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Abstract

Many abstractions of program dependences have already been

proposed� such as the Dependence Distance� the Dependence Di�

rection Vector� the Dependence Level or the Dependence Cone�

These di�erent abstractions have di�erent precision� The min�

imal abstraction associated to a transformation is the abstrac�

tion that contains the minimal amount of information necessary

to decide when such a transformation is legal� The minimal ab�

stractions for loop reordering and unimodular transformationsare

presented� As an example� the dependence cone� that approxi�

mates dependences by a convex cone of the dependence distance

vectors� is the minimal abstraction for unimodular transforma�

tions� It also contains enough information for legally applying all

loop reordering transformations and �nding the same set of valid

mono� and multi�dimensional linear schedulings than the depen�

dence distance set�

Introduction

The aim of dependence testing is to detect the exis�
tence of memory access con�icts in programs� When
two statements have a con�icting access to a datum�
the dependence establishes that the execution order of
the two statements cannot be modi�ed without possi�
ble changes to the program semantics� A transformation
can be applied if dependence relations are still preserved
after the transformation�
Many transformations require more than a simple de�
pendent�independent information to be legally applied
on a set of statements� Dependence relations are rep�
resented by �nite dependence abstractions that contain
the data �ow dependences of the statement set�
Many dependence abstractions have already been pro�
posed� such as the Dependence Distance �Mura	
�� the
Dependence Direction Vector �Wolf��� the Dependence
Level �AlKe�	� or the Dependence Cone �IrTr�	�� These
di�erent abstractions have di�erent precisions� They
are presented in Sections  and ��
Depending on their precisions� the abstractions contain
either not enough or su�cient or too much information
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to decide if a transformation T can be legally applied
or not� Section � describes the conditions that must be
satis�ed to legally perform T and the minimal informa�
tion that must contain an abstraction to be used by the
legality test of T � Among the valid abstractions� one
contains the minimal information necessary to decide
when T is legal� Section � gives the minimal abstrac�
tion associated to reordering transformations such as
loop reversal� loop permutation� unimodular transfor�
mations� partitioning and parallelization� This notion of
minimality is interesting when the compiler�parallelizer
needs an exact answer to the question could T be legally
applied � from the cheapest abstraction in time and
space�
Section � shows that the dependence cone� which is a
valid abstraction for all loop reordering transformations
and the minimal abstraction for unimodular transfor�
mations� allows in addition to �nd the same set of valid
mono� and multi�dimensional linear schedulings than
the dependence distance vectors�

� Notations

The notations used in the following sections are�
� �in is an element of the loop nest iteration set In�
� � denotes the lexicographic order� while � is the

execution order�
� S��i� is the �i�th iteration of Statement S�
� ��Ab is the dependence relation represented by Ab�

straction Ab�

� Di�erent Abstractions

Many �nite abstractions have been designed to repre�
sent in�nite sets of dependences in nested loops� They
describe the data dependences with more or less e�ec�
tive accuracy� Depending on their precision� these ab�
stractions contain either not enough� minimal or too
much information to decide if a transformation can be
legally applied� The di�erent abstractions and their pre�
cisions are illustrated on example in Figure
�






DO I � �� n

DO J � �� n

S� T�I�J� � T��I�J	��

ENDDO

ENDDO

Figure 
� Program 


The dependence test must decide the satis�ability of the
following dependence system��������


 � i � n

�i � i� 
 � j � n

j � 
 � j� 
 � i� � n


 � j� � n

The equalities characterize possible data access con�icts
between T�I�J� and T��I�J	��� while the inequalities
represent the constraints on the loop indices�

��� Dependences between Iterations

The abstraction DI�L� is exactly the set of dependent
iterations between the statement instances of a loop nest
L�

DI�L� � f ��i� �i�� j �S
� S � L� S
��i� �� S��i�� g

DI�L� is obtained by solving an exact integer linear
programming system for each couple of array references
belonging to the nested loops� For Program 
� DI rep�
resents in Figure  all the solutions of the dependence
system�
DI�P
� � f��i� j�� ��i� j � 
�� j 
 � i � n� 
 � j � ng�
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Figure � DI for program 


Since no approximation is made on the exhaustive list
of dependent iterations� this abstraction cannot be used
for in�nite set of dependences� Thus� abstractions ap�
proximating this exact set have been suggested� We
quickly review the most important dependence abstrac�
tions� used for optimizing and parallelizing programs� in
the following sections�

��� The Distance Vector

Dependence distance vectors are used to relatively char�
acterize a set of dependent iterations�

D�L� � f �d j ���i� �i�� � DI�L�� �d � �i� ��ig

Taking Program 
� the dependence system may be
rewritten in terms of distance vectors��������


 � i � n

di � i 
 � j � n

dj � 
 
 � i � di � n


 � j � dj � n

The dependences represented in Figure � are speci�ed
by� D�P
� � f�k� 
� j 
 � k � ng� When comparing
with Figure � note the di�erent space� �i� j� is replaced
by �di� dj��
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Figure �� D for Program 


Compared to DI� the use of D reduces the amount of
memory needed to store uniform dependences� � How�
ever� in many cases� the dependence distance is not con�
stant� So� abstractions approximating D like the De�
pendence Polyhedron� the Dependence Cone� the Depen�
dence Direction Vector and the Dependence Level have
been designed to cope with these cases�

��� The Dependence Polyhedron

The dependence polyhedron DP �L� approximates the
set of distance vectors D�L� with the set of points that
are convex combinations of D�L� vectors� It constrains
the set of integer points of the D�L��s convex hull�

DP �L� � f�v �
kX
�

�i�di � Zn j �di � D�L�� �i � ��
kX
i��

�i � 
g
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Figure �� DP for Program 


The polyhedron DP �L� can be concisely described by
its generating system �Schr���� which is a triplet made of

three sets of vertices� rays and lines� �f�vig� f�rjg� f�lkg��
Even if DP �L� approximates D�L�� it keeps all the in�
formation useful to legally apply reordering transfor�
mations as abstraction D� Figure � illustrates DP �L�

�usually known as constant dependences





for Program 
� The convex hull contains new vectors�
��� 
�� ��� 
��etc���

��� The Dependence Cone

The dependence cone DC�L� approximates D�L� with
the set of points that are positive linear combination of
D�L� vectors� It is de�ned as�

DC�L� � f �v �
Pk

i�� �i
�di � Znj �di � D�L�� �i � ��Pk

i�� �i � 
g
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Figure �� DC for Program 


The main advantage of Abstractions DP and DC is
that� in many cases� only one structure is necessary to
the representation of the information contained inD�L��
They can be automatically computed and accurately so
when array subscript expressions are a�ne� They are
easy to use to decide program transformation validity�
Algorithms for computing DP �L� and DC�L� are de�
scribed in �IrTr�	� and �Yang����

��� The Dependence Direction Vector

Abstractions DP �L� and DC�L� represent approxi�
mated sets of D�L�� These three abstractions contain
the information useful to legally apply transformations
that reorder iteration sets� However� transformations
such as loop interchange or permutation� that only mod�
ify the sign or the order of the iteration set� do not need
the actual distance information� So� abstractions like
DDV �L� �Wolf�� and DL�L� �AlKe�	� relating only
the sign or the level of dependence vectors have been
suggested�
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Figure �� DDV for program 


Each Dependence Direction Vector element is one of
f� ��� �g� Other elements like ���� 	 may be used
to summarize two or three DDV�s� The DDV �L� ab�
stracting the dependences for a loop nest L is de�ned
as�

DDV � f ���� ��� 			� �n� j �S
� S � L� S
��i� �� S��i���
ik �k i�k �
 � k � n�� �i � f���� �gg

For Program 
� DDV �P
� � f��� ��g� It is repre�
sented in Figure ��

��� The Dependence Level

The dependence level DL has been introduced by
Allen � Kennedy �AlKe�	� for the vectorization and
parallelization of programs� It gives the nest level of
the outermost loop l that carries dependences� when
dependence vector component is positive� To preserve
the program semantics� Loop l must be kept sequential�
Then� the lexico�positivity of the loop dependences are
preserved and all inner loops may be parallelized if no
other dependence exists� DL�L� is de�ned as�
DL�L� � fk j ����� ��� 			� �n� � DDV �L��

�i is � �
 � i � k � 
� 
 �k � � g�
For Program 
� DL�P
� � f
g� Dependences are rep�
resented in Figure 	�
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Figure 	� DL for program 


� Abstraction Precision

The six abstractions of dependences surveyed in the Sec�
tion  have di�erent precisions as was shown in Figures
 to 	� Abstraction DI enumerates all the dependent
iterations when the other abstractions express or ap�
proximate the dependence distance vectors of the loop
nest�
To determine the precision of these abstractions� we de�
�ne a minimal comparison set of dependent iterationsfDIAb for each abstraction Ab� fDIAb is the set of depen�
dent iterations corresponding to the dependences repre�
sented by abstraction Ab�fDIAb � f ��i��i� �d� ��i ��i� �d � In� �d � eDAbg

where eDAb is the set of dependence Distance vectors
corresponding to the dependences represented by ab�
straction Ab�
To compare two ordinary abstractions Ab
 and Ab� the
two sets fDIAb� and fDIAb� are analyzed�

De�nition � Ab
 is more precise than Ab
�noted Ab� � Ab�� if fDIAb� � fDIAb��

�



To compare abstractions approximating D� the setseDAb� and eDAb�� having a lower memory cost than fDI �
could be used��
According to De�nition 
� the hierarchy of abstraction
precisions is� DI  D  DP  DC  DDV  DL�
Figures ���������	 illustrate this hierarchy�

� Transformations

In order to exploit the implicit parallelism contained in
programs� loop transformations are applied on program
loop nests� These transformations reorder statements
and iterations in order to explicit parallelism�
In the following sections� we distinguish three classes of
transformations�

A program restructuring transformation

reorders the statements and iterations of the pro�
gram� It transforms the statement S��in� in a new
one S���jm�� As an example of this kind of trans�
formations� loop distribution distributes the state�
ments of a loop nest into di�erent loop nests having
the same iteration set as the initial code�

A reordering transformation is a particular pro�
gram restructuring transformation that only re�
orders loop iterations without changing the order
of statements in the loop nest� It is a bijection be�
tween two iteration sets that might have di�erent
dimensions� It transforms the statement S��in� into
a new one S��jm� where n might be di�erent from
m� Strip mining� that reorders by partitioning the
iteration set into several iteration blocks� belongs
to this class of transformations�

A unimodular transformation is a particular re�
ordering transformation that is a bijection between
two iteration sets having the same dimension� Loop
interchange belongs to this class�

The conditions that must be veri�ed� for any class of
transformations� for legally applying the transformation
are presented�

��� Legal Transformation

A transformation is legal if the program has the same
semantics after transformation than before� The new
execution of statement instances must preserve all the
loop nest lexico�positive dependences �Bane����

Program restructuring transformation

De�nition � Performing a restructuring transforma�
tion T on a loop nest L is legal and is noted legal�T� L�
if and only if	

�Proof is given in �Yang	
�

for any dependence Si��in� �� Sj��i�
n
� of L such that

T �Si��i
n�� � S�i��j

m� and T �Sj��i�
n
�� � S�j�

�j�
m
��

the condition S�i��j
m� � S�j�

�j�
m
� is veri
ed�

De�nition  ensures that the lexico�positivity of the
dependences is preserved after transformation� When
an abstraction Ab di�erent from DI is used� De�ni�
tion � gives the conditions for testing the legality of the
transformation� The dependences are expressed here in
function of fDIAb� the set of dependent iterations corre�
sponding to the dependences of Ab�

De�nition � Performing a restructuring transforma�
tion TAb on a loop nest L is legal� which is noted
legal�T� L�Ab� if and only if	

for any dependence Si��in� �� Sj��i�
n
� of L such that

� ��i� �i�� � fDIAb� T �Si��i
n�� � S�i��j

m� and

T �Sj ��i�
n
�� � S�j�

�j�
m
��

the condition S�i��j
m� � S�j�

�j�
m
� is veri
ed�

If the application of T is legal according to the condition
of De�nition � then the condition of De�nition  is also
veri�ed� The opposite proposition is not true�

Theorem � Let T be a restructuring transformation�
legal�T� L�Ab� �� legal�T� L�

Proof�
Assuming that TAb is legal according to the condition
of De�nition �� then�
���i� �i�� � fDIAb with T �Si��i

n�� � S�i��j
m� and

T �Sj��i�
n
�� � S�j��j

�
m
�� the condition S�i��j

m� � S�j��j
�
m
�

is veri�ed�
Because DI is the most precise dependence abstraction�
we have DI � fDIAb that means that�
���i� �i�� � DI �� ��i� �i�� � fDIAb�
It implies that
���i� �i�� � DI such that T �Si��i

n�� � S�i��j
m� and

T �Sj��i�
n
�� � S�j��j

�
m
�� the condition S�i��j

m� � S�j��j
�
m
�

is also veri�ed�

Reordering transformation

Reordering transformations only reorder the iteration

set of a loop nest� So� the dependences Si��i
n� �� Sj��i�

n
�

between references Si and Sj correspond to dependences
�in �� �i�

n
between iterations� Such dependences can be

simply represented using dependent iterations �i �� �i��
All the dependences between the di�erent statements of
L can be characterized by a single set DI�L� de�ned as�
DI�L� � f�i�� i��ji� �� i� � �Si�i�� �� Sj�i��
i� �� i�g
The legality condition for a reordering transformation�
translating the preservation of the lexico�positivity con�
straints� follows�

De�nition � Performing a reordering transformation
T on a loop nest L is legal� and is noted legal�T� L�� if

�



and only if	

� ��in� �i�
n
� � DI�L� such that T ��in� � �jm and

T ��i�
n
� � �j�

m

the condition �jm � �j�
m

is veri
ed�

As for restructuring transformations� when an abstrac�
tion Ab di�erent from DI is used� a de�nition using
dependences in function of fDIAb is derived from De��
nition ��

����� Unimodular transformation

An unimodular transformation �Bane���� �WoLa�
��
�LiPi�� is a bijection between two iteration sets In and
I

�n having the same dimension� It corresponds to an
unimodular change of basis M with �I� � M � �I� The
test of legality is�
if �i��

��i�� then i�� � i�� must be veri�ed after the trans�
formation de�ned as i�� � M � i� and i�� � M � i��
This condition can be expressed in terms of dependence
distance vectors as� �d� � � must be veri�ed after trans�
formation� with �d � i�� i�� �d� � i��� i�� and �d� � M � �d�
Because the unimodular transformations reorder itera�
tion sets only� a single set�
D�L� � f�d j �d � �i�� �i�� �i��

��i�
 �i� �� �i�g can be used to
characterize all loop nest dependences� The following
de�nitions and theorem describe the legality tests for
unimodular transformations�

De�nition � Performing an unimodular transforma�
tion T on a loop nest L is legal if and only if	

��dn � D�L� such that Tunimod��d
n� � �d�

n
�

the condition �d�
n
� � is veri
ed�

As for reordering transformations� when an abstraction
Ab di�erent from D is used� a de�nition using eDAb is
derived from De�nition ��

��� Valid and Minimal Abstraction

The tests of legality for restructuring� reordering and
unimodular transformations have been introduced in
Section ��
� These tests use the abstractions that are
derived from the dependent iteration set � or from the
dependence distance vector set � to verify the validity of
a transformation� However� the information contained
in these abstractions is often too rich� and other ab�
stractions less precise and having a lower computation
or memory cost� could be used�
We de�ne a valid abstraction associated to a transforma�
tion T as an approximate abstraction containing enough
information to decide the legality of T � Among the ab�
stractions� DI is the most precise� So� if an abstraction
Ab �di�erent from DI� contains the same information

�DI or fDIAb when Ab is di�erent from DI

�
D or eDAb when Ab is di�erent from D

as DI to decide that the transformation T is legal� then
this abstraction Ab is valid for T �

De�nition 	 Let Ab be an abstraction less precise than
DI and T a restructuring transformation� If for any
loop nest L� legal�T� L�DI� �� legal�T� L�Ab� � then
the abstraction Ab is valid for testing the legality of the
transformation T �

Several valid abstractions associated to a transforma�
tion may exist� In fact� all abstractions more precise
than a valid abstraction are also valid�

Theorem � Let Ab be a valid abstraction for testing
the legality of a transformation T � Any abstraction Abi
such that Abi  Ab is also a valid abstraction for testing
the legality of T �

Proof�
We know that Ab is a valid abstraction for T �L�
and that Abi  Ab� Then� in accordance with De�nition
�� legal�T� L�DI� �� legal�T� L�Ab�	
De�nition � gives the equivalence�
legal�T� L�Ab� �� � ���i� �i�� � fDIAb with T �Si��in�� �

S�i�
�jm� and T �Sj��i�

n
�� � S�j�

�j�
m
� then S�i�

�jm� �

S�j��j
�
m
���

By hypothesis Abi  Ab� so � ��i� �i�� � fDIAbi then

��i� �i�� � fDIAb�
By combining this hypothesis with the previ�
ous equivalence� the following assertion is veri�ed�
� ��i� �i�� � fDIAbi with T �Si��in�� � S�i��j

m� and

T �Sj��i�
n
�� � S�j��j

�
m
�	 Then S�i��j

m� � S�j��j
�
m
�	

That is equivalent to�
legal�T� L�Ab� �� legal�T� L�Abi��

and implies legal�T� L�DI� �� legal�T� L�Abi��

Among the valid abstractions associated to a transfor�
mation� there is one that contains the minimal informa�
tion necessary to decide whether the transformation is
legal� This abstraction is called minimal and is de�ned
by the following De�nition�

De�nition 
 Let Ab
 be a valid abstraction for the
transformation T and Ab be a another abstraction such
that Ab
  Ab and ��Ab� � Ab
  Ab�  Ab�
If �L such that legal�T� L�Ab
� 
 ��legal�T� L�Ab���
then abstraction Ab
 is minimal for testing the legality
of the transformation T �

Minimality is relative to a particular set of abstrac�
tions� The minimal abstractions associated to reorder�
ing transformations are presented in the next section�

� Minimal Abstraction and

Transformation

Dependence abstractions and loop transformations are
linked� The dependences are used to test the legality

�



of a transformation when it changes the program de�
pendences� Because the abstractions have di�erent pre�
cisions� a transformation may be declared illegal or le�
gal depending on the abstraction which is used� Thus�
choosing a valid abstraction associated to a transforma�
tion is important for programs�
Among the valid abstractions associated to a transfor�
mation� one is the minimal abstraction� It contains the
minimal information necessary to decide if the trans�
formation can be applied legally or not� This section
focuses on the minimal abstraction associated to the
following transformations� loop reversal� loop permuta�
tion� unimodular transformation� partitioning and par�
allelization�
For any T among these transformations� a section
presents the e�ect of T on the dependences� the
minimal� abstraction associated to T and the legality
test applied to T �
Due to space limitation� the proofs of the minimality of
an abstraction are not given in this paper� But a counter
example� illustrating the transformation� shows that an
abstraction less precise than the minimal abstraction
does not contain enough information to decide of the
transformation legality�

��� Loop reversal

A loop reversal transformation Inversk �l�� l�� 			� ln� ap�
plied on a n�dimensional loop nest reverses the execu�
tion order of loop lk� The e�ect of the transformation
on the dependence distance vector �d � �d�� 		� dk� 		� dn�

is Invers k ��d� � �d�� 			��dk� 			� dn�� So� the lexico�
positivity of the dependences is preserved after trans�
formation if the following condition is veri�ed�
legal�InversK � L���

��d � D�L�� �d�� 			��dk� 			� dn�� ��

Theorem � The minimal abstraction for the loop re�
versal transformation is the Dependence Level DL�

An example illustrating the previous assertion�

DO I � 
� n

DO J � 
� n

DO K � 
�n

A�I�J�K� � A�I��� J�
K� 	 A�I�J���
K�

ENDDO

ENDDO

ENDDO

Figure �� Program 

�among those presented in this paper

In Program � the loop nest has two data �ow depen�
dence relations that are expressed with the following
dependence abstractions�
� D � f�
� ���k�� ��� 
��k� j  � k � ng
� DDV � f����� ��� ��� ����g
� DL � f
� g

Abstraction DL asserts that the ��rd loop can be re�
versed because the constraints on the lexico�positive de�
pendences are still preserved after reversing K �
� �� DL �� DL � f
� g after transformation� Now�
imagine a dependence abstraction Ab less precise than
DL and giving only a general dependent�independent
information on the set of statements on which the trans�
formation must be applied� Then� not enough informa�
tion is contained in Ab to verify if reversing the ��rd
loop is legal or not� In doubt� the loop reversal is de�
clared illegal� Using DL� loop K can be reversed� The
new loop nest is �gured in Figure ��
All abstractionsDI�D�DC�DP�DDV andDL are valid
for a loop reversal transformation� The test of legality
associated to the minimal abstraction DL is�

legal�Inversk � L��� k �� DL�L�
�� projection�DL�L�� k� � �	

��� Loop permutation

A loop permutation transfor�
mation �Bane��� PermP �L� performs permutation P

on the n�dimensional iteration set of the loop nest L �
�l�� l�� 		� ln�� The new loop nest L� is de�ned by L� �
�lp���� lp���� 			� lp�n�� where fp�
�� p��� 		� p�n�g is a permu�
tation of f
� � 		ng� The e�ect of the transformation on

the dependence distance vector �d � �d�� 		� dk� 		� dn� is�
�d� � PermP ��d� � �dp���� 			� dp�k�� 			� dp�n���

So� the lexico�positivity of the dependences is preserved
after transformation if the following condition is veri�
�ed�
legal�Perm P � L� ��

��d � D�L�� �dp���� 			� dp�k�� 			� dp�n��� �

Theorem � For loop permutations� the minimal ab�
straction is the Dependence Direction Vector DDV �

An example illustrating the previous assertion�

The dependences of Program � in Figure � can be rep�
resented using the D� DDV and DL abstractions�
� D � f�
� �� k�� ��� 
� k� j  � k � ng
� DDV � f����� ��� ��� ����g
� DL � f
� g

The use of abstraction DDV allows to verify that the
permutation of the �I� J�K� loops into �K� I� J� loops is
legal� because
Perm P ������ ��� ��� ����� � f�������� ����� ��g�
This is � �� since the �rst element� di�erent from ����
is � which enforces the lexico�positivity of the depen�
dences�

�



DO I � 
� n

DO J � 
� n

DO K � n�
� ��

A�I�J�K� � A�I��� J�
K� 	 A�I�J���
K�

ENDDO

ENDDO

ENDDO

Figure �� Program �

In contrast� the use of DL 	 does not allow to conclude
the legality of this permutation� because no dependence
information is known on the ��rd loop which will be the
outmost loop afer permutation�
All abstractions DI�D�DC�DP and DDV are valid for
a loop permutation transformation� The test of legality
associated to the minimal abstraction is then�
legal�PermP � L���

�
��
ddv � DDV �L�� P ermP �

��
ddv�� ��

��� Unimodular Transformation

An unimodular transformation TUM �L� performs an
unimodular change of basis M on the iteration set I of
the loop nest L� After transformation� the iteration set
becomes I� � M � I� The determinant of M is equal
to 
 or �
�
The e�ect of the transformation on the dependence dis�
tance vector �d is �d� � TUM ��d� � M � �d� In order to
preserve the lexico�positivity constraints of the depen�
dences� the following condition must be veri�ed�
legal�TUM � L� �� ��d � D�L�� M � �d� �

Theorem � The minimal abstraction for an unimodu�
lar transformation is the Dependence Cone DC�

An example illustrating the previous assertion�

DO I � �� n

DO J � �� n

A�I�J� � A�I� 
J� 	 A�
I� J�I	��

ENDDO

ENDDO

Figure 
�� Program �

The program � loop nest contains two dependence rela�
tions� The �rst one characterizes data access con�icts
between the two references A�I� J� and A�I� J�� The
corresponding dependence system is�

�
DL is the abstraction just under DDV in the abstraction

precision order

���
di � �
dj � j


 � j � n

Abstractions D� DC and DDV represent these depen�
dences in the following manner�
� D�dp
� � f��� x� j 
 � xg
� DC�dp
� � �f��� 
�g� f��� 
�g���
� DDV �dp
� � f��� ��g

The second dependence relation represents data access
con�icts between two references A�I� J � I � 
� and
A�I� J�� The corresponding dependence system is����

di � i

di� dj � 


 � i � n

The abstractions D� DC and DDV represent these de�
pendences as�
� D�dp� � f�x��x� 
�g j 
 � xg
� DC�dp� � �f�
� ��g� f�
��
�g���
� DDV �dp� � f�����g

Before testing the legality of the transformation� the
union of dependences must be computed� The de�ni�
tions of union for the di�erent abstractions are given in
�IrTr�	���Wolf�
� and �Yang���� Using the same abstrac�
tions� this union is expressed as�
� D�L� � D�dp
��D�dp� � f��� x�� �x��x�
� j 
 �

xg�
� DC�L� � convex hull�DC�dp
� � DC�dp�� �

�f��� 
�g� f��� 
�� �
��
�g����
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Figure 

� D�L�� DC�L� and DDV�L�

� DDV �L� � DDV �dp
� �DDV �dp�
� f��� ��� �����g	

Figure 

 illustrates these dependences�
Let�s assume that we would like to know if the unimod�
ular change of basis M is legal or not� with �

M �

�

 

� 


�
The computation of the lexico�positivity constraints
having to be preserved amounts to�
� M � D�dp
� � �x� �� and M � D�dp� � �
� x��

which are � �

	



� M �DC�L� � �f�
� 
�g� f�
� 
�� ���
�g� ��� which is
� �
�M �DDV �L� � M �DDV �dp
��M �DDV �dp�

As we can see� abstractions D and DC allow to de�
cide that the unimodular transformation can be applied
legally� while the DDV abstraction cannot conclude
since M � DDV �dp� � �� � ���� is not necessary
lexico�positive�
All abstractions DI�D�DP andDC are valid for an uni�
modular transformation� The test of legality associated
to the minimal abstraction is�
legal�TU M � L� �� 
��i�k�M �DCi � ��
with DC�L� � ����i�kDCi��

��� Partitioning

A partitioning transformation �KMW�	�� �Lamp	���
�IrTr��a�� �Dhol��� PartH applied on a n�dimensional
loop nest splits the iteration space into p parallel hyper�
plans� The shape and size of the partitioned blocks are
de�ned by the partitioning vector H � � �h�� �h�� 			� �hp��

where the p hyperplans are orthogonal to �hi vectors�
This transforms the iteration space In into a new one
Ip
n�
Two iterations i� and i� of the initial iteration space
belong to the same partitioned block if �IrTr��a��

�b �h� � �i�c� b �h� � �i�c� 			� b �hn� �i�c� �

�b �h� � �i�c� b �h� � �i�c� 			� b �hn � �i�c�
According to the results of �IrTr��a�� performing a par�
titioning H is legal if the following condition is veri�ed�

��d � D�L�� H � �d � �� �
�

For an abstraction Ab di�erent from D� the polyhe�
dron characterizing the dependences represented in Ab

is noted PAb� PAb is described by its generating sys�
tem� �f�vig� f�rjg� f�lkg�� Condition �
� can be expressed
in terms of Ab in the following way�

H � PAb � �� �� legal�PartH � L�Ab�

where H � PAb � �� is equivalent to�

� �vi � PAb�L�� H � vi � ���
� �rj � PAb�L�� H � rj � ���

� �lk � PAb�L�� H � lk � ���

Theorem 	 The minimal valid abstraction associated
to a partitioning transformation is DC�

An example illustrating the previous assertion�

Program � contains two anti�dependences� The �rst one
characterizes data access con�icts between the two ref�
erences A�I� J�
� and A�I� J�� Its dependence system

DO I � �� n

DO J � �� n

A�I�J� � A�
I�J��� 	 A�
I� I	J�

ENDDO

ENDDO

Figure 
� Program �

is� ���
di � i

dj � 


 � i � n

The dependence can be represented using D� DC and
DDV �
� D�dep
� � f�x� 
� j 
 � xg
� DC�dep
� � �f�
� 
�g� f�
� ��g���
� DDV �dep
� � �����

The second anti�dependence characterizes data access
con�icts between the two references A�I� I � J� and
A�I� J�� Its dependence system is��

di � dj

di � 


Its representations by D� DC and DDV is�
� D�dep� � f�x� x� j 
 � xg
� DC�dep� � �f�
� 
�g� f�
� 
�g���
� DDV �dep� � �����

The union of the two dependences is expressed as�
� D�L� � D�dep
� �D�dep�

� f�x� 
�� �x� x� j 
 � xg�
D�L� is illustrated by Figure 
��

q

q

q

q

q q q q q q

�

��
�
��


�

dj

di

Figure 
�� D for Program �

� DC�L� � convex hull�DC�dep
� �DC�dep��
� �f�
� 
�g� f�
� ��� �
�
�g� ���

� DDV �L� � DDV �dep
� �DDV �dep� � ������
DC�L� and DDV �L� are illustrated by Figure 
��
Let�s assume that we would like to partition the iter�
ation space according to the partitioning vector H �
�h�� h�� where h� � ��� ��

�
� � and h� � ��� � ��� The

lexico�positivity constraints for abstractions D�DC and
DDV are expressed as follows�
� H �D�dep
� � �x��

�
� x
�
�

H �D�dep� � ��� x� ��

Since x � 
 �� H �D�dep
� � �� and
H �D�dep� � ��� PartDH�L� is legal with respect to D�

�
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Figure 
�� DC and DDV for Program �

� H �DC�L� � � f��� �
�
�g� f��

�
� �
�
�� ��� �

�
�g� ��

Since si� rj � H � DC�L� � �� and dk � �� we have

H � DC�L� � �� � PartDCH �L� is legal with respect to
DC�
� DDV �L� � f ����� g

P �DDV �L�� � � f�
� 
�g� f�
� ��� ���
�g���
H �DDV �L� � � f��� �� �g� f�

�
� �

�
� �� ��

�
� � ��g� ��

Since s� � ��� �� � �
��� and r� � ���

� � �� �
��

�� ��H �DDV �L� � ��� 
 ��H �DDV �L� � ����
PartDDVH �L� is illegal�
Figure 
� shows the H partitioning associated to the D
dependences� We can see that there is no dependence
cycles between partitioned blocks�
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Figure 
�� Partitioning H with D� DC

Figure 
� shows the H partitioning associated to the
DC dependences� Note that the additional depen�
dence distance vector belonging to DC does not in�
troduce additional dependence relations between par�
titioned blocks�
Figure 
� shows the H partitioning associated to the
DDV dependences� Here� two dependences represented
by DDV �L�� �
��� and ��
� give a cycle between two
blocks� Then� PartDDVH �L� is illegal�
DC allows to conclude the legality of PartH � because
condition �
� is veri�ed� On the contrary� abstraction
DDV cannot conclude because the set of points de�
scribed by� fs� � ��� �

�
� � ��
 r� � ���

�
� �� � ��g veri�es

neither �
� nor ���
In conclusion� all abstractions DI�D�DP and DC are
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Figure 
�� Partitioning H with DDV

valid for a loop partitioning transformation� The test of
legality associated to the minimal abstraction is�
�
��i�k�H �DCi � ���� � �
��i�k�H �DCi � ����

�� legal�PartH � L�

��� Parallelization

Performing a parallelization Paral on a loop nest L

along the parallelizing vector ��pv transforms each loop i

with ��pv�i� � � in a parallel loop�

��pv�k� �

�
� the k � th loop is parallel


 the k � th loop is sequential

The e�ect of the parallelization on �d � �d�� 		� dk� 		� dn�

is projection��d���pv� � �di� � di�� 			dim� where ik are the
sequential loop indices� As the loop reversal transfor�
mation� the parallelization modi�es the iteration execu�
tion order only in internal loop levels� Thus to preserve
the lexico�positivity constraints� the loop levels being
parallelized must not a�ect the initial lexico�positivity
dependences� The following condition have to be veri�
�ed to legally apply a parallelization �
legal�Paral���pv�� L� �� ��d � D�L� such that
dk � � �
 � k � j � 
� � dj � � and

projection��d���pv� � �di� � di�� 			dim� then di� � dj
To legally parallelize a loop nest� the minimal abstrac�
tion is DL�
An example illustrating the previous assertion�

DO I � �� n

DO J � �� n

A�I�J� � A�I���J���

ENDDO

ENDDO

Figure 
	� Program �

Taking Program �� the dependences can be represented
using D and DL�

�



� D � f�
� 
�g
� DL�L� � f
g

Let�s assume that we would like to know if the paral�
lelization of the �nd loop is legal� Then ��pv is equal to
�
� ��� The lexico�positivity constraint is expressed as�
projection�f
g� �
� ��� � f
g
DL permits to conclude that the parallelization of loop
J is legal because the lexico�positivity constraints have
been preserved after parallelization� An abstraction
less precise giving� for example� only a general depen�
dent�independent information on the set of statements
would not contain enough information for the legality
test�
All abstractionsDI�D�DC�DP�DDV andDL are valid
for a loop parallelization transformation� Since the par�
allelization modi�es the iteration execution order only
in internal loop levels� the lexico�positivity constraints
are preserved if the parallelized loop levels do not ap�
pear in the dependence levels� So the test of legality
associated to the minimal abstraction is�
legal�Paral���pv�� L��� projection�DL�L���
���pv� � �

� Linear Scheduling

Many parallelization methods such as linear scheduling
have been suggested� A linear schedule de�nes a new
execution order for a loop nest iteration domain such
that the �rst n scanning directions carry the loop nest
dependences� when others are parallel directions� The
n�th �rst loops of the transformed loop nest are sequen�
tial and the innermost loops are parallel�
The linear schedule is described by a linear scheduling
vector �one�dimensional� or a linear scheduling matrix
�multi�dimensional�� The mapping from the multidi�
mensional iteration set to the dimensional time space is
de�ned by a loop transformation that involves the mul�
tiplication of the linear scheduling vector�matrix and
the iteration set� The dependence abstraction is used
for computing a valid linear schedule�
Most of the algorithms proposed in the literature
�Dhol�����ShFo�
� �DaRo�� �DaRR�� require that the
dependences are uniforms or are approximated by de�
pendence distance vectors� This condition is too restric�
tive for real programs� In this section� we show that the
use of the dependence cone abstraction allows to get the
same set of valid linear schedulings as the dependence
distance vector� However� when the computation of the
linear scheduling depends on particular distance vector
characteristics �uniform� �Dhol���� the dependence cone
that approximates the distance vectors cannot be used
for de�ning the linear scheduling but only for testing its
validity�

��� One�dimensional linear scheduling

The one�dimensional linear scheduling is also called the
hyperplane method� The scheduling is characterized by
a vector �h orthogonal to a hyperplane of simultaneously
executable iterations �

De�nition � A linear scheduling �h is valid if the fol�
lowing condition is satis
ed	 ��d � D� �h � �d � 
 �

According to De�nition �� the set of valid linear schedul�
ings for D is de�ned by�

H � f�h j ��d � D� �h � �d � 
g �
�
Likewise� the set of valid linear schedulings for DC and
DDV are de�ned as�

HC � f
��
hc j ��d � DC �

��
hc � �d � 
g ��

HDV � f
��
hv j ��d � eDDDV �

��
hv � �d � 
g ���

Since D  DC  DDV � logically we have
H  HC  HDV � In fact� we have the following theo�
rem�

Theorem 
 The set of valid linear schedulings HC�
de
ned by equation ���� is equal to the set H of valid
linear schedulings for D�

Proof	 De�nitions �
� and �� associated to the fact that
D � DC implies H  HC� In order to prove H � HC�
we show that any vector �h of H belongs to HC� Let
�h � H and �di � D� de�nition �
� implies�

��di � D� �h � �di � 


Let
��
dc be a vector of DC� By de�nition�

��
dc �Pk

i�� �i
�di

with �i � � and
Pk

i�� �i � 
�

Then� �h �
��
dc �

Pk

i �i
�h � �di � �

Pk

i �i�� �mini��h � �di���

Since
Pk

i�� �i � 
�

�h �
��
dc � �mini��h � �di�� � 
� �� �h � HC� Thus we have

HC � H�

The set of valid linear schedulings H �or HC� can be
represented by a polyhedron �IrTr��b��

De�nition  The set of valid linear schedulings H is a
polyhedron� It can be de
ned by a linear system whose
constraints are derived from the generating system of
DC � ff�sig� f�rjg� f�lkgg in the following way	

if �i �si �� �� � then H is given by 	�����
�i� �h � �si � 


�j� �h � �rj � �

�k� �h � �lk � �


�



else if �i �si � �� and there is no line �jf�lkgj � ��
Then H is de
ned by 	�

�i t	q	 �si �� ��� �h � �si � 


�j� �h � �rj � 


else H � ��

Since a DDV is also a polyhedron� it can be rewritten
by using a generating system �Irig��a�� HDV � the set
of valid linear schedulings corresponding to DDV � can
be computed similarly as HC�

DO I � �� N

DO J � �� N

S�� V�I� � W�I	J�

S
� W�I� � V�I	J�

ENDDO

ENDDO

Figure 
�� Program 	

Program 	 has four dependence relations�
dep
 � V �I� � V �I��
dep � W �I��W �I��
dep� � V �I � J� �� V �I��
dep� � W �I � J� ��W �I�
that can be expressed with the following di�erent ab�
stractions�

distance vector

� D�dp
� � D�dp� � f��� y�j
 � y � ng
� D�dp�� � D�dp��

� f�x� y�j
 � x � n� 
 � y� 
 � x� y � ng

dependence cone

� DC�dp
� � DC�dp� � ff��� 
�g� f��� 
�g� �g
� DC�dp�� � DC�dp��
� ff�
� ��g� f��� 
�� �
��
�g� �g

dependence direction vector

� DDV �dp
� � DDV �dp� � ��� ��
� DDV �dp�� � DDV �dp�� � ��� 	�

The unions of all dependences for each abstraction are�
� D�L� � f�x� y�jx � �� x� y � n� 
 � yg
� DC�L� �

S
��i��DC�dpi�

� ff��� 
�g� f��� 
�� �
��
�g� �g
� DDV �L� � f��� ��� ��� 	�g

In this example� DC�L� is equivalent to D�L�� It is
more compact than D�L� whose expression is a linear
system�
H cannot be directly derived from D� because D�L�
has an in�nite number of elements� In this case� its

computation is equivalent to solving the following non�
linear system� �������

h� � x� h� � y � 

x � �

 � y


 � x� y � n

Otherwise� we can compute HC using Theorem �� It is
de�ned by the following linear system on �h � �h�� h�� ����

h� � 

h� � �
h� � h� � �

��

�
h� � 

h� � h� � �

The generating system expression of this polyhedron is�
ff�
� 
�g� f�
� ��� �
�
�g��g�
If we rewrite DDV �L� in a generating system form�
using Theorem �� we can verify that there is no legal
scheduling corresponding to DDV �L��
This example shows that DC is more convenient than
D to compute the set of valid linear schedulings� while
DDV is not accurate enough�

��� Multi�dimensional linear scheduling

The multi�dimensional linear scheduling of a loop nest
corresponds to a loop reordering transformation such
that all dependences are carried by the k � � k� out�
most loops� The k�dimensional linear scheduling is char�
acterized by k linear vectors � �h�� 			� �hk��

De�nition �� A linear scheduling � �h�� 			� �hk� is valid
if the following condition is satis
ed	

��d � D� � �h�� 		� �hk� � �d� ��

The set of valid linear schedulings for D� DC and DDV

are de�ned as�

HK � f� �h�� 			� �hk� j ��d � D � � �h�� 			� �hk�� �d� �g ���

HKC � f� �h�� 			� �hk� j ��d � DC� � �h�� 			� �hk���d� �g ���

HKDV � f� �h�� 			� �hk� j ��d � DDV� � �h�� 			� �hk���d� �g���

Similarly to the one�dimensional scheduling� the follow�
ing theorem reports that HK � HKC�

Theorem � The set of valid linear multi�dimensional
schedulings HKC de
ned by equation �� is equal the set
HK of valid linear multi�dimensional schedulings for D�

Proof	 This proof is similar to the previous one�

	 Related work

Most dependence abstractions have originally been de�
veloped for particular transformations� As such exam�
ples� the dependence direction vector was proposed by







M� Wolfe for loop interchanging �Wolf�� and the de�
pendence level by Allen � Kennedy for the vectoriza�
tion and the parallelization of programs �AlKe�	�� The
dependence direction vector has been the most popular
dependence abstraction� because it has been success�
fully used for some important transformations such as
loop interchanging and loop permutation� Moreover� its
computation is easy and its representation in the depen�
dence graph handy� Most compiler systems have imple�
mented distance and direction vector abstractions� A
lot of work has been done on developing more advanced
transformations� but few e�ort has been spent on study�
ing the valid and minimal dependence abstraction for a
loop transformation�
In �Wolf���� M� Wolfe has arisen a similar question
�What information is necessary to decide when a trans�
formation is legal �� A review of the related work on
loop transformations and dependence abstractions� in�
cluding some particular dependence information such as
crossing threshold and cross�direction� is presented� A
table gives the valid dependence abstraction support�
ing each considered transformation� However� some
important abstractions� such as the dependence cone�
and some advanced transformations� such as unimodu�
lar transformations and loop partitioning� were not con�
sidered�
V� Sarkar � R� Thekkath �SaTh�� developed a gen�
eral framework for applying reordering transformations�
They used the dependence vector abstraction whose el�
ement is either a distance value� in case of constant de�
pendence� or a direction value� in the other cases� For
each considered transformation� the rules for mapping
dependence vectors� loop bound expressions and the
loop nest are de�ned� These mapping rules were devel�
oped from the dependence vector abstraction� However�
the dependence vector does not contain su�cient infor�
mation to legally apply advanced transformations� such
as unimodular transformations and loop tiling� without
some risks of loosing precision�
M� E� Wolf � M� S� Lam �WoLa��� introduced a new
type of dependence vector for applying unimodular
transformations and loop tiling� In their de�nition� each
component di of the dependence vector can be an in��
nite range of integers� represented by �dmini � dmaxi �� This
new dependence vector is more precise than V� Sarkar�s
dependence vector� and overcomes some drawbacks of
the direction vector by using the value range of di in�
stead of its sign� On the other hand� it is less precise
than the dependence coneDC because it is only the pro�
jection of DC on the di axis� The test of legality based
on this dependence vector is approximative because the
addition� subtraction and multiplication operations de�
�ned on this dependence vector are conservative�
A comparison with other works using more precise ab�
stractions than the dependence distance vectors such
as the information provided by array data �ow analysis

�LALa���� �Feau�� and �Feau�� should be added to the
results presented here�

Conclusion

The precision criteria for abstractions DI� D� DP � DC�
DDV � and DL have been presented in this paper and
report that the precision hierarchy of the abstractions
is DI  D  DP  DC  DDV  DL�
The minimal abstraction associated to a transformation�
that contains the minimal information necessary to de�
cide when such a transformation is legal� is de�ned for
three di�erent class of transformations� The minimal
abstraction for the reordering transformations� loop re�
versal� loop permutation� unimodular transformation�
partitioning and parallelization have been identi�ed and
is respectively DL� DDV � DC� DC and DL� Accord�
ing to the de�nition� all the abstractions that are more
precise than the minimal abstraction associated to the
transformation are valid for such a transformation�
This paper shows that the dependence cone DC car�
ries enough information for testing the legality of some
advanced transformations such as unimodular transfor�
mations and loop partitioning� Moreover� this repre�
sentation allows to obtain the same set of valid linear
schedulings� both one� and multi�dimensional� than with
abstraction D without any loss�
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