have proven quite an effective framework for the specification and analysis of higher-
order functional and imperative program behaviors. Examples are side-effects [21], communication in
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parallel programs [18, 25], time complexity [12], or control-Aow analysis [30]. They are particularly
well-designed for program analysis that operate across module boundaries, i.e. within the realm of
separate compilation and optimization. Since effect systems and abstract interpretation can be used
simultaneously using separate abstract interpretation [31], our approach could possibly also be merged
with existing systems, based on either type systems or abstract interpretation.

Inspired by a previous unpublished version of our work [7], Henglein and Mossin [16] introduce a
polyvariant binding time analysis which uses an extended type system with a two-level syntax. Here
polyvariance is limited to let-bound identifiers, while our approach can simply see let as syntactic
sugar (see Section 6). Their correcteness proof uses a denotationally-specified specializer, while our
approach, more in tune with the nature of partial evaluation (i.e., compile-time code generation) is
operationally-based. Also, they restrict their consistency relation to first-order values, while our proof
does not need to introduce such a concept. No mention is made of how type-checking is performed.
Finally, our approach allows across-module information to be more intuitively conveyed than theirs.

Link-time optimizations in compilers, e.g. for register allocation or address calculation, have been
used in compilers for a long time [32, 28]. Our new approach suggests that binding time analysis
could be used in a similar way, e.g. for performing specialized code generation at link time to optimize
operating systems [11].

3 Language Definition

Our kernel language is the simply typed lambda-calculus, extended to accommodate effect information
that describes binding time properties. We discuss in Section 6 how this simple language can be
extended to a full-fledged programming language. Binding times occur within function types, where
they represent latent binding times. A latent binding time is the binding time of the function body. It
communicates the expected behavior of a function from its point of definition to its point of use and
is expressed in terms of the binding time of the function argument. Thus, function types, besides the
type of the argument and result, include a name for its argument and a latent binding time, which
may use this argument name. Note that this is similar to a dependent type system [3] in that we need

to be able to refer to function arguments in function types, but differs in that the binding time of the
argument, and not its value, is required.

Let us look at a couple of examples. First, examine the type of the increment function.
(lambda (x) (+ x 1)) : (x:Int) =5 Int

Not only does the function type describe the abstraction as a function from Int to Int, but it also
captures the binding time behavior as the boolean function (\z. z). It expresses the fact that the
binding time value of an application of this increment function solely depends on the binding time
value of its argument, denoted here by the name x of the formal. Noteworthy, this binding time
behavior is determined independently of any given context; it is in this regard that our binding time
analysis is polyvariant.

Next, consider the following function:
(lambda (x)

(lambda (f: (y:Int) L, Int )
(£ (2 x)))) ¢ (=% Int)St—m); (£: (ysInt) X At )f L E g



The binding time description of this function can be read as follows: the first abstraction evaluates to
a static value, namely a lambda expression (see below). The resulting function evaluates to a static
value if both the functional argument £ and integer parameter x are static. We show in this paper
that the binding time behavior of functions is always captured by a simple disjunctive boolean term.

We give below the abstract syntax of our kernel language (I denotes identifiers):

B #= Jf

| By V By Combination of Effects
q" p= ]

| {Eedi) L T, Function Type
E T

lambda (I:T) E;) Typed Lambda

| (lambda (I) E) Lambda
| (
| (Eo Ev) Application

Our language allows both explicitly and implicitly typed function definitions. For the sake of sim-
plicity, it does not include constants (see Section 6). Also, note that, although our syntax allows for
multiple basic type identifiers, only one, say basic, would be strictly needed to perform binding time
analysis. The crucial information is the arrow structure of types, together with their latent binding
time information. This combination of types and binding time information within an effect system

enables our analysis framework to be well-suited to separate analysis, types appearing within module
signatures.

The dynamic semantics of our language is expressed by a structural operational semantics [26] on
type-erased’ expressions. The dynamic semantics presented in Figure 1 is composed of a set of rules
that inductively defines the evaluation relation E — E' on the structure of expressions. It associates
to each expression F' its reduced expression. In our simple language, computed values are reduced
lambda terms:

V € Values

Since the partial evaluation process deals with syntactic objects, the dynamic semantics uses a syntactic
substitution-based approach. To limit the number of trivial rules, the (Exp,) rule ensures that £ — E:
reductions £ — E’ of interest are those in which E # E’, where = denotes syntactical equality.
Concerning the remaining rules, if the (—E,) rewriting rule that implements the beta-reduction of the
lambda-calculus is standard, the (—1,) rule dealing with lambda terms is more unusual. Its semantics
requires reductions inside lambda bodies to be performed; this takes into account the fact that partial
evaluation is also performed within function definitions. In other words, partial evaluation reduces
expressions to their head normal form, while preserving termination properties.

We note E[E'/I] the syntactic substitution of I by E’ in E.

4 Static Semantics

The static semantics specifies the type and binding time information of expressions. We assume that
the types of function arguments can either be provided by the programmer (for instance, to appear

*The straightforward TypeFrase function removes explicit types from expressions.



(Expy) E—E

(—1Ia) = 7
(lambda (/) E) — (lambda (I) E')
Ey, — (lambda (1) E')
(—»Ed) r Bl :

E.‘[Erl/ﬂ -~ E"
(Bo By) — E"

Figure 1: Dynamic Semantics

within module signatures) or be left unspecified.

4.1 Binding Time and Type Algebras

The binding time algebra is a boolean algebra ordered with E. We note V the associative, commutative
and idempotent combination operator and use the predefined effect identifiers stat for minimum and
dyn for maximum elements. As expected, stat is unitary and dyn is absorbent.

The ordering relation for elements of the type language is also denoted by C. Types are partially
ordered by a subtyping relation that extends the subeffecting relation to types. The L relation is
defined by structural induction. For function types, latent binding times and return types behave
monotonically while argument types use antimonotonicity:

B B =
(IiTl] — T, C (I:T’l) — T, +— Trl Cdy
LCT,

Since an argument name may appear within the latent binding time or the return type of function
types, function types are scoping constructs. We therefore assume that alpha-renaming within function
types is used wherever necessary to avoid capture problems or to test for type ordering. The equality
relation = on types is defined, as usual, by double inclusion with E;

4.2 Typing Rules

The type and binding time static semantics, presented in Figure 2, is defined by the relation 4 F
E : T # B. Given a type environment A, the static semantics associates to each expression F, a
type T' and its binding time value B.

The (Conv,) rule allows both types and binding times to be upgraded to higher values in their
respective algebra. Note however that it is always safe to bound the binding time of an expression
with the disjunction of its free expression identifiers; the dynamic semantics shows that its evaluation
can only depend on them.



e

B C B
(Conve) 4 F BE:TaB

AF E:T#B
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Lt AIl:T\) v E:T#B
’ A + (lambda (I:Ty) E) : (I:T;)—B—>T # stat

‘ Al:Ty) + E:T#B
(i—1L)

A F (lambda (I) E) : (I:Tl)iT # stat

A+ E : (I:Tl)iT # By
(—Es) AF E : T #B
A v (B Ey) : T[Bi/I]# B, V B[B/I]

Figure 2: Static Semantics

In the (—1,) and (i—1I,) rules, the type and binding time of the function body are integrated into
the function type as its result type and latent binding time; the argument type may or may not be
explicitly provided, in which case it is automatically inferred. This information is used when a function
is applied in the (—E,) rule. The binding time of the whole expression includes ( 1) the binding time
of the function, since partially evaluating an application requires the function value, and (2) the latent
binding time, in which the binding time of the argument is substituted for the argument name in order
to account for the binding time of the actual. Note that the substitutions performed in the (—E,)

rule ensure that no bound expression identifier remain within types or binding times after their lexical
scope is exited.

Since we are interested in applications of binding time information to program transformations,
our static semantics assigns a stat binding time to a lambda expression; the meaning here is that
the expression tert is available at compile (or program-transformation) time. This captures the usual
behavior of partial evaluation. If we wanted to define the binding time of an expression as stat when
it can actually be evaluated (and not partially evaluated) at compile time, a more appropriate rule for
(—1,), and similarly for (i—1I,), would have been:

AI:T v E:T#B
A F (lambda (I:Ty) E) : (I:Tl)iT #B-1

where the — operation is defined as (zVy) —z = y. 2

*Using the unitary rule, one can see that z — z = stat.



4.3 Correctness

A major issue is to relate the static information to the dynamic semantics. The following adequacy

theorem, akin to Subject Reduction, states that evaluation on type-erased expressions preserves type
and binding time information.

Theorem 1 (Adequacy) IfAFE:T# B and TypeErase(E) —» V, then ARV :T # B.

Proof: See Appendix A. O

If the adequacy theorem ensures the consistency of the static information with respect to evaluation,
it does not relate it with our intuition of partial evaluation. The following binding time property
expresses that the static semantics indeed defines a binding time analysis for the partial evaluation
defined by the dynamic semantics. The idea is that, if the binding time analysis says that the result
of a computation can be computed at compile time, i.e. is static, then the partial evaluation is indeed
able to evaluate that expression. Here, “E’ cannot be further reduced” means that there does not
exist B” # E’' such that E' — E".

Theorem 2 (Binding Time Property) Suppose A+ E : T # B and TypeErase(E) — E' such
that E' cannot be further reduced. If B = stat, then E' € Values.

Proof: See Appendix B. O

Whereas, in our simple language, the only values are lambda expressions, the extension of this
property to a full-fledged language would naturally incorporate constants as well.

5 Type and Binding Time Effect Reconstruction

In this section we show how type and binding time information can be checked and reconstructed in
expressions.

5.1 Simple Types

Following an approach suggested in [30] for control-flow analysis, the type and binding time effect
reconstruction process uses a two-staged approach. First, programs are assumed to be explicitly
typed via the simply-typed lambda calculus, using a standard type reconstruction algorithm (see for
instance [22]). Simple types ¢ are defined below:

1
| t; — ¢, Function Types

Then, type and binding time information is reconstructed from expressions decorated with simple
types.



The reconstruction algorithm ensures that all latent binding times in function types are unification
variables v. The functions New and Erase map between simple types and types used in R.

Erase(I) =1
Erase(I:T)) X-T) = Erase(Ty) — Erase(T)

New(I)=1
New(t; — t) = (I : New(t;)) £ New(t)

where I and v are a new identifier and a new unification variable respectively.

5.2 Effect Constraints

The reconstruction algorithm builds up constraints that are inequalities or equalities between effects
that may include unification variables. Type inequalities or equalities are destructured into effect
inequalities via the following Constraint function. The relation r below can either be C or =.

Constraint(I,r,J)= {}ifI=J
{(N1,=,N,)}, otherwise

Constraint((I : T}) i T el +0%) B—> T )=
Constraint(T,r,T') U Constraint(T"y,r,Ty) U {(B,r, B')}
where U denotes set union, {} the empty set and N; and N, are two distinct fresh constant binding
time identifiers. ({(N1,=, N,)} is equivalent to fail.)

The satisfiability of constraints is formalized via the notion of a model, which is a substitution
mapping unification variables to effect values (without unification variables). More generally, a sub-
stitution m on types and effects is defined as follows:

mlI = I, if I is not in the domain of m
m(I), otherwise

m((I:T) o) = (0 mT) B
m(B1 \ Bg) == m31 \% mBz

where alpha-renaming within function types (for identifiers I ) is assumed to be performed, if need be,
to make the definition well-formed. As a matter of convenience, m(z) is often written mz.

The definition of substitutions is generalized to environments in the usual way. The extension of
substitutions m and n of distinct domains is noted m + n, and general substitution composition mn.
A substitution can be defined on one point [z — y] or by extension [z — fz |z € S]. As a matter
of convenience, a substitution application [z — y]z is sometimes noted z[y/z].

A substitution m on unification variables models a constraint C , noted m = C, if and only if, for
all triple (B, 7, B') in C, mB r mB’. The following lemmas relate models and constraints.

Lemmal mE (CUC') = (mECAmMmEC)
Lemma 2 m |= Constraint(T,r,T') => (mT r mT")

Note that models are substitutions defined on unification variables and not the (lambda-bound)
identifiers that appear in user programs.



5.3 Type Reconstruction Algorithm

The type and binding time reconstruction algorithm R is presented in Figure 3. The first stage of the
algorithm, which implements type reconstruction for the simply-typed lambda-calculus, is assumed
to have been performed. Expressions analyzed by R are thus type-correct and decorated with simple
type information, as shown by the simple type annotation ¢ appearing in the implicit lambda case.

In a type environment A that binds identifiers to their type, for an expression E, R returns its
type T, its binding time B and an effect constraint C that defines the possible values of the binding
time unification variables present in T'and B. The actual types and binding times of E (there are
many of them via the (Conv,) rule) can be obtained by instantiating T and B with any model of C.

R(A, E) = case E in
I=>
if I € domain(A) then
let new variable v
T = New(Erase(A(I)))
in (T,v, Constraint(A(I),C,T) U {(I,C,v)})
else fail
(lambda (I:t) E) =>
let T} = New(t)
(T,B,C) = R(A[I: Ty], B)
new variables v, v/
C' = Ccu{(B,=,v)}
{v1.} = FreeVariables(C')
new constant Nj
new variables {vf.}
in (I:T)) =T ,v/,C' UC[N/I|[v},/vE)
(lambda (I:Ty) E) =>
let t; = Erase(T})
(T",B',C") = R(A, (lambda (I:t;) E))
(FsT) 2T =T
in (7", B',C’' U Constraint(Ty,=,T";))
(Ey Ey) =>
let ((I:T7y°) 25T ,B,,G) = R(A, E,)
(T1,B1,C1) = R(A, E)
in (T, By Vv,C U Cy[By/I)U Constraint(Ty,=,Ti"))

Figure 3: Type Reconstruction Algorithm

The various cases are rather straightforward and only need a couple of explanations. First, an
invariant of the algorithm is that the triple returned by R is already prepared to deal with a possible
use of the (Conv,) rule by the caller.

Then, in the implicit lambda case, the reason for the added constraint C'[N i I][V};' /vy,] is formally
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visible in the soundness proof. But, intuitively, its purpose is to ensure that the constraint C'is
satisfiable for any possible value of I. Indeed, notice that if the lambda is applied, I is replaced in
C' in the application case by the binding time B; of the argument. The satisfiability of the resulting
constraint is thus not enough to ensure that the function itself would be typable in any context. The
free unification variables {v};} of C' are gathered with the FreeVariables function and replaced by
new variables {V}e} which, together with the replacement of I by a fresh constant identifier N I, ensure

that C' is satisfiable in any application (thus the new constant N 7 representing an arbitrary argument
binding time).

Finally, in the application case, since expressions are assumed to be already simply-typed correct,
the result function type from R(4, E,) is well-defined; there is no need for unification in the type
domain. A similar argument holds for the explicit lambda case.

5.4 Correctness Theorems

This section states that the type and binding time reconstruction algorithm is correct with respect to
the static semantics.

Theorem 3 (Termination) R (A4, E) terminates or fails.

Proof: R is defined by induction over the domain of finite

The following theorem ensures the soundness of the type reconstruction algorithm with respect
to the inference rules. It states that any model of the binding time constraint returned by R is
appropriate to give ground types and binding times consistent with the static semantics.

Theorem 4 (Soundness) Let (T, B,C) = R(A, E) and m be a substitution:

(mEC) = mA+E:mT # mB

Proof: See Appendix C. O

The following theorem ensures the completeness of the type reconstruction algorithm with respect
to the inference rules. If the static semantics ensures that an expression has a type and a binding time,
then the reconstruction algorithm returns a proper type, binding time and constraint. Moreover, this
constraint admits a model that relates the computed type and binding time to their assumed ones.

Theorem 5 (Completeness) If mAF E: T # B, there exist T', B', C' and a model m' such that:
(T",B',C') = R(4, E)

m}‘ #C!

m'B' =B
miTr =
mA=mA

10



Proof: See Appendix D. O

We are left with the issue of determining appropriate models for binding time constraints.

Theorem 6 (Decidability) Every constraint constructed by R on a type-correct expression admits
a model.

Proof: This is an immediate consequence of the completeness theorem and the fact that the binding
time dyn can always be conservatively assigned to every type-correct expression. O

Practically, the following algorithm can be used to determine a constraint model. First, add new
slack unification variables to inequality constraints to replace them by effect equalities: B C B’ is
equivalent to B = B’ V v for a new variable v. Then, non-deterministically choose which unification
variables are to be assigned the binding time dyn. This eliminates some of the now trivial equations
since dyn is absorbent. The resulting constraint can then be solved in polynomial time by ACUI
unification using the algorithm defined in [19] on an algebra without a maximum element.

Note that, if one is willing to not use explicitly typed lambda expressions for which type equality
is mandated, or the dyn absorbent element, constraints can be built in such a way that only effect in-
equalities occur. A polynomial-time reconstruction algorithm in the spirit of [29] can then be designed
for such a system (see [30] for a similar example related to control-flow analysis).

Since constraint sets always have at least one solution, every type-correct program is effect-correct.
However, if the user were interested in checking that a particular expression (exactly) has a given
binding time, it would be easy to add a new special form to the language, such as (ensures B E) .
which would check that, among the possible binding times of ¥, one is equal to B in the binding time
algebra.

6 Extensions

This section addresses some possible language extensions of our framework to deal with polymorphism,
constants and data structures, recursion, side effects, and more advanced type reconstruction.

Polymorphism

Since the language defined previously is pure, let polymorphism ¢ la Standard ML [22] could easily
be added to it using the following rewriting:

(let (Iy Ey) E1) — E\[E,/I]

This rewriting is purely syntactical and does not require any change to either the static or the dynamic
semantics. Polymorphism would thus be introduced by specifying that the expression to which I, is
bound is replicated within the let body, thus relaxing the constraints between the different uses of I 0
The type reconstruction algorithm would not necessarily have to be applied on the larger, substituted
expression; using caching mechanisms, a more efficient implementation can be designed [19].

Finally note that polymorphism is only useful for type information in our framework. Indeed,
already having a polyvariant analysis entails that no new binding information is gathered with this
rule.

11



Data structures

The language defined in Section 3 does not support constants and, more generally, data structures.
Constants could be straightforwardly added to it by extending the initial dynamic and static envi-
ronments to constant identifiers. Arbitrary data structures could be implemented as higher-order
functions, taking advantage of polymorphism to deal with the various types for which they are used.
Significantly, no new static rules need to be added, just a proper extension of initial environments;
this is a tribute to the generality of our approach.

Side Effects

Since type and effect systems have been explicitly designed to deal with imperative constructs in the
presence of higher-order functions, one could extend our binding time analysis to functional languages
that admit mutation operations, following the lines of [29]. Reference values can be treated as any
other data, since types carry enough information through latent binding times to perform binding
time analysis. Our technique would thus be able to perform, within a unique framework, binding time
analysis of both functional and imperative language features, an interesting prospect?®.

Recursion

As defined in Section 3, our language is strongly normalizing. One way to add general recursion would
be to introduce a set of fixpoint combinator constants Y for each type t and provide a suitable type
for them, such as:

Yy £ (x:t)cinﬂ»t )st_a.g (y:t)dﬂl»t

The subtyping rule would coerce any function type to admit a dynamic latent binding time, thus
ensuring that a conservative binding time is deduced for the fixpoint value.

Although correct, this approach is not particularly attractive since, for instance, calls with static
arguments to recursive functions would be flagged as dynamic. Besides, extending the syntax of
binding time expressions would complicate the type reconstruction process. A better way to deal
with this problem would be to introduce a rec construct in the language with the following dynamic
semantics:

E = (rec(I1L,) Ey)
(Recq) EG[E/I] — E'
E — (lambda (L) E')

while its static semantics could be defined by the following rule:

I = (.{1 ITl)&*Tn
(Recs)  A[I:'T[,:Ty] + E, : Tp # B,
A F (rec(I L) Ey): T # stat
Note that adding recursion to the language implies that the adequacy theorem of Section 4 must be

restricted to terminating expressions. Ultimately, partial evaluation may also fail to terminate in this
case; the approach suggested in [12] can be used to detect expressions that are always terminating.

*Note that adding mutation operations would badly interact with the simple-minded polymorphism scheme presented
above, see [29] for a better approach.
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7 Conclusion

We presented a new, simple and elegant static analysis approach to obtain polyvariant and separate
binding time information for higher-order typed functional languages. It relies on a type and effect
system. By allowing function types to be parameterized over the binding times of their arguments,
different uses of the same function can have different binding times via a straightforward instantiation
of its polyvariant type. By providing binding time information in function types, module signatures
allow binding time analysis to be separately performed.

We give a complete description of our binding time analysis framework, show how both type and
binding time information can be expressed, how they relate to the dynamic semantics and give a type
and binding time reconstruction algorithm which is proved correct with respect to the static semantics.

Our approach can also be used to control the program transformation process. Indeed, experience
in specializing programs shows that in some cases constants should not be propagated to avoid code
explosion or non-termination. These problems are usually circumvented by either providing some
analysis or asking the user to supply annotations aimed at controlling the propagation process. In our
framework, controlling constant propagation is naturally captured by the type language, via adapted
explicit binding time declarations. This provides the user (or analyses) with a uniform and high-level
way of annotating programs.

Our approach could be extended to other applications such as strictness analysis. In fact, as shown
in [5] for first-order programs, the strictness behavior of a function is naturally captured by a boolean
function, just like the binding time behavior. Qur preliminary studies in applying our approach to the
strictness problem are very promising.
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In the following proofs, we assume that all identifiers have been renamed by alpha-conversion so
that each identifier is bound at most once.

A Adequacy

Theorem (Adequacy) If AFE:T# B and TypeErase(E) — V, then AF V:T # B.
Proof: The proof is by induction on the length of value derivation.

e =]

Assuming A+ I:T # B and I — I, we must show that AFI:T # B, which is a tautology.

e £ = (lambda (I:Ty) E)

Assume that A+ (lambda (I:T}) E,): T # B and TypeErase((lambda (I) Eo)) — V. By the (—I,)
rule:
B,
I:T) =T, CT
statC B
A[IT]]"EU ITO #Bg
By the dynamic semantics, we must have:

TypeErase(Ey) — E'y
V = (lambda (1) E'y)

Induction then yields: A[I : T3] & E'g : Ty # B,. By the (i—1I,) rule of the static semantics, we
get:
Al (lambda (I) Ey) : (I: Ty) B—OrT.] # stat

and, by the (Conv,) rule, the required result follows. (The case for implicitly typed lambda expressions
is similar.)

[ ] E= (Eg El)

Assume that A+ (Ey By) : T # B and TypeErase((Ey E,)) — V, we must show that A+ V: T # B.
By the first part of the antecedent and the static semantics, we must have:
T'[B/I|CT
B,V B'[B,/I|C B
r
AI‘”EO:(IZTI)B—’T’ #Bﬂ
A = EI]_ : Tl # B]_

By the dynamic semantics, we must have:
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TypeErase(E,;) — (lambda (I) E')
TypeErase(E,) — E';
FE'E /I —=V

By induction, we get:
Ak (lambda () B'): (I: T)) B5 1 2 B,
Al E’] : Tl # _Bl

By the (i—I,) rule of the static semantics, we must have: All: ) - E' : T' # B'. Using the
substitution lemma (see Lemma 3 below), we get:

AP ¢ B(BY/1) T (B, /1) # BB,/
Since all identifiers are bound at most once, AIBI = A. Using induction once more, we get:

AFV:T'[B,/I] # B'[B,/I]

By the (Conv,) rule,we get the required result: A+ V: T # B. O

Lemma 3 (Substitution) Assume:

I ¢ Freeldentifiers(T',E',B') (1)
AF E:T#B 2)
AI:T| - E:T#B (3)

and B’ does not include any lambda-bound identifier from E, I is not bound in E and E has no explicit
types. Then

AP v BB 1) 1B /1 # BB/

where A}B is as A, but all occurrences of I in the types of bound values are replaced by B'.

Proof: The proof is by structural induction on E.

e E=1]

By (3) A[l : T'] - I: T # B, so by (Conv,) and (Var,) we must have 7' C T and I T B. We need

to prove that 7" & T{B'/I]. Since T' C T and I & Freeldentifiers(T"), the inequality holds for all

substitutions, especially for B'. Also I[B'/I]= B' C B[B'/I|. Now by using (2) and (Conv,) we get:
A I[E'/I] : T[B'/1] # B[B'/1],

!
As I no longer occurs in the expressions, the same holds with AIB for A.
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o E=J

To complement the preceding case, assume J # I. By (3) we have:
AI:T'|FJ:T#B

Thus, by (Conv,) and (Var,), we must have A(J) C T and J C B. We need to prove:

A v yimBn 4 BB

which is obvious by the definition of AIB!.

¢ E = (lambda (J) Ey)

From (Conv,), (—1,) and (3), we must have (J : T3) s, Ty C T where:
Al:T[J:Th|F Ey: Ty # B,
By induction, since A[I: T'][J : Ty) = A[J : Ty][I : T"] :
AP 7 BB/ I - BolB'/1): To[B /1] # Bo[B'/1]
By (i—L,):

A?I t (lambda (J) EG[E'/I]) : (J: Tl[B’/I])BO['ir/I] To[B'/1] # stat

Now, J ¢ Freeldentifiers(B'), use the definition of substitution and finally use (Conv,) to get the
required result.

e F = (EO EI)

By (convS), (—1,) and (3) we must have T3[B,/J] C T and By V B,[B,/J] C B where:

AT v B:(:T) 281 28,
A[IT’] = E1 :Tl # Bl

By induction:
{ A7 v BB/ (1) BT )B/0 # BB
A%+ mE/M:TB/N# BB/
By definition:
(BolE'/T) BA[E'/1)) = (Bo B)E'/T]
{ 2 ryem = a2 e

1l
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By (—I,)

A7+ (Bs B)[E'/1): (BB /I)((BUB /1)) # BolB'/1)V (BylB'/I)By(B'/1]/

Since, by our assumptions, B’ does not contain any lambda-bound identifier from E (here J), we can
interchange the order of substitutions and get:

A7 ¥ (By BB/ : (T(By/J)(B'/1] # (Bo v BuBy/T)[B'/1]

Using (Conv,) and the monotonicity of the substitution [I — B'] we get the required result. O

B Binding Time Property

Theorem (Binding Time Property) Suppose A- E: T # B and TypeErase(E) — E' such that
E' cannot be further reduced. If B = stat, then E' € Values.

Proof: The proof is by structural induction on E. In all cases, we have A - E' : T # B by the
adequacy theorem.

e B =1
Using the adequacy theorem, with the (Var,) and (Conv,) rules, I C B. Therefore, B # stat, and

the result holds vacuously.

e E' = (lambda (I) Ey)

E’ clearly is of the appropriate form.

® Er = (Eg El)

Since E' is assumed irreducible, the following transistion of the dynamic semantics must be impossible
for all T and E'y:

Ey — (lambda (I) E'y)
as, otherwise, the (—E,) rule would be applicable. By the static semantics, the following must hold:

A+ B:(:m)BT 28
A F E]_:T]_#B]_
BoVBy[B/I] C B

As B = stat by assumption, By = stat. By induction, since (Ey Ey) is fully reduced, E, also is,
and Ey = (lambda (I) E'y), which is a contradiction. O
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C Soundness

Theorem (Soundness) Let (T, B,C) = R(A, E) and m be a substitution:

(mEC) = mAFE:mT # mB

Proof: The proof is by induction on the structure of expressions.

e =171

Since m |= Constraint(A(I),C,T) U{(I,C,v)}, using Lemma 1 and the definition of models, we get
m(A(I)) C mT and mI C mw.

(T, v,C) =R(4,)
=1 € domain(A) (by definition of R)
=AWt I:A(I) # I (by typing rule (Var,))
=mAFI:m(A(D)) # mI
=>mAt I : mT # mv (by typing rule (Conv,))

¢ £ = (lambda (I:t) Ep)

Since m = C' U C'[Np/1)[v},/vr,), using Lemma 1, we get m |=C'.

(To:BoaCu) = R(A[Ii TI], Ey)
=m(A[l : T1]) F Eo : mT, # mB, (by induction hypothesis)
=>(mA)[l: mT1]| + By : mTy # mB,

=mA F (lambda (I) Ey) : (I: mTl)mﬁg mTy # stat (by typing rule (i—1;))
=mA - (lambda (I) Ey) :m((I:T1) 25 T, ) # stat (since mB, = mv)
=>mA t (lambda (I) Ey) : m((I:Ty) > Ty ) # ms/ (by typing rule (Conv,))

o E = (lambda (I:T}) E)

Since m = C' U Constraint(Ty,=,T;'), using Lemma 1, we get m |= C'.
Since (I", B',C") = R(4, (lambda (I : t;) Ey)), and (I: T;*) X5 Ty’ =T, by induction, we get:

mA - (lambda (I:¢1) Eo) : (I:mT"1) ™% mT", # mB' (by typing rule (—1,))
—mAt (lambda (I:t,) Ey) : (I:mTy) % mT', # mB' (since mTy' = mT))

Thus, by typing rule (i—1,), we get mA[I : mTy] - Ey : mT,' # mv. Using rule (—L,), we get:

mAF (lambda (I:T3) Ey) : (I:mTy) % mT,' # stat (by typing rule (—L,))
=>mA | (lambda (I:T3) Eo) : m((I:Ty") 2> Ty’ ) # stat (since mTy' = mTy)
=mA F (lambda (I : T1) E,) :mT" # mB’' (by typing rule (Conv,))
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@ EZ(EO El)

We know that m |= C; U Cy[B, /1] U Constraint(T;, =,T1"). Since m | G, [B; /1], there exists a model
myq such that my = Cy. Indeed, knowing that Co[B1/1] is satisfiable means that C, is too, since R
specially checks that C; is satisfiable for any N 7 inlieu of I in the lambda case (see the added constraint
C'[Np/1[vy./vy,))- This added constraint is needed since, otherwise, C, [B1/1] could be true, but C,
not, because of the particular current value of B;.

For instance, assume that the constraint C, says (I, =, stat) for the body of Ey; this is not satisfiable
and the program should not be accepted. But if E, is used in an application where the argument E,
has a binding time B, that is stat, Cy[stat/I] is satisfiable ... which is something we do not want.
We want all subexpressions of an expression to be type and effect correct, which is the reason for the
special C'[Np/I][v,/vy;] constraint.

Let thus my be the model:

my = [Nj— Ilmlv, — vi, | vIli€{vy}], on the set of vy,
m, otherwise

then, my |= Co. Note that m needs to be used after [N 1 = Imlvr, — v,] to recover the values of
the v7. related to Ny in Cy (and corrupted after the substitution [N7 — I]). Also, note that I can be
prevented (via alpha-renaming) from appearing in the domain and image of m

Then, m = [z — (moz)[myB,/I] | ¢ € domain(m)].
By induction, m¢A+ E, : (I: mgﬂ')mi»v moI’ # myB,.

Since m, differs from m only on I, which could have been alpha-renamed, mg can be interchange-
ably used in lieu of m on any expression but v and T' (which are the only ones truly dependent on
I). Thus me |= C; and, by induction, moA b Ey : meT; # myB,. Using (—E;), moTy = meT’ and
mgA =maA:
=mAt (Eo ) : (moT)[meB1/I] # moBy V (mov)[myB:/I] (by typing rule (—E,))
=mA (Ey Ey) : (mT) # mB, V mv (by definition of m)
=mAF (Ey E;) : (mT) # m(By Vv) O

D Completeness

Theorem (Completeness) If mAt E : T # B, there exist T', B', C' and a model m' such that:
(T",B',C") =R(A, E)

i’ =
m'B' =B
m'T =T
m'A=mA

Proof: The proof is by structural induction on E and on the number of argument types in terms.
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e K =17

Suppose that mA+ I: T # B.

==I € mA and (mA)(I) E T (by typing rules (Var,) and (Conv,))
=lcA

= there exists 7" = New(Erase(A(I)) and v such that:

(T, v, Constraint(A(I),C,T'") U{(I,C,v)}) = R(4, E)

Let
B' =v
C' = Constraint(A(I),C,T") U{(I,C,v)}
m =m+ [I/ — B]
m' |= Constraint(T',=,T)
Note that m' exists since T" only uses new variables, which are mapped in m’ to the appropriate
latent effect variables of 7.

e mA =m'A since v and the free variables of 7" are new.

e ICB
=ICm'v .
=m/I C m'v, since m' is only defined on variables.
=m' = {([,C,v)}

Also m' |= Constraint(T",=,T)

=m'T" = m'T =T, since T has no variables.

= (m'A)(I) C m'T", since (mA)(I) C T and mA = m'A.
=m' |= Constraint(A(I),C,T")

Thus,:m! =C%

e mMB' =m'v=B.

e m'T" = m/T, by definition of m/'.
=>m/T" =T, since T has no variables in domain(m’).

o £ = (lambda (I) E)

Suppose that mA F (lambda (I) E,) : T # B. By definition of C and the (i—1I,) rule, there exist T}, T}

and By such that

{ B =1

(mA)I: Tk Ey: Ty # By
Let v} be a new variable such that (mA)[I: T}] = (m + [, — T3])(A[I : #}]). By induction, there
exist T, B'y,C'y, mj such that:
R(A[I : v4], By) = (T"y, B'y,C'y)

mh | C'y
m’oT’g = T[;
mBBIQ = Bo

mo(A[I: v]) = (m+ [v; — Ta])(A[L : 1))
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By definition of R, there exist T", B',C',C",v,V/, N, {vy}, {v}i} such that:
R(A,E)=(T",B',C")
T'=(I:v) T,
Bf - V’
C" =C'4U{(By,=,v)}
¢’ =" uC[Ny/1lv} fvr]

Since v, and v}, are not in the domain of mj, define m’ as follows:
m' =my+ [v— By|+ [V — B] + [V}, = (movp)[N7/1] | vy, € (v

e m' |= C', by definition of m/.
e m'B' =m/v' = B.
/
o m'T" = (I:m'v)) 24 m'T',
—=m'T = (T:mi!) B0 7y
—nT = C:n)2Tr =1

e m'A=myA =mA.

o I = (1ambda (I % T]_) Eo)

Suppose that mA b (lambda (I : T}) E,) : T # B. By definition of C and the (—I) rule, there exist
T,,Ty and By such that
{ (I'Tl)&!‘TO =il
(mA)[I . Tl] = Eg i Tg # B()
Using the (i—1,) rule, one gets that mA + (1ambda (I) E,) : T # B. By induction on the number

of explicit argument types, there exist 7", B”,C",m" such that:
R(A, (lambda (I:t,) E,)) = (T",B",C")

m” i= CH'

m-’-’TH — T
mffof —_ B
m'A=mA

Lt T'=T"=(I:T,) 2 T),B" = B",C' = C" U Constraint(T,,=,T";) and m' = m".
P mITl — mFITH — T'

® m.’B.F — m.’.’BH —_ B

y G,

Since m'(1:T) 2> T)=Tand T = (I: Ty) Bs, I, , then m'T"; = T} = m/T;. One gets
m' = Constraint(Ty,=,T",).

Thus, m' = C'.

e mA=m"A=mA.
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o E=(E E)

Suppose that mA & (E, E,) : T # B. By definition of (—E,) rule, there exist T}, B;,T}.B, and B,
such that

mAI_EU: (I.T]) &Tz #Bn

! mMAFE :T1 # B,

T= Tz[Bl/I]

L B = Bﬂ VBz[B1/I]

By induction, there exist T";, B';,C’;,m) such that
( R(4,Ey) = (T, By, C'y)

ml =,

s miTh =T,

miB'; = By

| mA=mA

Similarly, by induction, there exist 1”3, B'5,C’y,m}, T"; such that

rr B’ i !
R(A,Eo) =(I:T 1) — T’y ,B',C)
my = Clo
mBB?O ——‘B(]

]
miT", =T,
! [ A
m’oT?z = Tz

3

myA = mA
By definition of R, let T", B’,C’ be such that:

Tr = T’g

B' = Brﬂ \% B’Q

C' =C'1 UC'y[B'1/I) U Constraint(T'y,=,T",)
The domains of m} and mj are disjoint. So, using an idea similar to the one used in the soundness
theorem, let m' be defined as:

m'z = [Ny— Bilmg[vy, — V}i]a:, if z is one of the vy, in C'g

myz, for the other variables in the domain of mj
m;z, otherwise

Note that for a variable other than vy, in C'y (i.e., one of the v7.), one has (myz)[B/I] = mjz since
I has been explicitly substituted away in C’y. Thus, m'z = (m}z)[B;/I] on the domain of ik

e m' |=C';, by definition of m'.

For any (b,r,b") in C'o, since mj |= C'y, one has: (m'd)[B,/I] » (m'¥')[B,/I]. Thus, for any
(6[B"y/1],7,b'[B'1/1]) in C's[B'1/1]:

m/ (6[B'1/1]) = (m'b)[m'B'1/1] = (m'b)[B1/1]

m! (b'[B'1/1]) = (m'b)[m'B'1 /1] = (m'¥')[By/1]

=m/(b[B'1/I]) r m'(Y'[B'1/1])
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=m' = C'y[B"1/I]

Also:
Ty =i T =T}

m'T"y = (myT",)[B1/I] = Ty[B,/I] = T3, by possible alpha-renaming of I
=m' |= Constraint(T",,=,T",)

Thus, m' = C'.

¢ m'T" =mT%
= (myT"3)[By/1]
=D[B/I|=T

o m'B =m/(B,yV B,)
= (moB'0)(B1/I]V (m{B'5)[B,/I]
= By[B1/1]V B,[B, /1]
=B,V Bg[Blfl]
= B

e m'A = (m]+mj)A=mA
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