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Abstract

Many abstractions of program dependences have already been
proposed, such as the Dependence Distance, the Dependence Di-
rection Vector, the Dependence Level or the Dependence Cone.
These different abstractions have different precision. The min-
vmal abstraction associated to a transformation is the abstrac-
tion that contains the minimal amount of information necessary
to decide when such a transformation is legal. The minimal ab-
stractions for loop reordering and unimodular transformations are
presented. As an example, the dependence cone, that approxi-
mates dependences by a convex cone of the dependence distance
vectors, is the minimal abstraction for unimodular transforma-
tions. It also contains enough information for legally applying all
loop reordering transformations and finding the same set of valid
mono- and multi-dimensional linear schedulings than the depen-

dence distance set.

Introduction

The aim of dependence testing i1s to detect the exis-
tence of memory access conflicts in programs. When
two statements have a conflicting access to a datum,
the dependence establishes that the execution order of
the two statements cannot be modified without possi-
ble changes to the program semantics. A transformation
can be applied if dependence relations are still preserved
after the transformation.

Many transformations require more than a simple de-
pendent/independent information to be legally applied
on a set of statements. Dependence relations are rep-
resented by finite dependence abstractions that contain
the data flow dependences of the statement set.

Many dependence abstractions have already been pro-
posed, such as the Dependence Distance [Mura71], the
Dependence Direction Vector [Wolf82], the Dependence
Level [AlKe87] or the Dependence Cone [IrTr87]. These
different abstractions have different precisions. They
are presented in Sections 2 and 3.

Depending on their precisions, the abstractions contain
either not enough or sufficient or too much information
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to decide if a transformation 7' can be legally applied
or not. Section 4 describes the conditions that must be
satisfied to legally perform T and the minimal informa-
tion that must contain an abstraction to be used by the
legality test of 7. Among the wvalid abstractions, one
contains the minimal information necessary to decide
when T is legal. Section 5 gives the minimal abstrac-
tion associated to reordering transformations such as
loop reversal, loop permutation, unimodular transfor-
mations, partitioning and parallelization. This notion of
minimality is interesting when the compiler/parallelizer
needs an exact answer to the question could T be legally
applied ? from the cheapest abstraction in time and
space.

Section 6 shows that the dependence cone, which is a
valid abstraction for all loop reordering transformations
and the minimal abstraction for unimodular transfor-
mations, allows in addition to find the same set of valid
mono- and multi-dimensional linear schedulings than
the dependence distance vectors.

1 Notations

The notations used in the following sections are:

e i" is an element of the loop nest iteration set 17;

e & denotes the lexicographic order, while < is the
execution order;

. S(Z) is the i-th iteration of Statement S.

e 0%, 1s the dependence relation represented by Ab-

straction Ab.

2 Different Abstractions

Many finite abstractions have been designed to repre-
sent infinite sets of dependences in nested loops. They
describe the data dependences with more or less effec-
tive accuracy. Depending on their precision, these ab-
stractions contain either not enough, minimal or too
much information to decide if a transformation can be
legally applied. The different abstractions and their pre-
cisions are illustrated on example in Figurel.



DOI=1, n
DOJ =1, n

S: T(I,J) = T(3I,J+1)
ENDDO

ENDDO

Figure 1: Program 1

The dependence test must decide the satisfiability of the
following dependence system:

<

3i =1 1
j+l=45 1
1

The equalities characterize possible data access conflicts
between T(I,J) and T(3I,J+1), while the inequalities
represent the constraints on the loop indices.

2.1 Dependences between Iterations

The abstraction DI(L) is exactly the set of dependent
iterations between the statement instances of a loop nest

L:

-

DI(L) ={ (i, 7) | 351,52 € L, S1() 6* S2(i') }

DI(L) is obtained by solving an exact integer linear
programming system for each couple of array references
belonging to the nested loops. For Program 1, DI rep-
resents in Figure 2 all the solutions of the dependence
system.

DI(P1) ={((i,4), 31,/ + 1)) [1 <i<n1<j<n}.

Figure 2: DI for program 1

Since no approximation is made on the exhaustive list
of dependent iterations, this abstraction cannot be used
for infinite set of dependences. Thus, abstractions ap-
proximating this exact set have been suggested. We
quickly review the most important dependence abstrac-
tions, used for optimizing and parallelizing programs, in
the following sections.

2.2 The Distance Vector

Dependence distance vectors are used to relatively char-
acterize a set of dependent iterations:

1

~

D(L)={d |3, i)e DI(L), d = i —1i}

Taking Program 1, the dependence system may be
rewritten in terms of distance vectors:

1<i<n
1<j<n
1<j+dj<n

S
n
— N

%

The dependences represented in Figure 3 are specified
by: D(P1) = {(2k,1) | 1 <k < n}. When comparing
with Figure 2, note the different space: (4, j) is replaced
by (dl, d])

dj

2 4 6
Figure 3: D for Program 1

> di

Compared to DI, the use of D reduces the amount of
memory needed to store uniform dependences'. How-
ever, in many cases, the dependence distance is not con-
stant. So, abstractions approximating D like the De-
pendence Polyhedron, the Dependence Cone, the Depen-
dence Direction Vector and the Dependence Level have

been designed to cope with these cases.

2.3 The Dependence Polyhedron

The dependence polyhedron DP(L) approximates the
set of distance vectors D(L) with the set of points that
are convex combinations of D(L) vectors. Tt constrains
the set of integer points of the D(L)’s convex hull.

- di

| 23456
Figure 4: DP for Program 1

The polyhedron DP(L) can be concisely described by
its generating system [Schr86], which is a triplet made of
three sets of vertices, rays and lines, ({v;}, {r;}, {l;})
Even if DP(L) approximates D(L), it keeps all the in-
formation useful to legally apply reordering transfor-
mations as abstraction D. Figure 4 illustrates DP(L)

lusually known as constant dependences



for Program 1. The convex hull contains new vectors:

(3,1),(5,1),etc...

2.4 The Dependence Cone

The dependence cone DC(L) approximates D(L) with

the set of points that are positive linear combination of

D(L) vectors. Tt is defined as:

DO(L)={7 = Y, Nd; € 2" d; € D(L), A\ >0,
Zf:l Ai > 1}

dj

| » di
Figure 5: DC for Program 1

The main advantage of Abstractions DP and DC is
that, in many cases, only one structure is necessary to
the representation of the information contained in D(L).
They can be automatically computed and accurately so
when array subscript expressions are affine. They are
easy to use to decide program transformation validity.
Algorithms for computing DP(L) and DC(L) are de-
scribed in [IrTr87] and [Yang93].

2.5 The Dependence Direction Vector

Abstractions DP(L) and DC(L) represent approxi-
mated sets of D(L). These three abstractions contain
the information useful to legally apply transformations
that reorder iteration sets. However, transformations
such as loop interchange or permutation, that only mod-
ify the sign or the order of the iteration set, do not need
the actual distance information. So, abstractions like
DDV (L) [Wolf82] and DL(L) [AlKe87] relating only
the sign or the level of dependence vectors have been
suggested.

dj

A

> di

Figure 6: DDV for program 1

Each Dependence Direction Vector element is one of
{< ,=, >}. Other elements like <, >, * may be used
to summarize two or three DDV’s. The DDV (L) ab-
stracting the dependences for a loop nest L is defined
as:

-

DDV = { (41,89, .., bn) | 351,52 € L, S1(7) 6% 52(¢'),
For Program 1, DDV (P1) = {(<, <)}. Tt is repre-
sented in Figure 6.

2.6 The Dependence Level

The dependence level DL has been introduced by
Allen & Kennedy [AlKe87] for the vectorization and
parallelization of programs. It gives the nest level of
the outermost loop [ that carries dependences, when
dependence vector component is positive. To preserve
the program semantics, Loop [ must be kept sequential.
Then, the lexico-positivity of the loop dependences are
preserved and all inner loops may be parallelized if no
other dependence exists. DL(L) is defined as:
DL(L) = {k | 3, v, ... 0n) € DDV(L),

s =(1<i<k—1) A ¢ =< }.
For Program 1, DL(P1) = {1}. Dependences are rep-
resented in Figure 7.

7/

Figure 7: DL for program 1
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A

3 Abstraction Precision

The six abstractions of dependences surveyed in the Sec-
tion 2 have different precisions as was shown in Figures
2 to 7. Abstraction DI enumerates all the dependent
iterations when the other abstractions express or ap-
proximate the dependence distance vectors of the loop
nest.

To determine the precision of these abstractions, we de-
fine a minimal comparison set of dependent iterations
DI 44 for each abstraction Ab. DI 4 is the set of depen-
dent iterations corresponding to the dependences repre-
sented by abstraction Ab. B

DIy = { (;,;—l—j);,;—l—je I, CZE DAb}

where ﬁAb is the set of dependence Distance vectors
corresponding to the dependences represented by ab-
straction Ab.

To compare two ordinary abstractions Abl and Ab2, the
two sets DI 451 and DI 432 are analyzed.

Definition 1 Abl is more precise than Ab2
(noted Abl D Abg) of DIyt C DI gpo.



To compare abstractions approximating ), the sets
Dap1 and D aype, having a lower memory cost than DI,
could be used?.

According to Definition 1, the hierarchy of abstraction
precisions is: DI O D D DP D DC D DDV D DL.
Figures 2,4,3,5,6,7 illustrate this hierarchy.

4 Transformations

In order to exploit the implicit parallelism contained in
programs, loop transformations are applied on program
loop nests. These transformations reorder statements
and iterations in order to explicit parallelism.

In the following sections, we distinguish three classes of
transformations:

A program restructuring transformation
reorders the statements and iterations of the pro-
gram. It transforms the statement S(Z”) in a new
one S’ (;m) As an example of this kind of trans-
formations, loop distribution distributes the state-
ments of a loop nest into different loop nests having
the same iteration set as the initial code.

A reordering transformation is a particular pro-
gram restructuring transformation that only re-
orders loop iterations without changing the order
of statements in the loop nest. It is a bijection be-
tween two iteration sets that might have different
dimensions. It transforms the statement S(Z”) into
a new one S(j™) where n might be different from
m. Strip mining, that reorders by partitioning the
iteration set into several iteration blocks, belongs
to this class of transformations.

A unimodular transformation is a particular re-
ordering transformation that is a bijection between
two 1teration sets having the same dimension. Loop
interchange belongs to this class.

The conditions that must be verified, for any class of
transformations, for legally applying the transformation
are presented.

4.1 Legal Transformation

A transformation is legal if the program has the same
semantics after transformation than before. The new
execution of statement instances must preserve all the
loop nest lexico-positive dependences [Bane93].

Program restructuring transformation

Definition 2 Performing a restructuring transforma-
tion T on a loop nest L is legal and is noted legal(T, L)
of and only if:

?Proof is given in [Yang93]

for any dependence SZ(Z”) 5* Sj(ﬁn) of L such that
T(5i(1")) = S;(4™) and T(S;(i")) = S;(5" ),

-

the condition SI(j™) < S]’»(j’m) is verified.

Definition 2 ensures that the lexico-positivity of the
dependences is preserved after transformation. When
an abstraction Ab different from DI is used, Defini-
tion 3 gives the conditions for testing the legality of the
transformation. The dependences are expressed here in
function of DI 45, the set of dependent iterations corre-
sponding to the dependences of Ab.

Definition 3 Performing a restructuring transforma-

tion TA% on a loop nest L is legal, which is noted

legal(T, L, Ab) if and only if:

for any dependence SZ(Z”) 5* Sj(ﬁn) of L such that
V(1,7 € Dlay, T(Si(i") = Si(7™) and
T(S()) = 857,

the condition SI(j™) < S (ﬁm) is verified.

If the application of T"1s legal according to the condition
of Definition 3 then the condition of Definition 2 is also
verified. The opposite proposition is not true.

Theorem 1 Let T be a restructuring transformation.

legal(T, L, Ab) — legal(T, L)

Proof:

Assuming that 74% is legal according to the condition
of Definition 3, then:

V(i,7) € DIla with T(S;(7)) = Si(j™) and
T(S;(7")) = Si(77"), the condition Si(j™) < Si(7")
1s verified.

Because DI is the most precise dependence abstraction,
we have DI C DI 4; that means that:

V(i,i) e DI = (i,#') € DI a.

It implies that

V(i,7) € DI such that T(S;(i*)) = S!(j™) and
T(S;(7")) = Si(77"), the condition Si(j™) < Si(7")

1s also verified.

Reordering transformation

Reordering transformations only reorder the iteration
set of a loop nest. So, the dependences SZ(Z”) 6% 5, (ﬁn)
between references S; and S; correspond to dependences
i §* i between iterations. Such dependences can be
simply represented using dependent iterations i <s i
All the dependences between the different statements of
L can be characterized by a single set DI(L) defined as:
DI(L) = {(il, 22)|21 <5 19 & E'SZ(Zl) o* SJ(ZQ)/\Zl ;é 22}
The legality condition for a reordering transformation,
translating the preservation of the lexico-positivity con-
straints, follows:

Definition 4 Performing a reordering transformation
T on a loop nest L is legal, and is noted legal(T, L), if



and only if:

Y (Z”,ﬁn) € DI(L) such that T(;”) = ™ and

= J
the condition _]m =< j_;m 15 verified.

As for restructuring transformations, when an abstrac-
tion Ab different from DI is used, a definition using
dependences in function of DI 45 is derived from Defi-

nition 4.

4.1.1 Unimodular transformation

An unimodular transformation [Bane90], [WoLa9l],
[LiPi92] is a bijection between two iteration sets I” and
In having the same dimension. It corresponds to an
unimodular change of basis M with I'= M x I. The
test of legality is:

if i16%i5, then i} < i, must be verified after the trans-
formation defined as ¢f = M x 4 and @, = M x is.
This condition can be expressed in terms of dependence
distance vectors as: d >0 must be verified after trans-
formation, with d=1is -1, d= iy — 1) and d=Mxd
Because the unimodular transformations reorder itera-
tion sets only, a smgle set:

D(L) = {d | d= in— 11, i16%i3 Niq + 22} can be used to
characterize all loop nest dependences. The following
definitions and theorem describe the legality tests for
unimodular transformations:

Definition 5 Performing an unimodular transforma-
teon T on a loop nest L 1s legal if and only zf

Vd" € D( ) such that Tummod(d”) = d’
the condition & > 0 is verified.

As for reordering transformations, when an abstraction
Ab different from D is used, a definition using Dy is
derived from Definition 5.

4.2 Valid and Minimal Abstraction

The tests of legality for restructuring, reordering and
unimodular transformations have been introduced in
Section 4.1. These tests use the abstractions that are
derived from the dependent iteration set 3 or from the
dependence distance vector set * to verify the validity of
a transformation. However, the information contained
in these abstractions is often too rich, and other ab-
stractions less precise and having a lower computation
or memory cost, could be used.

We define a valid abstraction associated to a transforma-
tion 7" as an approximate abstraction containing enough
information to decide the legality of 7. Among the ab-
stractions, DI is the most precise. So, if an abstraction
Ab (different from DI) contains the same information

3DI or vaAb when Ab is different from D7
4D or D 45 when Ab is different from D

as DI to decide that the transformation 7" is legal, then
this abstraction Ab is valed for T'.

Definition 6 Let Ab be an abstraction less precise than
DI and T a restructuring transformation. If for any
loop nest L, legal(T, L, DI) = legal(T, L, Ab) , then
the abstraction Ab 1s valid for testing the legality of the
transformation T'.

Several valid abstractions associated to a transforma-
tion may exist. In fact, all abstractions more precise
than a valid abstraction are also valid.

Theorem 2 Let Ab be a valid abstraction for testing
the legality of a transformation T'. Any abstraction Ab;
such that Ab; O Ab is also a valid abstraction for testing
the legality of T'.

Proof:
We know that Ab is a valid abstraction for T'(L)

and that Ab; O Ab. Then, in accordance with Definition
6: legal(T,L,DI) — legal(T, L, Ab).
Definition 3 gives the equivalence:
legal(T, L, Ab) <= [ Y(i,7) € DI 5 with T(S
SI(7™) and T(S;(7)) = Si(7) then SI(

S N
By hypothesis Ab; D Ab, so V (Z, ﬁ) € DI 43, then
(Z, Z_;) S ﬁAb~
By combining this hypothesis with the previ-
ous_equivalence, the following assertion is verified:
VY (i,7) € DI, with T(S;(7")) = Si(j™) and
T(S;(7)) = S{(j" ). Then S{(7™) < Si(77 ).
That is equivalent to:

legal(T, L, Ab) = legal(T, L, Ab;),
and implies legal(T, L, DI) = legal(T, L, Ab;).

")) =

Q
i) =

Among the valid abstractions associated to a transfor-
mation, there is one that contains the minimal informa-
tion necessary to decide whether the transformation is
legal. This abstraction is called minimal and is defined
by the following Definition:

Definition 7 Let Abl be a wvalid abstraction for the
transformation T and Ab2 be a another abstraction such
that Abl D Ab2 and -3Ab3 / Abl D Ab3 D Ab2.
If 3L such that legal(T, L, Abl) A —(legal(T, L, Ab2)),
then abstraction Abl is minimal for testing the legality
of the transformation T'.

Minimality is relative to a particular set of abstrac-
tions. The minimal abstractions associated to reorder-
ing transformations are presented in the next section.

5 Minimal Abstraction and

Transformation

Dependence abstractions and loop transformations are
linked. The dependences are used to test the legality



of a transformation when it changes the program de-
pendences. Because the abstractions have different pre-
cisions, a transformation may be declared illegal or le-
gal depending on the abstraction which is used. Thus,
choosing a valid abstraction associated to a transforma-
tion is important for programs.

Among the valid abstractions associated to a transfor-
mation, one is the minimal abstraction. It contains the
minimal information necessary to decide if the trans-
formation can be applied legally or not. This section
focuses on the minimal abstraction associated to the
following transformations: loop reversal, loop permuta-
tion, unimodular transformation, partitioning and par-
allelization.

For any 7T among these transformations, a section
presents the effect of 7' on the dependences, the
minimal® abstraction associated to 7' and the legality
test applied to T'.

Due to space limitation, the proofs of the minimality of
an abstraction are not given in this paper. But a counter
example, illustrating the transformation, shows that an
abstraction less precise than the minimal abstraction
does not contain enough information to decide of the
transformation legality.

5.1 Loop reversal

A loop reversal transformation Inversy (I1,ls, ..., 1) ap-
plied on a n-dimensional loop nest reverses the execu-
tion order of loop l;. The effect of the transformation
on the dependence distance vector d= (di, .., di, .., dy)
is Tnvers (cf) = (dy,...,—dp,...,dpn). So, the lexico-
positivity of the dependences is preserved after trans-
formation if the following condition 1s verified:
legal(Inversg , L) <—

vd e D(L), (dy, ..., —dy, ..., dp) > 0.

Theorem 3 The minimal abstraction for the loop re-
versal transformation is the Dependence Level DL.

An example illustrating the previous assertion:

DOI=2,n
DOJ=2,n
DOK = 2,n
A(I,J,K)
ENDDO
ENDDO
ENDDO

= A(I-1, J,2K) + A(I,J-1,2K)

Figure 8: Program 2

5among those presented in this paper

In Program 2, the loop nest has two data flow depen-
dence relations that are expressed with the following
dependence abstractions:

e D={(1,0,—k),(0,1,—=k) | 2< k < n}

e DDV =H{(<,=,>),(=,<,>)}

e DL =1{1,2}
Abstraction DL asserts that the 3-rd loop can be re-
versed because the constraints on the lexico-positive de-
pendences are still preserved after reversing K :
3¢ DL — DL = {1,2} after transformation. Now,
imagine a dependence abstraction Ab less precise than
DL and giving only a general dependent/independent
information on the set of statements on which the trans-
formation must be applied. Then, not enough informa-
tion is contained in Ab to verify if reversing the 3-rd
loop is legal or not. In doubt, the loop reversal is de-
clared illegal. Using DL, loop K can be reversed. The
new loop nest is figured in Figure 9.
All abstractions DI, D, DC, DP, DDV and DL are valid
for a loop reversal transformation. The test of legality
associated to the minimal abstraction DL is:

legal(Inversy, L) <=k & DL(L)
< projection(DL(L), k) = 0.

5.2 Loop permutation

A loop permutation transfor-
mation [Bane89] Permp (L) performs permutation P
on the n-dimensional iteration set of the loop nest L =
(li,12,.,1y). The new loop nest L' is defined by L' =
(lpr1ys o215 -5 b)) Where {p[1], p[2], .., p[n]} is a permu-
tation of {1,2,..n}. The effect of the transformation on
the dependence distance vector d= (di, .., di, .., dy) is:
d' = Permp (d) = (dpp1y, -, dpfi)s -, dppn))-

So, the lexico-positivity of the dependences is preserved
after transformation if the following condition is veri-
fied:

legal(Perm p, L) <—

Yd € D(L), (dp[l], ey dp[k], ey dp[n]) >0

Theorem 4 For loop permutations, the minimal ab-
straction 1s the Dependence Direction Vector DDV .

An example illustrating the previous assertion:

The dependences of Program 3 in Figure 9 can be rep-
resented using the D, DDV and DL abstractions:

e D={(1,0,k),(0,1,k) | 2< k <n}

e DDV =H{(<,=,<),(=,<,<)}

e DL =1{1,2}
The use of abstraction DDV allows to verify that the
permutation of the (7, .J, K) loops into (K, I, J) loops is
legal, because
Perm p((<,=,<),(=,<,<)) = {(<,<,=2),(<,=,<)}.
This is > 0, since the first element, different from “=",
18 < which enforces the lexico-positivity of the depen-
dences.



DOI=2,n
DOJ=2,n
DOK =n,2, -1
A(I,J,K) = A(I-1, J,2K) + A(I,J-1,2K)
ENDDO
ENDDO
ENDDO

Figure 9: Program 3

In contrast, the use of DL ¢ does not allow to conclude
the legality of this permutation, because no dependence
information is known on the 3-rd loop which will be the
outmost loop afer permutation.

All abstractions DI, D, DC, DP and DDV are valid for
a loop permutation transformation. The test of legality
associated to the minimal abstraction is then:
legal(Permp, L) <

— —
Vddv € DDV (L), Permp(ddv) > 0.

5.8 Unimodular Transformation

An unimodular transformation TUys (L) performs an
unimodular change of basis M on the iteration set I of
the loop nest L. After transformation, the iteration set
becomes I' = M x I. The determinant of M is equal
to1or —1.

The effect of the transformation on the dependence dis-
tance vector d is d' = TUwn (cf) = M x d. In order to
preserve the lexico-positivity constraints of the depen-
dences, the following condition must be verified:

legal(TUyr, L) <= Vd e D(L), M xd >0

Theorem 5 The minimal abstraction for an unimodu-
lar transformation is the Dependence Cone DC.

An example illustrating the previous assertion:

DOI=1,n
DOJ =1, n
A(I,J) = A(I, 2J) + A(2I, J-I+1)
ENDDO
ENDDO

Figure 10: Program 4

The program 4 loop nest contains two dependence rela-
tions. The first one characterizes data access conflicts
between the two references A(I,2.J) and A(I,.J). The
corresponding dependence system is:

8DL is the abstraction just under DDV in the abstraction
precision order

di=0
dj=j
1<j<n

Abstractions D, DC' and DDV represent these depen-
dences in the following manner:

o D(dp1) = {(0,2) | 1 < =)

e DC(dp1) = ({(0, 1)}, {(0,1)},0)

e DDV(dpl) = {(=,<)}
The second dependence relation represents data access
conflicts between two references A(2I,J — I + 1) and
A(I,J). The corresponding dependence system is:

di =1
di+dj =1
1<i:<n

The abstractions D, DC' and DDV represent these de-
pendences as:

o D(dp2) = {(z,—s+ 1)} | 1 < 2}

o DDV (dp2) = {(<,>)}
Before testing the legality of the transformation, the
union of dependences must be computed. The defini-
tions of union for the different abstractions are given in
[IrTr87],[Wolf91] and [Yang93]. Using the same abstrac-
tions, this union is expressed as:

e D(L) = D(dp1)UD(dp2) = {(0,2), (2, ~x+1) | 1 <

e DC(L) = convex_hull(DC(dpl) U DC(dp2))
({(Oa 1)}a {(Oa )a (L _1)}a m)

.1
v

Figure 11: D(L), DC(L) and DDV(L)

e DDV(L) = DDV (dpl) U DDV (dp2)
={(£, <9, (<, >)}
Figure 11 illustrates these dependences.
Let’s assume that we would like to know if the unimod-
ular change of basis M is legal or not, with :

11
=0 1)
The computation of the lexico-positivity constraints
having to be preserved amounts to:
o M x D(dpl) = (#,0) and M x D(dp2) = (1, z),
which are > 0



o M x DC(L) = ({(1,1D)},{(1,1),(0,1)},0), which is
>0

e M x DDV (L) =M x DDV (dpl)UM x DDV (dp2)
As we can see, abstractions D and DC' allow to de-
cide that the unimodular transformation can be applied
legally, while the DDV abstraction cannot conclude
since M x DDV (dp2) = (< + >,<) is not necessary
lexico-positive.
All abstractions DI, D, DP and DC' are valid for an uni-
modular transformation. The test of legality associated
to the minimal abstraction is:
legal(TU M, L) < Algigk(M x DC; >>0)
with DC(L) = (UlgiSkDCi)~

5.4 Partitioning

A partitioning transformation [KMW67], [Lamp74],
[IrTr88a], [Dhol89] Party applied on a n-dimensional
loop nest splits the iteration space into p parallel hyper-
plans. The shape and size of the partitioned blocks are
defined by the partitioning vector H = (h_’l, h;, . h_;,),
where the p hyperplans are orthogonal to h_; vectors.
This transforms the iteration space I™ into a new one
I+,

Two iterations ¢; and i5 of the initial iteration space
belong to the same partitioned block if [IrTr88al:

(I_hl X 21J I_h2 X 21J I_hTLX Zl_,J) = . .
(I_hl X ZZJ I_h2 X in, sy I_hn X ZQJ)
According to the results of [IrTr88a], performing a par-
titioning H is legal if the following condition is verified:
vde D(L), H-d>0 (1)
For an abstraction Ab different from D, the polyhe-
dron characterizing the dependences represented in Ab
is noted Pap. Pap is described by its generating sys-
tem: ({v;}, {r;}, {l;}) Condition (1) can be expressed
in terms of Ab in the following way:

H Py >0= legal(Party, L, Ab)

where H - Pap > 0 is equivalent to:

o Yy, € PAb(L) H v > 6:2
o Vr; € Pap(L), H - r; > 0,
o V. € PAb(L) H - l = 6,

Theorem 6 The minimal valid abstraction associated
to a partitioning transformation is DC'.

An example illustrating the previous assertion:

Program b contains two anti-dependences. The first one
characterizes data access conflicts between the two ref-
erences A(21,J—1) and A(I,J). Tts dependence system

DOI=1,n
DOJ=1,n
A(I,J) = A(2I,3-1) + A(2I, I+J)
ENDDO
ENDDO

Figure 12: Program b

1s:

di =1
dj =1
1<i<n

The dependence can be represented using D, DC' and
DDV:
o D{depl) = {(2,1) |1 < )
e DC(depl) = ({(1, 1)}, {(1,0)},0)
e DDV (depl) = (< <)
The second anti-dependence characterizes data access
conflicts between the two references A(21,1 4+ J) and
A(I,J). Tts dependence system is:

di = dj
di > 1
Its representations by D, DC' and DDV is:
o D(dep2) ={(x,2) | 1 <z}
e DC{dep?) = ({(1, 1)}, {(1 1)}, 0)
o DDV (dep2) = (<, <)
The union of the two dependences is expressed as:
e D(L) = D(depl) U D(dep2)

={(x,1), (z,2) |1 < x}.
D(L) is illustrated by Figure 13.

di

Figure 13: D for Program 5

e DC(L) = convex_hull(DC(depl) U DC(dep?2))
= ({(1, D} {(1,0), (L, 1)}, 0).

e DDV(L) = DDV (depl) U DDV (dep2) = (<, <).
DC(L) and DDV (L) are illustrated by Figure 14.
Let’s assume that we would like to partition the iter-
ation space according to the partitioning vector H =

(h1, h2) where hy = (%, ——) and hy = (%,0). The
lexico-positivity constraints for abstractions D,DC" and
DDV are expressed as follows:

o H - D(depl) = (£ 31,§ )
H - D(dep2) = (0, %).
Since # > 1 = H - D(depl) > 0 and
H - D(dep2) > 0, PartZ(L) is legal with respect to D.



dj

> di > di
Figure 14: DC and DDV for Program b
o H-DC(L) = ({(0,5)}.{(5,3)(0,5)}0)
Since s;,r; € H - DC(L) > 0 and dy = 0, we have

H-DC(L) > 0 PartZC(L) is legal with respect to
DC.

e DDV(L)={(<,<) }
P(DDV(L)) = ({(1,1)},{(1,0),
H-DDV(L) = ({(0,3)}.{(3,3)
Since 51 = (0, :1))) > 6) and rqe = (
— —~(H -DDV(L) < 0)
PartZPV (L) is illegal.
Figure 15 shows the H partitioning associated to the D
dependences. We can see that there is no dependence
cycles between partitioned blocks.

Y

Figure 15: Partitioning H with D, DC

Figure 15 shows the H partitioning associated to the
DC' dependences. Note that the additional depen-
dence distance vector belonging to DC' does not in-
troduce additional dependence relations between par-
titioned blocks.

Figure 16 shows the H partitioning associated to the
DDV dependences. Here, two dependences represented
by DDV (L): (1,3) and (2,1) give a cycle between two
blocks. Then, PartZPV (L) is illegal.

DC' allows to conclude the legality of Partg, because
condition (1) is verified. On the contrary, abstraction
DDV cannot conclude because the set of points de-
scribed by: {s1 = (0, %) >0Ary = (—%, 0) < 6} verifies
neither (1) nor (2).

In conclusion, all abstractions DI, D, DP and DC' are

I A VA v
/::ﬁ S
/... oye o o
/........

Y

Figure 16: Partitioning H with DDV

valid for a loop partitioning transformation. The test of
legality associated to the minimal abstraction is:
(M<i<e(H - DC; > 0)) V (Mi<ick(H - DC; <0))

— legal(Party, L)

5.5 Parallelization

Performing a parallelization Paral on a loop nest L
along the parallelizing vector pv transforms each loop ¢
with pv(i) = 0 in a parallel loop.

— 0 the k —th loop is parallel

pok) = { 1 the k —th loop is sequential

The effect of the parallelization on d= (di, .., dp, .. dy)
is projection(cf, pv) = (di,, d;,, ...d;, ) where i) are the
sequential loop indices. As the loop reversal transfor-
mation, the parallelization modifies the iteration execu-
tion order only in internal loop levels. Thus to preserve
the lexico-positivity constraints, the loop levels being
parallelized must not affect the initial lexico-positivity
dependences. The following condition have to be veri-
fied to legally apply a parallelization :
legal(Paral(p?), L) < vd € D(L) such that
dp=0 (1<k<j—-1),d; >0and

projection(cf, pv) = (diy, diy, ...d;,,) then d;; = d;

To legally parallelize a loop nest, the minimal abstrac-
tion is DL.

An example illustrating the previous assertion:

DOI =1, n
DOJ=1,n
A(I,J) = A(I-1,3-1)
ENDDO
ENDDO

Figure 17: Program 6

Taking Program 6, the dependences can be represented
using D and DL:



e D={(11)
e DL(L) = {1}
Let’s assume that we would like to know if the paral-
lelization of the 2-nd loop is legal. Then pv is equal to
(1,0). The lexico-positivity constraint is expressed as:
projection({1},(1,0)) = {1}
DL permits to conclude that the parallelization of loop
J is legal because the lexico-positivity constraints have
been preserved after parallelization. An abstraction
less precise giving, for example, only a general depen-
dent/independent information on the set of statements
would not contain enough information for the legality
test.
All abstractions DI, D, DC, DP, DDV and DL are valid
for a loop parallelization transformation. Since the par-
allelization modifies the iteration execution order only
in internal loop levels, the lexico-positivity constraints
are preserved if the parallelized loop levels do not ap-
pear in the dependence levels. So the test of legality
associated to the minimal abstraction is:

legal(Paral(pv), L) <= projection(DL(L),1 —pt) = 0

6 Linear Scheduling

Many parallelization methods such as linear scheduling
have been suggested. A linear schedule defines a new
execution order for a loop nest iteration domain such
that the first n scanning directions carry the loop nest
dependences, when others are parallel directions. The
n-th first loops of the transformed loop nest are sequen-
tial and the innermost loops are parallel.

The linear schedule is described by a linear scheduling
vector (one-dimensional) or a linear scheduling matriz
(multi-dimensional). The mapping from the multidi-
mensional iteration set to the dimensional time space is
defined by a loop transformation that involves the mul-
tiplication of the linear scheduling vector/matrix and
the iteration set. The dependence abstraction is used
for computing a valid linear schedule.

Most of the algorithms proposed in the literature
[Dhol89],[ShFo91] [DaRo92] [DaRRI2] require that the
dependences are uniforms or are approximated by de-
pendence distance vectors. This condition is too restric-
tive for real programs. In this section, we show that the
use of the dependence cone abstraction allows to get the
same set of valid linear schedulings as the dependence
distance vector. However, when the computation of the
linear scheduling depends on particular distance vector
characteristics (uniform) [Dhol89], the dependence cone
that approximates the distance vectors cannot be used
for defining the linear scheduling but only for testing its
validity.

6.1 One-dimensional linear scheduling

The one-dimensional linear scheduling is also called the
hyperplane method. The scheduling is characterized by
a vector h orthogonal to a hyperplane of simultaneously
executable iterations .

Definition 8 A linear scheduling h s _valid of the fol-
lowing condition is satisfied: vd € D, h-d >1.

According to Definition 8, the set of valid linear schedul-
ings for D is defined by:

H ={h|VvdeD, h-d>1} (1)
Likewise, the set of valid linear schedulings for DC" and
DDV are defined as:

— - — o

HC = {hec| ¥Yde DC |, he-d>1} (2)

HDV = {hv| Yd€Dppy , hv-d>1} (3)
Since D D DC D DDV, logically we have
H D HC D HDV. In fact, we have the following theo-
rem.

Theorem 7 The set of valid linear schedulings HC,
defined by equation (2), is equal to the set H of valid
linear schedulings for D.

Proof: Definitions (1) and (2) associated to the fact that
D D DC implies H D HC'. In order to prove H C HC,
we show that any vector h of H belongs to HC'. Let
h € H and d; € D. deﬁnltlon (1) implies:

vd; €D, h- d
Let de be a vector of DC. By definition, de =
i didy

with A; > 0 and Z

Then, h-de = Z A
Since Zi—l A > 1

h-de > (ming(h - d;))
HC=H.

LA
h - cZ’ Z(Z Ai) % (min; (k- dy)).

h € HC'. Thus we have

I\/

The set of valid linear schedulings H (or HC') can be
represented by a polyhedron [IrTr88b].

Definition 9 The set of valid linear schedulings H is a
polyhedron. It can be defined by a linear system whose
constraints are derived from the generating system of

DC = {{s;}, {7} }, {Ix}} in the following way:

if Vi $; £ 0 , then H is given by :

Vi, h-§>1
Vi, h-vi>0
Yk, h-l, =0



else if 3i 5; = 0 and there is no line (|{l;}| = 0)
Then H s defined by :

Vit.q.s?#@, /?5‘{»21
Vi, h-rj>1

else H = 0.

Since a DDV 1s also a polyhedron, it can be rewritten
by using a generating system [Irig88al. H DV, the set
of valid linear schedulings corresponding to DDV, can
be computed similarly as HC'.

DOI=1, N
DOJ=1, N
S1: V(I) = W(I+J)
$2: W(I) = V(I+J)
ENDDO
ENDDO

Figure 18: Program 7

Program 7 has four dependence relations:

depl: V(I)—V(I),
dep2: W(I) — W(I),
dep3: V(I+J)— V(I),
depd: W({I+J)— W()

that can be expressed with the following different ab-
stractions:

distance vector
e D(dpl) = D(dp2) = {(0,y)]1 <y < n}
e D(dp3) = D(dp4)
={@zyll<r<n 1<y l<z+y<n}

dependence cone
» DC(dpl) = DC(dp2) = {{(0,1)},{(0,1)},0}
e DC(dp3) = DC(dp4)
= {{(L 0)}a {(0’ 1)’ (1’ _1)}’ @}

dependence direction vector
e DDV (dpl) = DDV (dp2) = (=, <)
e DDV (dp3) = DDV (dp4) = (<, *)

The unions of all dependences for each abstraction are:

e D(L) ={(z,y)lx >0,z +y <n, 1<y}

o DO(L) = Uy <icq DC(dpi)

= {{(0, 1)}{(0’ 1), (1, -1}, 0}

e DDV(L) = {(=, <), (<, )
In this example, DC(L) is equivalent to D(L). Tt is
more compact than D(L) whose expression is a linear
system.
H cannot be directly derived from D, because D(L)

has an infinite number of elements. In this case, its
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computation is equivalent to solving the following non-
linear system:

h1><l‘—|—h2><y21
x>0

1<y
1<z+y<n

Otherwise, we can compute HC' using Theorem 9. It is
defined by the following linear system on h = (hy, ha) :

hy > 1
hy >0 = {
hy—hy >0

ha > 1
hi—hy >0

The generating system expression of this polyhedron is:
(LD {(1,0), (1, 1)}, 0).

If we rewrite DDV(L) in a generating system form,
using Theorem 9, we can verify that there is no legal
scheduling corresponding to DDV (L).

This example shows that DC' is more convenient than
D to compute the set of valid linear schedulings, while
DDV is not accurate enough.

6.2 Multi-dimensional linear scheduling

The multi-dimensional linear scheduling of a loop nest
corresponds to a loop reordering transformation such
that all dependences are carried by the k (2 < k) out-
most loops. The k-dimensional linear scheduling is char-
acterized by k linear vectors (h_i, . h_;c)

Definition 10 A linear scheduling (h_i, ...,h_’k) s valid
if the following condition is satisfied:
Vvde D, (hy,...,hg) - d>0.

The set of valid linear schedulings for D, DC" and DDV
are defined as:

HEK = {(h1,....hx) | Yd€ D, (hy,....hy)-d >0} (4)
HEKC = {(hy, ..., hy) |Vd € DC, (hy, ..., hy)-d > 0} (5)
HEDV = {(hy,...,hy) |Vd € DDV, (hy, ..., hy)-d > 0}(6)

Similarly to the one-dimensional scheduling, the follow-
ing theorem reports that HK = HKC.

Theorem 8 The set of valid linear multi-dimensional
schedulings HKC' defined by equation (5) is equal the set
HK of valid linear multi-dimensional schedulings for D.

Proof: This proof is similar to the previous one.

7 Related work

Most dependence abstractions have originally been de-
veloped for particular transformations. As such exam-
ples, the dependence direction vector was proposed by



M. Wolfe for loop interchanging [Wolf82] and the de-
pendence level by Allen & Kennedy for the vectoriza-
tion and the parallelization of programs [AlKe87]. The
dependence direction vector has been the most popular
dependence abstraction, because it has been success-
fully used for some important transformations such as
loop interchanging and loop permutation. Moreover, its
computation is easy and its representation in the depen-
dence graph handy. Most compiler systems have imple-
mented distance and direction vector abstractions. A
lot of work has been done on developing more advanced
transformations, but few effort has been spent on study-
ing the valid and minimal dependence abstraction for a
loop transformation.

In [Wolf90], M. Wolfe has arisen a similar question
“What information is necessary to decide when a trans-
formation is legal?”. A review of the related work on
loop transformations and dependence abstractions, in-
cluding some particular dependence information such as
crossing threshold and cross-direction, is presented. A
table gives the valid dependence abstraction support-
ing each considered transformation. However, some
important abstractions, such as the dependence cone,
and some advanced transformations, such as unimodu-
lar transformations and loop partitioning, were not con-
sidered.

V. Sarkar & R. Thekkath [SaTh92] developed a gen-
eral framework for applying reordering transformations.
They used the dependence vector abstraction whose el-
ement is either a distance value, in case of constant de-
pendence, or a direction value, in the other cases. For
each considered transformation, the rules for mapping
dependence vectors, loop bound expressions and the
loop nest are defined. These mapping rules were devel-
oped from the dependence vector abstraction. However,
the dependence vector does not contain sufficient infor-
mation to legally apply advanced transformations, such
as unimodular transformations and loop tiling, without
some risks of loosing precision.

M. E. Wolf & M. S. Lam [WoLa90] introduced a new
type of dependence vector for applying unimodular
transformations and loop tiling. In their definition, each
component d; of the dependence vector can be an infi-
nite range of integers, represented by [d7", d7***]. This
new dependence vector 1s more precise than V. Sarkar’s
dependence vector, and overcomes some drawbacks of
the direction vector by using the value range of d; in-
stead of its sign. On the other hand, it is less precise
than the dependence cone DC because it 1s only the pro-
jection of DC on the d; axis. The test of legality based
on this dependence vector is approximative because the
addition, subtraction and multiplication operations de-
fined on this dependence vector are conservative.

A comparison with other works using more precise ab-
stractions than the dependence distance vectors such
as the information provided by array data flow analysis

12

[LALa93], [Feau92] and [Feau92] should be added to the

results presented here.

Conclusion

The precision criteria for abstractions DI, D, DP, DC|
DDV, and DL have been presented in this paper and
report that the precision hierarchy of the abstractions
s DIDDDDPDODCDDDV DDL.

The minimal abstraction associated to a transformation,
that contains the minimal information necessary to de-
cide when such a transformation is legal, is defined for
three different class of transformations. The minimal
abstraction for the reordering transformations: loop re-
versal, loop permutation, unimodular transformation,
partitioning and parallelization have been identified and
is respectively DL, DDV, DC, DC and DL. Accord-
ing to the definition, all the abstractions that are more
precise than the minimal abstraction associated to the
transformation are valid for such a transformation.
This paper shows that the dependence cone DC' car-
ries enough information for testing the legality of some
advanced transformations such as unimodular transfor-
mations and loop partitioning. Moreover, this repre-
sentation allows to obtain the same set of valid linear
schedulings, both one- and multi-dimensional, than with
abstraction D) without any loss.
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