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Résumé

Le langage Fortran est largement utilisé dans le domaine du calcul scientifique. Pour choisir
les meilleurs optimisations pour un programme Fortran réel, nous devons comparer les temps
d’exécution des différentes versions optimisées de ce méme programme. Comme les programmes
Fortran réels peuvent s’exécuter pendant des heures sur des machines tres cheres, il serait intéres-
sant de prévoir les temps d’exécution précis de ces programmes au moyens d’analyses statiques.
C’est le propos de notre travail : prévoir le temps d’exécution d’une application sur une machine
donnée sans exécuter ce programme sur cette machine pour toutes les entrées possibles.

Cette these présente une nouvelle approche pour prédire les performances, qui a été implantée et
expérimentée. Elle est appelée ’analyse de complexité dans 'environnement de programmation de
PIPS. Nous montrons comment et avec quelle précision notre model de complexité, basé sur des
approximations polynomiales, permet d’estimer les temps d’exécution des programmes Fortran.
Différentes travaux théoriques et pratiques sont présentés :

1. approximation des temps d’exécution par des polynomes.
modélisation d’une machine séquentielle.

implémentation d’un estimateur automatique.

validation sur une machine séquentielle.

[ B \ ]

modélisation d’une machine parallele.

Dans cette these nous montrons d’abord comment une librairies de polynomes peut étre utilisée
pour construire un estimateur statique de temps d’exécution. Nous présentons ensuite de nom-
breuses expériences pour vérifier que les effets du compilateur et des caractéristiques de la machine
peuvent étre résumés a l’aide d’une simple liste de coefficients. L’estimateur a été implanté dans
un environnement de programmation parallele - PIPS -, et les coeflicients ont ensuite été utilisés
pour valider cette approche pour les machines séquentielles.

Nous avons remarqué durant nos expériences que l’essentiel des caculs de programmes Fortran
réels a lieu a l'intérieur des boucles, au dela de 90% du temps d’exécution. De plus, pour de gros
programmes scientifiques, en supposant que la probabilité des branchements conditionnels est de
50%, et en gardant les variables inconnues telles que, nous avons estimé les temps avec succes les
temps d’exécution de programmes réels. Pour le module EFLUX de FLO52, un programme du
Perfect Club, les différences entre les temps d’exécutions réels et estimées sont en dessous de 5%
pour une large plage de parametres d’entré.

Enfin, notre dernier but est de faire fonctionner notre estimateur pour des machines paralleles.
Pour pouvoir étendre les bons résultats obtenus sur machines séquentielles aux machines paralleles,
nous avons fait une série de tests sur une multiprocesseurs MIMD & mémoire partagée, le BBN
TC2000. Nous avons montré que les résultats obtenus sur machines séquetielles peuvent étre étendus
aux machines paralleles avec des modifications mineures de 'algorithme. Plusieurs algorithmes
empiriques ont été dérivés des résultats expérimentaux pour modéliser les boucles paralleles.

Mots clés: temps d’exécution erformance, complexité rediction, estimation, modelisation
’ ’ ’ ’ ’ ’
parallélisme.



Abstract

Fortran programs are widely used in the scientific computing area. In order to choose the best
optimized version of a real Fortran program, we have to compare the execution times of different
versions of the same Fortran program. Since real scientific Fortran programs can run for hours
on expensive machines, it would be useful to be able to perform a static analysis that accurately
predicts execution times. This is the purpose of our work: predict the execution time of an
application on a given machine without running that program on the machine for any possible
input.

This thesis presents a new performance prediction approach which was implemented and exper-
imented. It is called complexity analysis in the PIPS programming environment. We show how
and how well our complexity model, which is based on polynomial approximations, estimates the
execution times of Fortran programs. Different theoretical and practical studies were carried out:

1. approximation of execution times by polynomials.
2. modeling of a sequential machine.

3. implementation of an automatic estimator.

4. validation on a sequential machine.

5. modeling of a parallel machine.

In this thesis we first show how a library of polynomials can be used to construct a static execution
time estimator. We then present many experiments to check that compiler effects and machine
characteristics could be summarized in a simple table of coefficients. The estimator was imple-
mented in a parallel programming environment — PIPS, and the coefficient table was then used
to validate the approach for sequential machine.

We have noticed during our experimentations that major parts of calculations of real Fortran
programs are in loops. It is said that it accounts for more than 90% of execution time. Therefore, for
large scientific programs, while assuming branch statement probabilities are fifty-fifty and keeping
unknown variables as they are, we successfully estimated a suite of real programs. Particularly,
for module EFLUX of FLO52 program from Perfect Club, the differences between estimated and
measured execution times are smaller than 5% for a large range of input parameters.

Finally, our ultimate purpose is to make our estimator work for parallel machines. In order to ex-
pand this performance estimator from successful sequential program evaluation to parallel program
evaluation, we have carried out several tests on a shared-memory multiprocessor MIMD machine
— BBN TC2000. We have found that the experience obtained from sequential machines can be
easily extended to parallel machines with minor modifications of the algorithm. Several empirical
algorithms have been deduced from the experimental results to model parallel loop.

Keywords: execution time, performance, complexity, prediction, estimation, modelization, paral-
lelism.
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Avant-Propos

Les supercalculateurs ont maintenant atteint une phase de maturité. Ils sont certes plus cotiiteux,
mais aussi plus rapides et disposent de plus de mémoire que les systemes traditionnels. Ils con-
stituent donc potentiellement une importante source de puissance. Un des enjeux principaux de
I’évaluation des performances est la mise en valeur de cette réserve de puissance.

1 Motivations

L’analyse et I'estimation des performances d’un programme jouent un role important dans le do-
maine du calcul parallele. FEn effet, les temps d’exécution des programmes scientifiques réels peuvent
étre tres importants, méme sur des machines multiprocesseurs. Dans ces conditions, il est intéres-
sant de pouvoir prédire statiquement et de maniere précise les temps d’exécution de ces applications.
Ceci permettra, par exemple, de comparer différentes versions optimisées pour différentes machines
cibles.

Prédire le temps d’exécution d’une application sur un ordinateur est, dans le cas général, un prob-
leme impossible & résoudre. On peut toutefois se demander si c’est également vrai dans le cadre
des programmes scientifiques réels écrits en langage Fortran. Pour cela, deux types de méthodes
peuvent étre envisagés :

¢ Méthodes Dynamiques

e Méthodes Statiques

Les méthodes dynamiques sont les plus faciles a mettre en ceuvre. Elles consistent a exécuter
le programme considéré sur différentes machines (Cray, réseau de Tranputeurs, CM-5, ...) avec
différentes tailles de problemes et différents parametres d’entrée. Ceci n’est pas toujours possible,
car il faut disposer d’une version différente du programme pour chaque machine. De plus, ce n’est
pas la meilleure méthode. Elle est tres cotteuse, et les relations qui existent entre les différents
parametres et les temps d’exécution ne peuvent étre établies avec certitude qu’apres un grand
nombre d’expériences.

Les méthodes statiques sont moins cotuteuses, mais ne donnent pas toujours des résultats satis-
faisants. Par exemple, il n’est pas possible de prédire lors de 'analyse statique le comportement
d’une instruction de branchement ou d’un while. Le résultat doit alors étre pondéré par des
probabilités.



Niles méthodes dynamiques, ni les méthodes statiques ne sont a elles seules suffisamment puissantes
pour résoudre le probleme de la prédiction des performances d’un programme. Nous pensons qu’il
serait intéressant de combiner ces deux méthodes pour tirer parti de leurs avantages respectifs.
Mais nous ne sommes pas parvenu a éviter leurs inconvénients, qui sont pour la premiere le cott
d’exécution, et pour la seconde des estimations parfois grossieres.

Le probleme général peut étre formulé de la facon suivante :

Etant donné un programme et un supercalculateur, peut-on prédire le temps d’exécution
du programme sur cet ordinateur sans I’exécuter réellement ?

Dans cette these, nous apportons une réponse positive a cette question : nous avons déterminé une
méthode qui résoud ce probleme de maniere efficace.

2 Hypotheses et Objectifs

Le principal objectif de cette these est donc de développer une méthodologie permettant de prédire
le temps d’exécution d’un programme, quels que soient ses parametres d’entrée. Cette information
ne pourra pas toujours étre obtenue de manieére exacte, mais nous voudrions pouvoir au moins
comparer les temps d’exécution de deux versions d’un méme programme, obtenues a 1’aide de
méthodes différentes.

Le cott des entrée/sortie des programmes scientifiques est difficile & estimer, car ces opérations
mettent en jeu le systeme d’exploitation et des caractéristiques temps réel. Une estimation du
temps moyen d’une opération d’entrée/sortie pourrait étre utilisée, mais nous supposons qu’elles
sont effectuées séparément. Nous ne traiterons donc pas ce probleme dans cette these.

Nous avons implanté notre estimateur de performances au sein du Paralléliseur Interprocédural
de Programmes Scientifiques (PIPS) développé a ’'Ecole des Mines de Paris. Le programme est
tout d’abord analysé et représenté sous une forme interne propre a PIPS. Puis notre analyseur
de complexité utilise le résultat de ces analyses (structure de contréle du programme, opérations
utilisées dans les instructions) ainsi qu’une modélisation de la machine cible sous forme d’une table
de cotts pour calculer la complexité du programme considéré. Le résultat est inséré dans le code
source sous forme de commentaires, de la méme maniere que les résultats des autres phases de

PIPS.

3 Notre Approche pour Performance Estimation

Dans cette section, nous présentons plus en détail différents problemes qui vont nous permettre de
préciser le cadre de cette étude : (1) a quel niveau de langage devons-nous effectuer notre analyse ?
(2) quelle méthode statique, dynamique, ou une combinaison des deux, devons-nous utiliser pour
estimer le temps d’exécution ? (3) quelle est 1'unité de code atomique (la plus petite) que nous
considérerons ? (4) sous quelle forme afficherons nous le résultat ?



3.1 Quel niveau langage choisir

Le choix du type de langage qui va pouvoir étre traité par 'estimateur de performance n’a pas
encore été évoqué. Il s’agit de choisir entre un langage de haut niveau, pour lequel estimateur
devra tenir compte du fonctionement du compilateur, et le code assembleur, pour lequel il n’y a
pas d’assembleur & considérer.

Niveau Assembleur

Si on choisit de faire ’analyse sur le code assembleur, on peut s’attendre a une estimation tres fine,
car on sait exactement quelles instructions vont étre exécutées (acces a la mémoire, aux registres,
...) et combien de cycles elles prennent. De plus, on peut analyser n’importe quel programme, quel
que soit le langage dans lequel il a été initialement écrit. Cependant, il existe des désavantages
importantes a une telle approche:

e Premierement, on devient dépendant de la machine sur laquelle on travaille, puisque chaque
machine possede son propre assembleur. Le programme assembleur est aussi nettement plus
gros que le programme source (jusqu’a un rapport douze d’apres les tests de Berthomier

[Bert90]).

¢ Deuxiemement, le code assembleur est en général bien plus difficile & interpréter qu'un pro-
gramme en langage évolué comme Fortran ou C. Cela explique d’ailleurs le fait que 1’on
programme de préférence en langage de haut niveau. Les optimisations réalisées a la compi-
lation compliquent encore les choses, et il devient tres difficile de prévoir le comportement du
programme d’apres les résultats analytiques.

e Troisiemement, certaines informations importantes, comme le nombre d’itérations dans une
boucle, ne sont plus disponibles au niveau de "assembleur.

En outre, le fait que le code assembleur soit peu structuré ajoute encore a la compléxité de I’analyse.

Niveau Langage Source

Etant donné les nombreux inconvénients dus au code assembleur, on a choisi de faire les analyses
au niveau du langage source. Comme de plus c’est a ce niveau que se font les développements
et la maintenance du code, cela permet de mieux percevoir la correspondance entre le code écrit
et I’analyse de performances. Il est en effet difficile de raisonner a un niveau avec des résultats
provenant d’analyses faites a d’autres niveaux. Il serait aussi assez maladroit de faire ’analyse
en temps a un niveau différent de 'analyse logique du programme. D’autres informations, qui se
révelent la plupart du temps décisives pour évaluer le temps d’éxécution et que I’on ne peut prélever
qu’a un haut niveau sont la compléxité de I’algorithme et les relations entre procédures.

Les avantages de ’analyse au niveau du langage source sont nombreux et évidents. Les programmes
sont souvent bien structurés, de nombreuses informations sont disponibles au sujet des algorithmes,
etc.. Le probleme a ce niveau est que le compilateur va générer un code objet qui ne repectera pas
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forcément bien la construction initiale du programme, des techniques d’optimisation de code ayant
été appliquées En conclusion, on peut dire qu’il est difficile d’estimer précisément quelle forme va
prendre une construction du code source dans le code assembleur. Nous avons effectué un ensemble
d’expériences sur SUN SPARCstation 2 pour se rendre compte a quel point on arrive a prendre en
compte de maniere statique les optimisations. Les résultats sont donnés dans le chapitre 5. Des
architectures plus complexes ont aussi pu étre modélisées de facon satisfaisante [Wang93].

Le programme d’évaluation pour langage de haut niveau perd quelques informations, mais travaille
sur des fichiers bien plus petits et devrait donc fonctionner nettement plus rapidement.

Option choisie: Langage de haut niveau

En se fondant sur notre discussion, nous avons choisi I’analyse de langage de haut niveau.

3.2 Méthodes d’Evaluation

Le but de notre méthode est d’exprimer la complexité sous forme d’expressions symboliques, ce qui
permet d’éviter les problemes de ’analyse statique traditionnelle, et donc de conserver la puissance
de prédiction de notre estimateur. Dans cette section, nous présentons différentes manieres de
comparer ou d’évaluer les performances de programmes Fortran.

Si un utilisateur désire comparer deux versions d’un méme programme, il doit tout d’abord s’assurer
que leur sémantique est bien équivalente. Notre but n’est pas de le vérifier, mais de calculer les
performances relatives de plusieurs versions différentes d’un méme code, afin de les comparer, et
d’aider ultérieurement au placement et a I’ordonnancement des taches de la version choisie.

Mesure dynamique des temps d’exécution

Au lieu de faire une comparaison “différentielle” de deux programmes, nous évaluons chacun d’eux
séparément de maniere “absolue” et ensuite nous comparons leur évaluation.

Unix fournit des outils pour la mesure dynamique de performance. Il y a principalement deux
méthodes pour récupérer des profils d’éxécution : prof et tcov. La premiere technique consiste a
échantillonner périodiquement le compteur ordinal de programme et d’en déduire a partir de sa
valeur quelle fonction ou procédure la machine est en train d’exécuter. On peut ensuite calculer le
pourcentage de temps passé dans chaque fonction. L’autre technique consiste a ajouter un compteur
avant chaque instruction du programme a analyser. Toutes les valeurs des compteurs sont ensuite
écrites dans un fichier lorsque 'exécution du programme se termine.

L’inconvénient principal de cette mesure dynamique est qu’elle ne donne que des valeurs dépendant
du jeu de données. Si on veut connaitre le comportement de son programme en fonction des
parametres principaux (la taille des données ou le nombre de processeurs pour un programme
parallele), on doit estimer la fonction a partir de telles mesures ponctuelles. Nous verrons que
I’évaluation statique peut fournir directement la fonction de complexité lorsque le programme n’est
pas trop compliqué.
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Evaluation statique symbolique

Nous avons dit que le principal avantage de ’évaluation statique comparée a 1’évaluation dynamique
est son faible cotit d’exécution. Cependant il reste des difficultés liées a ’évaluation statique du
langage Fortran. Il y a quelques situations qui ne peuvent pas étre prises en compte telles que :

une instruction de branchement : lorsqu’on rencontre un IF, il est souvent impossible d’approximer
la complexité moyenne de linstruction toute entiere. On ne peut pas faire mieux que de sup-
poser un choix équiprobable pour les deux branches.

Mais certains cas sont utilisés seulement pour vérifier des conditions courantes ou détecter
des anomalies et il est facile de les détecter car ils menent a des STOP, ABORT ou EXIT. On
peut supposer que cette branche n’est que rarement prise et donc lui donner une probabilité
d’exécution de 0.

Néanmoins, la plupart du temps, cette probabilité ne peut étre calculée statiquement ;

le nombre d’itération : il est ici crucial de I’évaluer puisque généralement plus de 90% du
temps est passé dans des boucles. L’analyse sémantique peut étre utilisée pour exploiter
I'information disponible au niveau des variables du programme. En particulier les variables
symboliques peuvent étre évaluées alors que sans elle seules les bornes de boucles constantes
peuvent étre utilisées, ce qui n’est pas tres intéressant. Mais 'analyse symbolique ne résoud
pas tous les problemes.

Un inconvénient de I’évaluation statique comparée a 1’évaluation dynamique est qu’elle nécessite
une modélisation de la machine sur laquelle le code analysé est sensé tourner. Appliquée a un
programme écrit dans un langage de haut niveau, cette méthode perd de la précision a cause de
toutes les transformations effectuées par le compilateur comme cela a été expliqué précédemment.

Puisque c’est une méthode statique, aucune récursion n’est autorisée & moins qu’un algorithme de
point fixe soit utilisé sur le graphe d’appel.

Combinaison d’une estimation statique et de mesures dynamiques

Cette méthode se décompose en trois étapes :

1. on commence par une premiere passe d’évaluation statique pour accumuler de I'information
sur les points ou 1’évaluation statique échoue : la position de tests IF ou les probabilités de
branchement ne peuvent pas étre calculées (presque tous en fait) et la position des boucles
DO dont les bornes n’ont pas été calculées exactement, comme le sont les boucles WHILE.
Pour ce qui est des parties de programme non structurées, PIPS les convertit en plusieurs
blocs structurés.

2. dans un deuxieme temps, une analyse dynamique est utilisée pour résoudre les points marqués
par la premiere passe. Une copie du programme est faite avec ajout de compteurs a tous les
endroits ol cette premiere passe a échoué. La version modifiée du programme est ensuite
exécutée avec un certain nombre de jeux de données. A la fin de ces exécutions les valeurs
des compteurs sont écrites dans un fichier qui est exploité par la seconde passe de ’analyse
statique. Des outils tels que tcov pourraient étre utilisés ;
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3. la derniére étape consiste a refaire une phase d’évaluation statique en utilisant les valeurs
des compteurs générées lors de 1’étape précédente afin d’obtenir la complexité globale du
programme.

Un avantage de cette méthode est que la mesure du profil d’éxécution peut étre effectuée sur
n’importe qu’elle machine (ayant néanmoins toujours la méme représentation interne des nombres
flottants). Comme la méthode a besoin de beaucoup moins d’information de profil que I’approche
dynamique et que sa sortie d’évaluation est paramétrique, ses résultats sont moins sensibles au
choix des ensembles de données fournis pour I’échantillonnage des profils d’exécution.

En outre, la seule utilité de la premiere étape d’évaluation de la complexité est d’insérer des
compteurs seulement ol cela est nécessaire afin de gagner du temps sur I’exécution du programme
modifié. En pratique il peut étre plus avantageux de sauter cette étape et de choisir de rajouter
des compteurs au niveau de chaque IF et de chaque DO plutot que de faire la premiere phase qui
peut prendre plus de temps de décision que de temps effectivement gagné par la suite.

Bien entendu, comme pour les autres approches, il y a un certain nombre d’inconvénients :

e puisque D'estimation statique est utilisée il n’y a pas de récursion possible 4 moins encore
d’utiliser un algorithme de point fixe sur le graphe d’appel des fonctions et procédures;

e la correction ne peut pas étre prouvée. A supposer que les complexités de programme soient
approximées par des polynomes, il est évident qu’une telle estimation de complexité ne peut
donner de bons résultats pour tous les algorithmes. Par exemple la complexité des algorithmes
de Quicksort et de FFT ont une composante logarithmique qui ne sera pas devinée par les
mesures dynamiques.

Option choisie: Une approximation purement statique

Il semble impossible de combiner de maniere sire des informations dynamiques précises sur le
comportement du programme recueillies pour un jeu d’entrée donné, et les informations statiques
inférées pour n’importe quel jeu d’entrée valide. Les mesures dynamiques pourraient s’avérer utiles
pour détecter les branchements du programme a faibles probalités d’exécution, comme les tests
d’erreur. Mais d’apres Wang [Wang94], une analyse statique du programme est suffisante pour
détecter de tels cas. Par ailleurs, les bornes de boucle ainsi mesurées sont peu concluantes : dans le
cas d’une boucle while par exemple, qui vérifie un critere de convergence, la durée peut dépendre
fortement des données, et ne pas étre significative.

Par contre, 'utilisation de variables “spéciales”, reliées d’une maniére ou d’une autre a 'origine
b b
méme du probleme d’estimation rencontré, dans le code source, est nettement plus sympathique
pour 'utilisateur. La correction de la formule dérivée peut étre démontrée, et 'utilisateur peut
fournir s’il le désire, et s’il en dispose, des informations complémentaires qui seront facilement
b b
intégrées dans les résultats par simple substitution de ces variables spéciales.

Des expériences sont nécessaires pour vérifier sur des programmes réels qu’un nombre raisonnable
de telles variables sont introduites par 'analyse, afin de garantir la lisibilité des résultats de ’analyse
de complexité. De telles expériences ont été menées et des résultats encourageants dans ce sens ont
été obtenus. Ils sont présentés au chapitre 5.
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3.3 Choix de la classe de fonctions pour ’analyse de complexité

Le choix de la classe de fonctions mathématiques pour ’analyse de complexité est dicté par différents
criteres parfois contradictoires.

1. D’abord, ces objects doivent étre suflisamment complexes pour pouvoir accumuler et propager
I'information recueillie au différents niveaux de ’analyse.

2. 1l doivent cependant étre suffisamment simples pour supporter des opérations comme la
somme, le produit ou l'intégration de maniere interne.

3. De plus, si 'on veut pouvoir comparer les temps d’exécution de deux programmes, deux
objets doivent étre comparables.

4. Enfin, ils doivent convenir a 1'utilisateur final, a savoir une personne humaine doit pouvoir
les exploiter : la lisibilité du résultat est donc un critére important.

Certains de ces criteres sont contradictoires, ils ne peuvent donc étre tous satisfaits a la fois. Il
faut faire un chois, et le meilleur possible. Voici quelques classes de fonctions envisageables pour
I'analyse de complexité :

o Evaluer la complexité au moyen d’une simple constante satisfait a tous les criteres de choix
exposés, sauf le premier : si par exemple l'information calculée & l'intérieur d’une procé-
dure dépend de parametres passés a cet procédure, i.e. des constantes symboliques, cette
information est perdue.

o Les expressions syumboliques en général ne perdent pas d’information, mais certaines opéra-
tions comme I’intégration ne sont pas toujours possible car il n’existe pas de formule générale
pour ce faire.

e Les polynomes (& coefficients constants) permettent I'intégration, peuvent représenter des
temps d’exécution paramétriques, et sont aisément manipulables. Cependant, les complex-
ités exponentielles ou logarithmiques ne sont pas exprimables du fait de la constance des
exposants.

e Une paire de polynomes bornant inférieurement et supérieurement le temps d’exécution est
envisageable. Mais cette information n’est pas toujours significative. Ainsi, pour une boucle
while, les bornes sont 0 et Uinfini. .. Park [Park92] utilise néanmoins cette approche et donne
un intervalle de prédiction.

e Une forme polynomiale conditionnelle, comme par exemple :

N?2+10-N if N > 10
N?2420-N if N >=10

permettrait d’inclure une information booléenne dans ’expression de la complexité au lieu de
les évaluer directement. Mais une telle forme n’est pas pratique, car elle peut croitre expo-
nentiellement en fonction de la profondeur du nid de boucles incluant un test, et I'intégration
entre des bornes polynomiales n’est pas chose aisée.



14

Option choisie: Les polynémes comme classe de fonctions

Finallement, les polynémes ont été choisi d’une part pour leur simplicité et parce qu’il permettent
de traiter la plupart des programmes scientifiques, qui opérent simplement sur des tableaux. Des
variables spéciales marquant les valeurs inconnues ont été introduites pour gérer les problemes de
bornes statiquement inconnues.

3.4 Visualisation des formules de complexité

Les formules de complexité dérivées pour un programme peuvent étre utilisées directement par un
compilateur pour choisir entre différentes techniques de compilation, mais elles peuvent également
étre proposées a 'utilisateur par ’environnement de programmadtion.

La maniere de visualiser les résultats de I'analyse de complexité n’est en rien évidente. Comment
présenter les résultats de maniére claire et concise est aussi difficile. Une personne humaine ne peut
pas appréhender et exploiter facilement des formules complexes. Le présentation doit étre a la fois
correcte, claire et concise.

Option choisie: Visualition sous forme de commentaires

Nous avons décidé de présenter les formules de complexité sous la forme de commentaires, pour
éviter un développement excessif pour linterface utilisateur. Cependant, le nombre moyen de
lignes de programme des benchmarks du Perfect Club est de 4000, et 4000 formules de complexité
ne présentent pas beaucoup d’intérét pour l'utilisateur. Plus de travail est nécessaire sur cette
interface.

4 Contribution

Au cours de ma these, j’ai réalisé un outil permettant d’estimer la complexité statique de pro-
grammes FORTRAN dans ’environnement de programmation parallele PIPS. Les différentes étapes
de son élaboration ont été décrites dans cette dissertation.

Les nouvelles fonctionnalités que j’ai implantées dans PIPS ainsi que les différentes caractéristiques
de notre outil d’évaluation sont maintenant détaillées:

Description de la machine: L’utilisateur peut choisir parmi un ensemble de descriptions de ma-
chine, appelées tables de coits, celle qui est la plus appropriée a son choix. Pour le moment,
trois tables de coits sont disponibles. Deux correspondent a des modeles théoriques: 'une
modélise une machine ou toutes les opérations ont un cout unitaire, et I’autre ne tient compte
que des opérations flottantes. La derniere modélise une SUN SPARCstation 2 et donne les
colts mesurés des différentes opérations de base de cette station de travail. Tous les coiits
inhérents a chacune des opérations de la machine sont stockés dans un fichier.

Parameétres symboliques: Dans certains cas, des variables du polynéme décrivant la complexité
du programme restent symboliques et ne sont pas évaluées. Par exemple, PIPS peut identifier
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les variables du programme qui ne doivent pas étre évaluées parce qu’elles correspondent a
des parameétres libres du module (parametres formels d’un appel de procédure ou parametres
d’entrée dont la valeur n’est connue que lors de 'exécution). De plus, l'utilisateur peut
spécifier les variables qu’il désire conserver symboliquement dans le résultat.

Préconditions Interprocédurales: PIPS utilise des préconditions pour caractériser les informa-
tions connues a la compilation sur les variables scalaires du programme avant 1’exécution
d’une instruction. Une fois que ces préconditions sont calculées, elles sont stockées dans un
fichier pour chacun des modules et peuvent étre utilisées a posteriori par les autres phases du
calcul.

Résultats Simplifiés: Une analyse est effectuée de maniére a minimiser le nombre de parametres
libres qui sont locaux a un module. De plus, les variables intermédiaires sont éliminées du
résultat final.

Trace du calcul: Il est possible d’obtenir une trace des différentes étapes de calcul qui sont ef-
fectuées au cous du processus d’évaluation de la complexité du programme. Cette possibilité
s’avere utile notamment : (1) pour clarifier la structure du programme et (2) pour faciliter le
deboguage (détection des endroits qui souléevent des problemes).

De maniere a valider mon approche, plusieurs expériences ont été menées sur une machine séquen-
tielle (SUN SPARCstation 2) et sur un machine parallele (BBN TC2000):

Machines Séquentielles: Comparées aux résultats obtenus manuellement par Emad [Emad91],
nos estimations donnent de bons résultats. La principale différence réside dans 1’évaluation
des probabilités d’exécution de certaines branches du programme. Nous avons utilisé notre
outil pour estimer le temps d’exécution du programme FLOH2 extrait du benchmark du
Perfect Club. Nous avons comparé le résultat obtenu pour la sous routine EFLUX de ce
programme avec le temps réel de son exécution sur une SUN SPARCstation 2. La différence
est relativement faible, moins de 5%, quelques soient les intervalles de valeurs pris par les
différents parametres d’entrée.

Machines Paralléles: Nous avons effectué plusieurs expériences sur la BBN TC2000 (multipro-
cesseur MIMD a mémoire partagée) avec de petits programmes de tests. Notre étude montre
qu’il est possible moyennant des modifications légeres de nos algorithmes d’étendre les travaux
effectués pour les machines séquentielles en vue de leur exploitation pour les machines paral-
leles.

5 Plan de la these

Le chapitre 1 introduit cette these. Les arguments qui ont motivé mon travail et le but que je mettais
fixé y sont présentés. Les concepts généraux de performance et de complexité d’un programme,
utiles a la présentation de notre approche dans 'environnement PIPS, sont introduits. Enfin, ce
chapitre précise ce qu’il est possible de prédire de maniére générale en terme de performance et de
complexité avant d’exposer notre contribution.
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Le chapitre 2 décrit les algorithmes classiques utilisés pour estimer le temps d’exécution des pro-
grammes. Les caractéristiques, grandes lignes et structures de données de PIPS, qui ont influencées
I'implantation et les résultats de nos algorithmes, sont présentées. Nous proposons ensuite une
approximation du temps d’exécution d’un programme par une formulation mathématique en deux
étapes. La premiere consiste & masquer les problemes de bas niveaux liés au fonctionnement de
la machine (les effets du compilateur, du systéme d’exploitation, du matériel tel que la mémoire
cache, etc...). La seconde sert & 'approximation du comportement dynamique de I'exécution du
programme, simplifié par la premiere étape, par une représentation mathématique statique. Les
choix des approximations effectuées par ces deux étapes sont justifiés au cours de leur présentation.

Le chapitre 3 décrit la modélisation d’une machine cible. Il présente comment caractériser par
un ensemble de temps de base le comportement de la machine et de son environnement (compila-
teur, run-time, systeme d’exploitation, microprocesseur,...). Dans un premier temps, les machines
séquentiels sont étudiées et les parametres importants utiles & la modélisation de la machine sont
présentés . Nous proposons ensuite une extension de ce modele aux machines paralleles. La derniere
section décrit les expériences qui ont été menées pour valider cette modélisation et montre comment
la SUN SPARCstation 2 peut étre précisément modélisée.

Le chapitre 4 détaille 'implantation de nos algorithmes dans PIPS. L’environnement de program-
mation général de PIPS est présenté, et précede les structures de données développées pour nos
algorithmes ainsi que celles de PIPS directement réutilisées comme le graphe des appels, le graphe
de contréle interprocédural, les préconditions et les effets.

Le chapitre 5 présente les expériences effectuées pour les machines séquentielles permettant de
valider nos résultats de complexité sur la SUN SPARCstation 2. Son but est de montrer que notre
outil permet généralement 'obtention de bons résultats. Ces expériences ont été utilisées pour
valider notre approche et nos algorithmes sur des programmes réels. Nous comparons nos résultats
avec ceux obtenus manuellement et vérifions la robustesse de notre approche sur un benchmark du
Perfect Club par une comparaison de nos prédictions avec les temps d’exécution réels mesurés pour
I'un de ces modules. Les résultats de cette comparaison sur machine séquentielle sont encourageant.
Comme ’on pouvait s’y attendre, un outil automatique ne fait pas certaines petites erreurs qu’un
humain pourrait faire. Toutefois, il requiert un certain controle de I'utilisateur sur les hypotheses
simplificatrices qui sont faites, et notamment sur les probabilités utilisées pour les branchements,
qui peuvent conduire a des approximations tres mauvaises. De maniere a valider les résultats, nous
avons mesuré les temps d’exécution de la sous routine EFLUX provenant du programme FLO52,
et comparé les résultats avec nos prédictions. La différence est inférieure a 5%.

Le chapitre 6 présente les expériences effectuées sur la machine parallele BBN TC2000. L’un des
buts de cette these était de développer un outil permettant 'estimation de la complexité d’un
programme sur machines paralleles. Ce chapitre est un premier pas vers cet objectif. Il contient
une description des expériences sur la BBN destinées a caractériser le comportement des boucles
paralleles. Nous avons fait une série de programme de test de maniére & extraire des formules
permettant de prédire ce comportement. Ces équations pourront étre utilisées ultérieurement pour
étendre nos travaux aux machines paralleles.

Enfin le chapitre 7 conclut cette these. Un rappel des caractéristiques de notre outil est tout
d’abord exposé. Les différents travaux dans le domaine de ’évaluation de performance y sont
ensuite détaillés. Nous introduisons les différentes techniques les plus connues utilisées par les outils
de prédiction des performances et distinguons quatre catégories: évaluation manuelle, simulation,
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analytique et par mesures. Nous classifions aussi les outils existant selon la nature de la machine
ciblée: monoprocesseur, multiprocesseurs, multiprocesseurs avec mémoire partagée ou distribuée.
Enfin, nous comparons ces outils avec notre contribution avant de présenter les différents travaux
qu’on envisage pour compléter notre étude.

L’appendice A contient la représentation intermédiaire des programmes qui est utilisée par PIPS.

L’appendice B contient les temps d’exécution d’opérations élémentaires écrites en C pour une SUN
SPARCstation 2. Ces temps d’exécution sont utilisés au chapitre 5 .

L’appendice C contient les résultats complets pour la sous routine CALCG du programme TMINES.
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Chapter 1

Introduction

Supercomputers have come of age. While there is a general awareness that supercomputer systems
are faster, costlier and have larger memory hierarchies than other computer systems, such char-
acteristics merely imply the existence of great potential power. How much of that power can be
harnessed productively is the central theme of performance evaluation.

1.1 Motivation

Performance plays an important role in parallel computing. The users would often like to know
the execution time of their application prior to the execution. Although this has been proven
theoretically impossible in the general case, can they generally do it for real scientific applications?

In order to predict the execution time of an application and to choose the best optimized version
of a real Fortran program for a given machine, we have to know the execution times of different
optimized versions of the same Fortran program, or at least, we have to be able to order these
executions times. Since real scientific Fortran programs can run for hours on expensive machines,
it would be very useful to be able to perform a static analysis and to accurately predict execution
times.

Several methods can be used to predict the execution time of a given Fortran program. They belong
to one of two classes:

¢ Dynamic Methods

e Static Methods

Dynamic methods are the easiest way to go. The program is run on real parallel machines such
as a Cray, Transputer or CM-5, with varying number of processors and varying problem sizes.
However, this is not always possible because different versions of the program have to be written
for each machine. This is not the best way, not only because it is the most expensive one, but
also because the relationship between the result and parameters cannot be obtained for sure unless
many experiments are carried out.

29
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Static methods are cheaper, but it is not computable sometime. As there is no way to predict the
outcome of a branch or a while statement in static evaluation, we are forced to guess or choose
forced probabilities.

Neither static nor dynamic evaluations are sufficiently powerful to solve performance prediction
problem. It would be interesting to combine the advantages of both methods of evaluation and to
get rid of their respective drawbacks as much as possible. We believe that a method using static
and dynamic evaluations would be good way to evaluate the execution time of a program but we
did not manage to avoid combining their respective disadvantages, expensive profiling and risky
extrapolation.

Now the general question is:

Given a program and a supercomputer, could we predict the execution time of the
program on the supercomputer? Or could we know the execution time of the application
on the supercomputer without running it on the machine?

Our answer to this question is positive. We think we have found a way to effectively deal with this
problem.

1.2 Research Goal

The goal in this thesis is to develop a methodology for predicting the execution time of an application
for all its possible inputs on a supercomputer with, presumably, a very expensive CPU-hour price.
At least we would like to be able to order the execution times of two versions of the same application,
obtained using different transformations. A very important point in the second case is that we do
not need exact execution time of a program, which can only be obtained by really executing the
application on the specific supercomputer.

Since supercomputers are generally used to perform scientific calculations, the costs for Input/Output
are often of secondary importance. Also, they are very difficult to estimate because the operating

system and real time issues are involved. An average throughput could be used but we chose to

assume that I/O could be done off-line. So we will not discuss this issue in this thesis.

The functional structure of the estimator is shown in Figure 1.1. By pipsize, we mean that the
original program is analyzed and represented in PIPS internal form. Our complexity analyzer
then combines information about the program control structure and the operators used, as well
as information about the target machine, the so-called cost table. Its output is then merged as
comments in the source code as is usually done in the PIPS parallel programming environment.

The reader may wonder why the schema in Figure 1.1 is kept in an unsymmetrical way. Since the
left part of the schema is supposed to be running on a supercomputer, while right part is supposed
to run on a relatively cheap machine, which is the major part of the PIPS estimator, so keeping
right part in axis shows the central work of PIPS estimator.
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Figure 1.1: The Overall Complexity Scheme
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1.3 Performance and Complexity — Our Model

Manufacturers often give “Peak Performance” numbers ( MIPS, MFLOPS ) that are considerably
higher than the performance numbers based on real applications ( e.g. Linpack MFLOPS ) and,
as the peak performances announced by the supercomputer manufacturers are getting higher and
higher, the performance percentage that an actual application can reach ( its sustained performance
) is getting lower and lower. So there is a disharmony between the peak performance and the
performance that could be reached. Therefore, “Peak Performance” is an ideal description of the
machine under ideal circumstances and is almost meaningless for the users of these machines.

The term “performance” is often used without much thought as to what it really means. In
this section, we will clarify what is meant by performance, how the performance of a system is
determined and what performance means for a program; and then we will discuss what is meant
by complexity and complexity analysis.

1.3.1 Performance of Systems

Performance is an abstract idea that can be applied to any system. We first introduce performance
in this general context and then discuss how these concepts apply to programs.

A Definition of Performance

Performance can be defined as the property of a system that makes that system valuable to its
users [FSZ79, FSZ83]. In other words, performance indicates how well a system does the task
it was designed for. From this definition, performance provides a somewhat subjective means of
system evaluation. What one user considers to be important might be of no value to another. If
performance is to be used to evaluate the effectiveness of a system, or to compare the relative worth
of two systems, a more quantitative assessment is required.

This is achieved by representing the performance of a system by a set of one or more performance
indezxes. Each index has a value which is a measurement aspect of the system of its behavior. When
more than one performance index is used, the performance of the system is described by:

P:Zpi-wi (1.1)

where P is the performance of the system, p; is the value of ¢, performance index and w; is
weight which indicates the relative importance of each performance index with respect to overall
system performance. The w; are defined such that >~ w; = 1.

For the purpose of this dissertation, all performance indexes will be assumed to take on numeric
values. This eliminates subjective indexes such as “programmability” from consideration unless
they can be assigned a numeric value. In examining the characteristics of program execution, one
is primarily interested in the indexes that reflect how a system uses resources; for example, how it
takes to complete an operation or how many processors are being used. Clearly, indexes such as
these can be assigned numeric values.
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Selecting an appropriate set of performance indexes can be difficult. For example, the value of
a computer system may be determined by its computational power. One measure of computing
power is the speed at which the computer can perform basic operations. A number of different
indexes can be used to represent this notion of performance, including:

e MFLOPS: Millions of FLoating-point Operations Per Second.
e MIPS: Millions of Instructions Per Second.

¢ Bandwidth: maximum number of bytes transferred per second between the processing com-
ponent and the memory.

e Delay or Latency: the time taken to service a request, deliver a message, etc.
e MHz: the frequence of internal clock of the processor.

¢ Benchmarking: the amount of time required to complete the execution of a benchmark pro-
gram. Such as: Perfect Club [Cybenko91], LINPACK ( LINear PACKage ), SPEC ( System

Performance Evaluation Consortium ), etc.

This set of performance indexes could be further extended by considering whether the value of an
index is determined by the system’s best case behavior, or the behavior of the system over a range
of activities, its sustained performance.

The users of a system must ultimately decide which indexes best represent their requirements. If
multiple indexes are used, then the relative weighting among them must be determined as well. Tt
is important to realize that no combination of performance indexes might fully capture the true
value of the system. However, by selecting a specific set of performance indexes, we have a basis
from which an objective system evaluation can be made. In this dissertation, the word performance
is used to mean the value of the weighted sum of performance indexes being used to represent a
system’s value, as in Equation (1.1).

But the only way through which we are interested in performance in this dissertation is execution
time. Above indexes can have more or less impact on this execution time. Before we try to define
the performance, let us have a look at Figure 1.2 to see what factors can effectively influence the
execution time.

The performance of a computer is complicated issue and a function of many interrelated factors.
These factors include: the application, the algorithm, the size of the problem, the high-level lan-
guage, the implementation, the level of human effort used to optimize the program, the compiler’s
ability to optimize, the maturity of the compiler, the operating system, the architecture of the
computer, and the hardware characteristics. In a word, performance depends on many things to
which we refer as performance indexes.

Methods of Performance Evaluation

The performance of a system is determined by a performance evaluation study. Such a study consists
of two parts. First, we identify the performance indexes to be used to represent system performance
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and second, we determine the value of these indexes. There are two types of performance evaluation
studies — performance analysis and performance measurement.

In performance analysis, the values of performance indexes are derived from system parameters
using mathematical models. Many different tools for performance analysis exist. Of particular
importance to parallel programs and parallel computers are queuing models and models based on
Petri nets. Analytic methods are most useful when you want to predict performance for a large
range of inputs or when the system has not yet been built, or when the cost to perform experiments
on the actual system is prohibitive.

Alternatively, if the system has already been built, the values of performance indexes can be ob-
tained directly by taking measurements as the system executes a given task. Obtaining the value
of performance indexes in this manner is called performance measurement. While this approach
is clearly useful, it has the same drawbacks as debugging: the test data may not cover the do-
main of interest, and measurements may not be feasible without setting up an actual production
environment. Another common and useful technique is to simulate the target system using some
simulation. The problem here is that the results may not accurately reflect the target, since the
simulation model is only an approximation to the real system.

There is an important distinction between the values obtained through performance analysis and
the values obtained through performance measurement. Performance analysis methods generally
determine the value for a performance index via statistical abstraction. For example, the index
values obtained might be representative of a class of system inputs whose size varies according to
a Poisson distribution with a specific mean.

The values obtained through performance measurement differ in that they are based on one specific
sequence of actions taken by the system in response to one specific set of inputs. Generalizations
beyond this sequences of system actions require that the input to the system used for performance
measurement be representative of the range of inputs the system will have during actual use.

When performance evaluation is conducted via measurement, the system is instrumented and mea-
surements are made while the system operates. At some point during the development of the system
a decision is made to enter a performance evaluation phase and to perturb its normal behavior. An
alternative is to make measurement overhead a permanent part of the system, but this is not yet
widely supported because hardware support is required to reduce the overhead at an acceptable
level. Cray computers and IBM Power-2 architecture support non-intrusive measurements.

1.3.2 Complexity of an Algorithm

An algorithm is a method for solving a class of problems on a computer. The complexity of an
algorithm is the cost, given in abstract steps, or the amount of storage, given in abstract units of
memory, or whatever units are relevant, of using the algorithm to solve any of those problems. To
say that a problem is solvable algorithmically means, informally, that a computer program can be
written that could produce the correct answer for any input if it is run long enough and is allocated
as much storage space as is needed. Before the advent of computers, mathematicians worked very
actively to formalize and study the notion of an algorithm, which was then interpreted informally
to mean a clearly specified set of simple instructions to be followed to solve a problem or compute
a function. One of important negative results, established by Alan Turing, was the proof of the
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unsolvability of the “halting problem”, which is to determine whether an arbitrary given algorithm
( or computer program ) will eventually halt while working on a given input. No computer program
can solve this problem. So if our evaluator encounters this problem, it just uses approximations
to deal with unbounded while loops. Some very simple cases of non-halting programs are directly
recognized.

A Definition of Complexity

When talking about the complexity, clearly the time and space requirements of a program are of
practical importance.

Aho et al. [ASUR6] define the time complexity as the time needed by an algorithm expressed as a
function of the input size of the problem; asymptotic time complexity as the limit behavior of the
complexity as input size increases. Besides above definitions, analogous definitions have been made
for space complexity and asymptotic space complexity.

Space complexity only concerns memory, e.g., insertion sort is an in-place sort while quicksort is
not, which means no more memory is needed when insertion sort algorithm is run and the contrary
for quicksort algorithm. In this thesis, we are only interested in execution time, so only time
complexity is taken into account, and we will simply call it complezity. It is the complexity of an
algorithm that determines the increase in problem size that can be achieved with an increase in
computer speed.

From the definition, we can see that it has nothing to do with the hardware. Complexity is only
linked to algorithms, not to particular instances of them, such as computer programs.

1.3.3 Program Execution Model

Many factors contribute to the runtime behavior of a parallel program, as the Figure 1.2 shows. In
this figure, we can see that execution time can be influenced by lots of factors, notably instruction
set architecture, compiler technology, CPU implementation and cache memory hierarchy. Fach
of these factors can have different impact on the different components of execution time. For
example, compiler technology has big influence on instruction set architecture, CPU cycles per
instruction and reference per instruction. While cache memory hierarchy has only impact on cycles
per reference and cycle time. The particular characteristics of a program’s execution result from
the interaction of the program with components of the sequential or parallel computer on which it
executes. In addition to the program itself, the compilers, operating system and underlying parallel
hardware, etc. all have an impact on a program’s execution time. The details of these interactions
determine the values of the execution time for the program execution.

The value of a performance index is determined by conducting a performance experiment during
which the measurements are collected. Before proceeding further, we define the performance model
as a five-element tuple:

(S,N,P,D,FE)

where:
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Figure 1.2: Influences on Performance

S: is the target system including a machine, especially its architecture, operating
system and compiler.

N: is the number of processors of the machines.
P: is the program in question.
D: denotes the data needed for the execution of the program.

FE: describes external factors such as user requests. Note that we do not consider
Input/Output operations at all.

Of course, a program P is the most important factor because it defines the possible execution be-
havior. The domain of data values D decides executable cases among ones defined by the program.
A target system 5 determines the time actually needed to run the program, and external factor
FE determines interference that happens during the program execution. So execution time of a
program is determined as a function of the above five elements as follows:

T =T(S,N,P,D,E) (1.2)

where I'() is a generic function to compute an execution time. So until now, if given the above five
elements, we should theoretically be able to compute the execution time for a given input, with an
interpreter.

Our purpose is to leave D out and to compute complexity €' independently of any input as:

T =T(S,N,P,D,E)=C(S,N,P,E)D) (1.3)
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1.3.4 Measurement Model

We now turn our attention to the actual process of measurement and how measurements are
related to a performance index. The relationship between measurement and performance indexes
is established by defining a measurement model.

We model abstract program executions as sequences of sets of states, . A sequence of state
is associated with each program execution. FEach state transition corresponds to the program
performing a specific activity. For example, a state transition might be associated with the execution
of a procedure. Program execution is modeled by 1) the sequence of states that a program is sent
through and 2) the amount of time spent in each transition. A measurement can be made at each
state transition. The value of a performance index is derived from the measurement sequence:

Md = (Ulv Slvtl)v (027 827t2)7 .- '7(Un7 Snvtn) (14)

where g; € 3 is 1, state of the program, s; is the of ¢, statement of the program and ¢; is the
amount of time the program spents in o; while executing statement s; to move to state ;4.
Measurements of this type are said to be generated by a state/duration measurement model.

We notice that statement s; along with its state o; will determine the state o,,; of the next
statement s;,,. We give a small example here:

10 N=10 51
70 N=30 52
80 DOYI=1,N s3

90 CONTINUE

Let us assume the statement 10 (N = 30) is s; and statement 70 (N = 30) is s and DO-loop s3
and N is intact between statement 10 and 70. If we evaluate separately the DO-loop, what is the
upper bound of the loop? 10 or 307 The answer is 30 apparently because the statement s, modifies
the value of N¥. This explains why the state is kept as well as statement in modeling the evaluation
of Fortran code.

By the way, the statement could easily be made part of the state, but we choose to keep it explicit
to make things easier to explain.

Certainly, each statement modifies the state of the next statement, but it can have different impact
in terms of prediction. In the above example, if s, is M = 30 instead of the N = 30, although
statement s, does modify the state, it will have no impact on the execution time. In other words,
S, itself won’t influence the overall execution time.

If we want to know the execution time spent on this sequence, we can just add all of ¢; together!.

!We assume that no superscalar architecture is used. If it is not true, the combination of elementary instructions
is much more complicated. See [Wang93] for more details.
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As you can see, if the sequence is a program or subroutine, T’ is the time spent on that program or
subroutine.

1.3.5 Summary

In this section, we have formally defined the concepts of performance and complexity.

Since we are interested in input independent estimation, we choose the complexity rather than
performance. Because our polynomial estimator can produce results like N? +2 - N + 10, it is
complexity-like result. If the user gives the real value of the parameter, we can get the performance.
Therefore, we see performance as a special case of the complexity. i.e., when all the parameters
have the specific values.

We decided to use the measurement model in Equation (1.4) to approximate the function I' in
Equation (1.2).

From now on in this thesis, there is no difference between complexity, execution time estimation
and performance evaluation.

1.4 Owur Approach to Performance Estimation

In the previous section, we presented our evaluation model. Here we will explain how performance
estimation is performed. We discuss several issues which must be explored to refine our proposal:
(1) from which language level should we begin our experiment? (2) which method, static and/or
dynamic, should we use to approximate the execution time? (3) the granularity to be considered?
i.e., the atomic unit we want to time. (4) and how do we display our results?

1.4.1 Language Level Issue

Up to now, the language used to describe input programs has not been specified. Broadly speaking,
performance estimation may be based on a high level programming language and have to factor-in
compiler effects, or it may be based on assembly code to avoid compiler interferences.

Assembly Language Level

The benefit of assembly language analysis is that we do not need to consider the compiler any more
since the analysis starts after the compilation. Any operations performed by a compiler, including
code optimizations are irrelevant of our analysis. We can expect to get more precise estimation.
e.g., you can see exactly how many cycles needed for an operation and how many memory accesses
and/or register accesses. Therefore, in this approach, we can even analyze a program written in
assembly language or in any high-level language.
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But the disadvantages are significant too, mainly because of the gap between the programming and
analysis levels.

o Iirst, the independence with respect to the input language is replaced by a dependence on the
target machine. Fach machine uses a different assembly language. The assembly language
code is much larger than the corresponding source program, Berthomier [Bert90] tested that
it can be 12 times larger than the source code.

e Second, interpreting the assembly is difficult just as we generally use high-level language such
as Fortran, C rather than assembly language. And due to the lack of correspondence between
a source program and its compiled program, especially after code optimization, it is difficult
to reason about the timing behavior of a program with analysis results.

e Third, a lot of information available at source language level cannot be used at this level. For
example, the loop iteration count.

¢ Iinally, the analysis is complex because an assembly program is less structured.

Source Language Level

Given all the drawbacks of assembly analysis, we decided that timing properties of a program
should be analyzed at the source language level, where it is written, analyzed, debugged and
maintained. As mentioned above, it is difficult to reason about a program with analysis results
made at a different level. It is also awkward to analyze timing behavior and logical behavior at
different levels. Source level analysis also gives a chance to exploit high-level information such as
the complexity of an algorithm and inter-relations among statements or procedures. Frequently,
this sort of information is decisive in predicting the execution time of a program.

The advantages of analysis at the source language level are obvious in a programming environment.
Programs are usually well-structured, more algorithmic information is available, etc.. But the
inherent problem of this level is that it is incompatible with some of the code optimization techniques
of a compiler. Since an optimized compiler generates code without respecting source constructs,
there may not be straight one-to-one relation between a source construct and its object code. In
some cases, the sequence of the object code does not match with the sequence of the source program.
As a result, it is difficult in general to predict the accurate code of a source construct in a program.
We designed a set of experiments on SUN SPARCstation 2 to see how well we can statically cope
with optimizations. Results are given in Chapter 5. More complex architecture have also been
successfully modelized statically [Wang93].

The high-level language evaluator loses some information but possesses much smaller files, so it
should run much faster than the low-level one.

Decision: High-Level Language

The assembly level solution is potentially more accurate. It is closer to the target machine. So
with a detailed modelization of its various processing units, the evaluator should be able to predict
elementary instruction duration more precisely. Furthermore, it occurs after all preprocessing,
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compilations and optimizations that transform a high-level source code into an assembly-language
one: the latter contains more information about the execution process than the former.

On the other hand, it is harder for a human to exploit the output of an assembly-language evaluator,
for comparison or for interpretation, as we can think from a simple Fortran example.

As we said above, code optimization always causes problems for prediction, but fortunately, not all
code optimizations are problematic. Any optimization can be handled, as long as it is made inside
the boundary of a source construct. By adjusting the unit of a source level construct, we can cover
most optimization effects. Our standpoint is that code optimization by a compiler should be used
in a restrictive way.

Optimization makes execution efficient but prediction difficult. Assembly level analysis does not
suffer this problem, but it has other problems. One practical solution is to disallow some problematic
optimizations in favor of predictability. Many compilers provide a user with switchs that turn on/off
optimizing options.

Based on our discussion, we choose high-level language.

1.4.2 Evaluation Method

The aim of our method is to get rid of static evaluation problems, while keeping the predictability
capability of the symbolic expression of complexity. We discuss in this section different ways to
compare and/or evaluate the Fortran source codes.

If the user wants to compare two versions of the same program, it is his responsibility to ensure
that they are semantically equivalent. It is not our purpose to check it. Furthermore, we want to
offer the possibility to compare the relative performance of completely different versions of code in
the optic of helping task scheduling, as a side effect of the chosen solution.

Dynamic Execution Time Measurements

Instead of “differentially” comparing two programs, we separately evaluate each of them “abso-
lutely”, then compare the evaluations.

Unix provides tools for dynamic performance measurements. There are two main ways to collect
profile data: prof and tcov. The first technique consists in periodic sampling of the program counter
and deducing from its value the function currently running, its output is the percentage of time
spent in each function. The other technique is to insert a counter before each instruction to peek
in the program to analyze; all counters are written to a file when the program ends.

The Unix tool tcov produces a test coverage analysis and statement by statement profile of a C or
Fortran program, if it is compiled with the proper option, with -a option on SUN SPARCstation 2.
The output is the source file listing, each line of which has been prefixed with the number of times
it was executed.

The program counter sampling method directly gives the performance of a program, function by
function, but it requires to integrately be run on the target machine, which is often expensive. Of
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course, we can obtain an approximation of the real timings by running and profiling the Fortran
source code on another relatively cheaper machine such as a workstation, the more likely the two
machines structures, the smaller the gap.

When tcov is used, the program can be run on any machines since we are only interested in the
number of times instructions are executed instead of their duration. Those instructions numbers
are the same on the two machines, provided that the internal number representations are identical;
otherwise, loop ending with a convergence test might not iterate as many times in both cases. The
problem of this method is that instead of giving a performance evaluation, it returns a list of counters
which must be transformed in execution durations with the help of a machine’s modelization.
In the case of two slightly different program versions, one could base a comparison only on the
interpretation of those counters; in the case of completely different tasks ( for a scheduler ) one
must first convert them into execution times. tcov gives precious information about tests and loops.

Another tool: prof produces an execution profile of the source program. It can report the percentage
of time spent executing between symbols as well as the number of times that routine was invoked
and how much time per call. A simple floating-point comparison gives the time gained in each
function.

The main drawback of runtime measurement is that it returns only numbers related to one input
data set. If one wants to know the behavior of his program versus its main parameters ( the size
of data, or the number of processors for a parallel program), he must estimate the function with
a number of such punctual measures. We will see that static evaluation can directly return the
equation of the curve, when the program is not too complex and that the prediction closely matches
the measurements in Chapter 5.

Static Symbolic Evaluation

We have said that the biggest advantage of static evaluation is its potential efficiency, compared to
the dynamic evaluation. Its own complexity is a function of the program size, not of the program
execution time.

But difficulties are obvious for a Fortran language static evaluator. There are a few situations that
cannot be coped with.

e Branch Statement: When an IF statement is encountered, in most cases, it is impossible to
approximate the average complexity of the whole instruction. We cannot do a better job
than to assume that boolean is statistically equiprobable, i.e. equal probabilities, half-true

and half-false.

For some tests, which are used only to check the current conditions, or to detect anomalies,
it is easy to detect because they lead to STOP, ABORT or EXIT statements. It should be
possible to assume that the branch is not likely to be taken and to give it a 0 probability
[Krall94].

For some tests, the condition only depends on the surrounding loops induction variables and
loop constants. It is then possible to exactly evaluate the taken/not taken probability [HP92].

But most of the time, it cannot be calculated statically.
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o Loop Iteration Count: A crucial point here is to correctly evaluate the loop iteration counts,
for over nine-tenths of processing time is spent in loops. There exists a technique — semantic
analysis, which can be used to exploit the information available for variables. With semantic
analysis, symbolic variables can be evaluated; without semantic analysis, only constant loop
ranges can be calculated, which is not interesting at all. Even with the semantic analysis,
there are some problems left over.

A drawback of the static evaluation, compared to the dynamic one, is that it needs a precise
modelization of the machine on which the analyzed code is supposed to run. Applied to a high-
level language program, this method loses precision because of all the transformations made by the
compiler, as explained before.

Because it is static method, no recursion is allowed unless some fixpoint algorithm is used on the
call graph.

Combination of Static Estimation and Dynamic Measurement

This method runs in three steps.

1. It starts with a first pass of static evaluation to accumulate information about static failure
points: locations of the IF-tests where the branch probabilities could not be computed (almost
all), and the locations of DO-loops whose ranges were not exactly computed, so are those of
WHILE-loops. As far as it is concerned with UNSTRUCTURED, PIPS provides a technique
to convert the unstructured to several structured blocks. These are only counters needed to
complete the static complexity evaluation.

2. In the second step, dynamic analysis is used to address these shortcomings detected by the
first step. A copy of the program is made, where counters have been inserted at all places
where a failure occurred during the first static pass. The modified program is executed for
some input sets. At the end of the runs, the counters are written in a file that is exploited
by the second pass of static evaluation. Some tool like tcov could be used.

3. The last step is to rerun the static evaluation using the counters generated by the second step
to get the overall complexity of the program.

An advantage of this method is that the profiling execution can run on any machine (once again,
having the same internal floating-point representation). As it requires much less profiling informa-
tion than the dynamic approach, and because the output evaluation is parametric, its results are
less sensitive to the choice of the data set provided for this particular sample run.

Furthermore, the only use of the first pass of complexity evaluation is to insert counters only where
it is necessary, to gain time on the execution of the modified program. Actually, it may be more
interesting to skip it and choose to measure every IF-test probability and every DO-loop range

width.

Of course, just like the other approachs, there are some disadvantages:
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e Since static estimation is used, no recursion is allowed unless some fixpoint algorithm is used
on the call graph.

e Correctness cannot be proved. Assuming that program complexities are approximated by
polynomials, it is obvious that such a complexity estimator cannot give good results for most
algorithms. For instance, Quicksort and FFT complexities have a logarithmic component
which won’t be retrieved by the dynamic measurements.

It seems impossible to use multiple measurements and fitting approximations to guess missing
coeflicients in a large class of functions.

Decision: Purely Static Approximation

It seems impossible to combine safely dynamic exact information obtained for one input data
set and approximate static information valid for any data set. Dynamic measurements might be
useful to detect unlikely branches like error checking tests but these branches seem to be statically
detectable according to Wang [Wang94]. Loop ranges obtained by measurements are unlikely to be
useful, even if only scientific programs are analyzed. For instance, WHILE loops designed to reach
some convergence criterion are very data dependent.

The use of special variables, pointing somehow to the origin of the estimation problem in the
source code, in the static complexity function is much more user-friendly. The formulae can be
proved correct and user information can easily be added when it is needed by replacing such special
variables with the appropriate function.

Experiments are needed to see if the number of such variables is small enough to be usable. En-
couraging results of such experiments are given in Chapter 5.

1.4.3 Mathematical Functions for Complexity

The choice of the mathematical objects to represent a complexity is a trade-off between many
conflicting requirements.

1. On the one hand, this object must be complex enough to keep all the information we collect
during evaluation;

2. On the other hand, it must be simple enough to allow basic computations like addition,
multiplication and integration.

3. Besides, if one wants to automatize the comparison of program execution times, then two
objects of this form must be comparable.

4. Furthermore, it must be adapted toits final use: if a human is to exploit it, the more readable,
the better.

Because some of them are conflicting, we cannot find a means to satisfy all of them at the same
time. What we are going to do is to find best trade-off. Here are some classes of functions we
thought of for complexity estimations:
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e The evaluation to a constant satisfies all requirements but the first: If the information you
collect about a subroutine contains some parameters, i.e., symbolic constants, this one would

fail.

e The general symbolic expression never loses information, but does not either allow general
range integration because there is no formula to do it.

e The polynomial form ( with constant exponents ) allows range length integration, can give
parametric execution times and involves easy computations. However, the fact that exponents
are constants forbids exponential and logarithmic complexity expression.

e A pair of polynomials, one for the minimal execution time and one for the maximal execution
time. Unfortunately, the minimal and maximal execution times do not carry much informa-
tion. For instance, a WHILE loop may execute 0 times or forever. However Park [Park92]
chose to give the range of prediction results.

e A conditional polynomial form. For example:

N?410-N if N > 10
N?2420-N if N >=10

would allow to include some test booleans in the complexity expression instead of roughly
evaluating them. But this is not a practical form for integration between given polynomial
bounds and its size may grow exponentially with the test and loop nesting depth.

Decision: Polynomial as Mathematical Function

Finally, polynomials were chosen because they are able to handle many scientific programs based
on array computations. Special unknown variables are used to handle uncertainties.

1.4.4 Visualization of Complexity Formulae

Complexity formulae can be used directly by a compiler to choose between different compilation
tactics but it may also be displayed to the user by a programming environment.

How to view the prediction results is a big challenge. How to present the results clearly, concisely
is difficult too. Human being cannot exploit very complex formulae. The display must be correct,
clear and short.

Decision: Comment Line Display

We decided to use the comment lines to present prediction results to avoid excessive development
in the user interface. However, the average number of lines of the Perfect Club Benchmark is 4000
lines and it is doubtful that 4000 complexity formulae make much sense for a casual user. Some
more work is needed in this area.
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1.5 Contributions

During my Ph.D work, I have made the following contributions for evaluation tool in PIPS parallel
programming environment. They are described in my dissertation with more or less emphasis.

I have implemented many new functionalities in PIPS and its complexity estimator:

Machine Description: The user can potentially choose from a set of machine descriptions called
cost tables. So far three two cost tables are available. Two theoretical: one models all
operations as unit cost; and the other only takes floating-point operation into account. One
practical for SUN SPARCstation 2 which models all operations on the machine.

This is the real machine modelization. The machine is modeled by the cost table. The
inherent cost of each operation on the machine is recorded in a file.

Symbolic Parameters: In some cases, the variables in the polynomial describing the complexity
remain unevaluated. For example, PIPS identifies variables which must be kept unevalu-
ated because they are free parameters of a module, e.g. formal parameters in a subroutine
call or dynamic input data. In addition, the user can specify that certain variables remain
unevaluated.

Interprocedural Preconditions: PIPS uses preconditions, that is information acquired before
the current statement, to resolve analysis problems. As it is obtained, precondition informa-
tion is stored in a library for later use.

Simplified Results: An analysis is performed to minimize the number of free parameters which
are local to the module. In addition, intermediate variables are removed from final result
after use.

Program Tracing: The program may be traced while the complexity evaluation proceeds. This
tracing facility serves two purposes: (1) clear display of the program structure, e.g., whether
the program is well structured or how it is structured, and (2) PIPS debugging, when some-
thing goes wrong, we can easily see where the problem is.

I have also validated my approach with several kinds of experiments:

Sequential Machines: Our estimator generates very good complexity results by comparing with
the result obtained manually by Nahid Emad [Emad91]. The difference is within the expec-
tation. We have executed our estimator on a benchmark program FLO52 from PERFECT
Club Benchmark Suite to show our complexity results. Then, we timed a subroutine EFLUX
from FLO52 on SUN SPARCstation 2, and compare it with complexity result obtained by
our estimator. The time difference is pretty small within 5 %, despite the large ranges of the
variables.

Parallel Machines: We have carried out several experiments with different sample tests on a
shared-memory multi-processor MIMD machine — BBN TC2000. We have found out that
the scheme designed for sequential machines can be easily expanded to such parallel machines,
with only minor modifications of the algorithm. Meanwhile, several empirical algorithms have
been extracted from the test results and proven to be correct by the experimentation.
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1.6 Dissertation Outline

Chapter 1 is a general introduction to the thesis. It lists the motivations for this work, the research
goals as they were defined and the contributions made. The rest of the Dissertation is organized
as follows.

Chapter 2 talks about general concepts of the performance and complexity. It paves the way for later
explanation of Complexity in PIPS. It states what we think about performance and what we could
do to predict the complexity. Chapter 2 contains a description of the algorithms used to estimate
the execution time of programs for any input. This work is rooted in the PIPS project. PIPS goals,
general design and data structures are presented first because they had a very strong influence on
the complexity algorithms design. These algorithms cannot be understood without some knowledge
about PIPS. Then the choice of a two-step approach for execution time approximation is justified.
The first step is used to hide the low-level details of the processor behavior (compiler effects,
operating system bias, special hardware, e.g. cache memory, etc...). The second step is used to
approximate the dynamic behavior of the program execution, simplified by the first step, by a static
mathematical representation. In other words, the first step converts the actual execution of the
program for a given input into a sequence of commands which belong to a finite set and which take
a constant amount of time to execute. The second step summarizes all these ideal traces for all
possible inputs in a mathematical formula. The second step can be proved correct. The first step
can only be experimentally validated. This is exactly the purpose of Chapter 3. It also gives some
proofs for the algorithms. Symbolic calculation algorithm is also introduced in the chapter.

Chapter 3 deals with target machine model. How and how well can the behavior of a machine and
its environment (compiler, run-time, operating system, microprocessor,...) be characterized by a
set of basic times? Sequential machines are studied first from a theoretical point of view. We will
enumerate some parameters that could reasonably be part of a machine model, then keep only the
most important ones for a simple implementation and use. We then extend the model to parallel
machines. In a third section, two very simple time tables, called cost tables, are presented. The
last and most important section presents experiments carried out to validate the approximation of
a machine by a finite set of elementary times and shows how a SUN SPARCstation 2 workstation
can be precisely approximated. But we delay the real time verification to Chapter 5.

Chapter 4 explains how complexity programs work. It contains a detailed description of the im-
plementation performed in PIPS. The PIPS programming environment is presented first. Then
the data structures specifically developed for the complexity estimator are shown, as well as PIPS
data structures directly used by the estimator, i.e. the prerequisites for complexity, including call
graph, interprocedural control flow graph, preconditions and effects. The relevant C files are also
listed. The user interfaces, as well as parameters and options of the complexity estimator, as it is
implemented in PIPS.

Chapter 5 talks about the experimentation done on sequential machines, mainly on SUN SPARC-
station 2. In this chapter, we are going to show that our estimator can generally generate good
results. The experimentation was used to validate the approach and the algorithm on real pro-
grams. We present comparisons between results obtained with our prototype and results manually
obtained by other researchers. We also checked the robustness of the approach on a Perfect Club
benchmark and compared the predicted and measured execution times of one of its module for a
large range of input values. Very encouraging results are obtained for sequential machines. As
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expected, an automatic estimator does not make small mistakes a human would make, but it does
require some user control as simplifying hypotheses about branch probabilities may lead to very
bad approximations. Of course, the estimator provides information about the amount of guessing
performed. Then, in order to validate the result, we will time a subroutine FFLUX from FLO52,
and compare it with complexity result obtained by our estimator. We will show that the time
difference is pretty small, despite the large ranges of two variables.

Chapter 6 is about our experiments on a real parallel machine BBN TC2000. The final goal of our
work was to develop an estimator for parallel machines. Chapter 6 is a first step. It contains a
description of experiments carried out on a BBN TC2000 to characterize the behavior of parallel
loops on a parallel machine. In order to validate our model of supercomputer, we need to have a
look at what is really happened in parallel machine. We have made a bunch of test programs to
extract the empirical formulae about how to predict the execution time on the parallel machine.
We show how and how well experimental results can be modeled by very simple equations. These
equations could be used in the future to extend our sequential estimator into a parallel estimator.

Chapter 7is the conclusion of the thesis. It first summarizes PIPS complexity estimator by listing its
advantages and drawbacks. It then surveys related works in the field of performance evaluation. We
elaborate the most common techniques applied in performance prediction tools. We distinguish
four approaches: manual evaluation, simulation, analytical and measurement. We classify the
existing performance estimators according to the nature of the target machines: single processor
machine, general multiprocessor machine ( can be both shared or distributed ), shared memory
multiprocessor machine and distributed memory multiprocessor machine, and we compare them
with our own contribution. Finally, we give some future works envisioned.

Appendix A contains the Intermediate Representation of programs used by PIPS.

Appendix B contains the elementary C times for a SUN SPARCstation 2 as well as some explana-
tions. These times were used in Chapter 5.

Appendix C contains the whole stuff of CALCG subroutine from TMINES program.
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Chapter 2

Complexity Estimation in PIPS

The complexity estimator described in this dissertation is based on the PIPS! environment. Some
information about this environment is needed to understand how complexity estimation algorithms
work. Let us first have a look at PIPS so as to help understand complexity in PIPS. And then
we will provide the algorithms for calculating complexity and prove them correct. Finally, we will
mention the different approaches we have tried to generalize the complexity, though they are all
dead-ends. Symbolic calculation algorithm is also introduced.

2.1 PIPS Overview

In this section, we present PIPS: its motivation, general design, data structures and semantical
analysis. The later three components are used to handle procedure calls, to exploit control flow
information recursively and to compute loop ranges or conditional expressions with symbolic infor-
mation.

2.1.1 Motivation for Automatic Parallelization

There are many scientific programs which are currently running all over the world, most of them
are Fortran programs. As the supercomputers have found their ways into industrial and academic
centers, a problem rises: the old sequential programs are becoming obsolete.

For the economical reasons, rewriting these programs is completely out of the question:

e That will cost too much;

e There would be a need to rewrite them again each time a new machine or a new environment
is introduced.

!PIPS is French acronym which stands for Paralléliseur Interprocédural de Programmes Scientifiques, developed

at Centre de Recherche en Informatique ( CRI ) de I’Ecole Nationale Supérieure des Mines de Paris ( ENSMP ).

49
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The appearance of new languages and new supercomputers makes old scientific programs perform
very poorly in comparison with what could be obtained by a complete rewriting. Besides this
effective but expensive method, end users who usually have neither time nor enough knowledge
to rewrite, prefer to submit their program to an automatic program restructurer, especially when
the goal is to run the application on a parallel computers. So this leads researchers to design
new techniques to transform old scientific programs to fit new environments. The techniques are
supposed to hide the complexity to the programmer and to provide portability.

PIPS is an attempt to address this problem. PIPS is a source-to-source compiler, i.e. from old-
fashioned programs to appropriate ones suitable to be run on parallel machines with different
structures, e.g., shared or distributed memory.

2.1.2 PIPS Historical Goals

Detecting the maximum level of parallelism in sequential programs requires a thorough under-
standing of their behavior. Although numerous vectoring and parallelizing compilers for scientific
programs exist in both academic ( PTRAN, ParaScope, ...) and industrial ( VAST, FORGE )
worlds, few are able to address the question of parallelism detection on a global basis, i.e. coupled
with interprocedural information and comprehensive semantical analysis. The main goal of the
PIPS project is to address this very issue and explore its effectiveness on real programs written in
a real language.

PIPS is a source-to-source parallelizing compiler that transforms Fortran 77 programs by replacing
parallelizable nests of sequential DO loops with either Fortran 90 vector instructions or DOALL
constructs. It is not targeted towards any particular supercomputer, although only shared memory
machines have been considered. The principal characteristics of PIPS are:

1. Interprocedural parallelization. It is at the core of PIPS: every step of the parallelizing process
is able to cope with interprocedural information. A striking example of this drastic point of
view is the parser, which encodes every assignment statement as a function call to a built-in
“=" procedure with two arguments, the right and left hand side expression. There is no
assign node in the abstract syntax tree of programs and a user CALL would be encoded in the
same way.

2. Interprocedural analysis. To be most effective, a parallelizing compiler needs to gather as
comprehensive as possible information about the behavior of program. This is done in PIPS
by a set of sophisticated interprocedural semantical analysis phases that compute side-effect
( SDFI ), regions and predicates.

3. Relative efficiency. PIPS is fast enough to be used on real-life programs. PIPS has been
tested on several standard benchmarks such as the PERFECT Club.

See [Baron90, 1J91, 1JT91] for additional information.
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2.1.3 PIPS General Design

Since PIPS is mainly a research project, its architecture is kept to be modular and evolutive enough
to adapt to the wide variety of people and to the requirements of interprocedural analysis and
interactivity. This decides a structure in phases, all of which manipulate a common intermediate
representation ( IR ) of programs that has been carefully designed. Although this architecture is
hardly new, a major issue is then the determination of the order according to which these different
phases of the parallelizing process have to be scheduled to maintain consistency. PIPS adopts
a relatively uncommon approach to this problem; the ordering is demand-driven, dynamic and
automatically deduced from the declarative specifications of the dependencies among phases, by a
program called pipsmake. Users are allowed to send requests to pipsmake, either to get a particular
data structure or to apply a specific function.

All data structures used, produced or transformed by a phase in PIPS, such as the abstract syntax
tree ( AST ), the control flow graph, etc. are considered to be resources which are managed by a
database manager, called pipsdbm. pipsdbm can optimize the transfers according to the availability
of current memory. Some data structures destroyed in memory by side-effect of some phases can
be retrieved if they are still consistent. That means the user can make full use of the available
information, not necessarily from the very beginning.

Any phase, called by pipsmake, begins by requesting some resources, via the db_get function
provided by pipsdbm, performs some computation and declares the availability of its result via
db_put. Every data structure is linked to its associated program unit.

Every phase in PIPS, such as parsing of a source program, denotes a function; it may use and/or
produce some resources. Every phase that exists in PIPS is declared by production rules; these
are stored in a configuration file pipsmake.rc which is used by pipsmake to schedule the execution
of each function, according to what the user and each phase ( recursively ) request. We give an
excerpt of this configuration file about the complexity in PIPS:

complexities > MODULE.complexities
< PROGRAM.entities
< MODULE.code MODULE.preconditions
< CALLEES.summary_complexity

summary_complexity > MODULE.summary_complexity
< PROGRAM.entities
< MODULE.code MODULE.complexities

Here, for instance, the phase complexities computes the approximation of statement complexities
(execution time) for all statements of the MODULE. ( A MODULE in PIPS could be a Fortran program,
subroutine and/or function.) It needs the definition of all the entities of the PROGRAM, the code
of the MODULE, the preconditions of the MODULE and summary complexity of its CALLEES. ( All
modules that could be called by the MODULE ). The output of phase complexities is the final
estimation, i.e., summation of all the statement complexities of the corresponding MODULE. For the
summary_complexity, it computes the approximation of a module complexity (execution time),
i.e., the summation of module complexities.

This architecture is incremental, since data structures are computed only when needed by some



52 CHAPTER 2. COMPLEXITY ESTIMATION IN PIPS

phase; and it is flexible because each phase does not have to worry about the others and it only needs
to request resources. This organization permits the interprocedurality to be almost transparent,
so if a phase is to be produced, the programmer can neglect how resources are computed, leave all
production work to pipsmake.

This prototype is exploited in the complexity estimator to cope almost effortlessly with procedure
calls.

2.1.4 PIPS Data Structures

PIPS is organized around a core data structure that implements the abstract syntax tree (AST) of
Fortran 77. Since Fortran 77 is a little bit outmoded, the Intermediate Representation (IR) in PIPS
(see Appendix A) is carefully designed to avoid sticking too closely to Fortran 77 idiosyncrasies.

The data structure that implement the IR used in PIPS are defined with the software engineering
tool NewGen [JT89], developed by Pierre Jouvelot and Rémi Triolet. NewGen allows the definition
of data domains in terms of basic ones, like integer or float. From these definitions, expressed
in a simple language, NewGen generates a set of functions on objects of these domains.

The following is the definition of expression used in PIPS:

expression = syntax x normalized ;

syntax = reference + range + call ;

normalized = linear:Pvecteur + complex:unit ;

reference = variable:entity x indices:expression* ;

range = lower:expression X upper:expression X increment:expression ;
call = function:entity x arguments:expression* ;

Here, we can see that a node for a call expression, representing a Fortran 77 SUBROUTINE or
FUNCTION call, includes (1) the function entity and (2) the list of arguments expression. For
syntax, it can be a reference, or a range or a call; the syntax is only one of these three at a
time. For range, it consists of three kinds of expressions: lower, upper and increment. In PIPS, an
assignment is encoded in the way that it is treated as a function call to = and it has two arguments
denoting the left hand side and right hand side of the assignment. This is possible since the implicit
call mechanism is “call-by-reference”.

The data structures used by the complexity estimator are based partly on NewGen and partly on
data structures defined for an linear algebra library, called C3 libraries.

2.1.5 Control Graph

The control flow graph is implicitly defined by the abstract syntax tree when the code is structured.
An explicit control flow graph is only used for unstructured code. Structured statements are
either basic commands named calls altering the store, sequences, tests or DO loops. The NewGen
declaration, slightly simplified for the purpose of exposition, is:
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statement = label:entity x number:int x ordering:int x comments:string x instruction ;

instruction = block:statement* + test + loop + goto:statement + call + unstructured ;
test = condition:expression x true:statement x false:statement ;
loop = index:entity x range x body:statement x label:entity x execution

x locals:entity* ;

unstructured = control x exit:control ;
control = statement x predecessors:control* x successors:control* ;

All the analysis phases are defined by induction on the statement domain. For example, the code of
a subroutine is a statement, which contains an instruction. This instruction could be a block,
in this case, we go back to the statement domain because block is defined as a list of statements;
or it could be a test, which is a IF statement; or it could be loop, which is iteration statement;
or it could be call, which is an invocation of a subprogram. In all these cases, as you can see
clearly, we go back to statement domain recursively. But if this instruction is unstructured, it
will cause some problems because the control flow graph has to be followed using the pointers in
control. But finally, as unstructured is defined as a list of control, we can go back to statement
too.

We have developed a technique to display the program structures, interested readers will find more
information in Section 4.7.4.

The complexity is recursively estimated on the hierarchical control flow graph like other analyses.
It is computed bottom-up by aggregating complexities of components in a more global complexity.

2.1.6 Effects

Effects describe the memory operation performed by a given statement. Besides the reference on
which the operation is performed and its kind ( read or write ), PIPS distinguishes between effects
that are always performed ( MUST ) and the ones that may be performed ( MAY ).

Proper effects are memory references local to a given statement, such as a write on the left-hand
side of an assignment or on the index variable of a DO loop construct. Cumulated effects take into
account all effects of a given statement, including those of its substatements. ( Recall that abstract
syntax tree is recursive in PIPS, c¢f. Appendix A ).

The proper effects of a call statement are derived from the cumulated effects of the body of the
callee. Proper and cumulated effects are computed by an automatic bottom-up scan of the call
tree, as can be seen in the following excerpt of the production rules for effects:

proper_effects > MODULE.proper_effects
< PROGRAM.entities
< MODULE. code
< CALLEES.summary_effects

cumulated_effects > MODULE. cumulated_effects
< PROGRAM.entities
< MODULE.code MODULE.proper_effects
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summary_effects > MODULE. summary_effects
< PROGRAM.entities
< MODULE.code MODULE.cumulated_effects

The effects are used to decide how to simplify the result of complexity and which symbolic variable
should be dropped or could be kept. An advanced option is provided to let the user override the
effect information and force the use of a symbolic variable in complexity formulae. See Section 4.6.1
for more information.

2.1.7 Transformers

Although these transformers are not used directly in complexity evaluation, they are used directly
by preconditions, which is to be introduced later. Hence transformers are briefly introduced here
for the unique purpose of completeness. We give the production rule in the following:

transformers_inter_full > MODULE.transformers
< PROGRAM.entities
< MODULE.code MODULE.cumulated_effects MODULE.summary_effects
< CALLEES.summary_transformer

summary_transformer > MODULE. summary_transformer
< PROGRAM.entities
< MODULE.transformers MODULE.summary_effects

Effects, code and entities, which are introduced in the earlier sections, are required to compute
transformers. So we suppose that transformers are available when we need in preconditions. Trans-
formers could have been used instead of preconditions to introduce fewer unknown variables.

2.1.8 Preconditions

Precondition is information about the store holding before a statement is executed. Only scalar in-
teger variables are analyzed but they fortunately are the most useful ones for complexity estimation.
We give the production rule in the following:

preconditions_inter_full > MODULE.preconditions
< PROGRAM.entities
< MODULE.cumulated_effects
< MODULE.transformers
< MODULE.summary_precondition

summary_precondition > MODULE. summary_precondition
< PROGRAM.entities
< CALLERS.preconditions

All the required components are computed on a demand-driven basis before at pipsmake request.
So preconditions are at our disposal by simply declaring them as inputs in pipsmake rules about
complexity estimation.
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Figure 2.1: Two-Step Approach

2.1.9 Summary of PIPS

In this section, we have introduced the PIPS programming environment and some underlying
elements for PIPS complexity which are all required by complexity evaluation in PIPS. In next
section, we will introduce the very part of PIPS complexity.

2.2 Complexity Model

When a program is run on a real machine, i.e., in the real world, we might think that there exists
a model that corresponds exactly to the execution of the program. For example, the model should
be able to predict how long the execution lasts. Or what the probability of each branch statement
is. Practically speaking, we can calculate everything we need to know about the program, but it is
only after the execution of the program for one given input. We call this model which corresponds
to the execution of the program real world model or execution model.

In order to calculate the complexity of the program statically for all its possible input, we need
to firstly set up a dynamic model that could generally correspond to the real world model; and
secondly, set up a static model that could be used to make the approximation to the dynamic
model.

We chose to make a two-step approach to break the difficulty: (1) an approximation from the real
world model to the dynamic model, and (2) an approximation from the dynamic model to the static
model. The two corresponding reverse arrows correspond to validation phases. Some experimental
observations are needed to show that the simplifications made are acceptable. A mathematical
proof of consistency between the static and dynamic models is also desirable. Figure 2.1 illustrates
the relationship among the three models and two-step approach.

Before we set up our models, we introduce several definitions:

Definition 2.1 Fzecution Time Function T(S): This is a mapping from the a general statement
to its execution time on a specific machine for a given environment o.

For a simple basic language construct S, T'(.9) is the specific number of time units required to
execute 5 on a specific machine. For example, on SUN SPARCstation 2, the Fortran floating-point
addition statement S: f1 = £2 + £3 is completed in 42 clicks ( 0.7 psec ), so we think that on
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SUN SPARCstation 2:
TS)=T(f1=f24 f3)=0.7

Note that 7'() is a function of not only the statement, but also the current environment ¢ of the
statement 9, though above statement has nothing to do with its environment?. Imagine that the
statement is a DO-loop with a variable upper bound N. So the execution time of statement S
under the environment o can be denoted as T'(.9) - &. We also use T'(.9) to represent the execution
time spent in S when the context is clear.

Before we introduce our complexity function C(), we need to define a special variable set, called
Unknown Variable Set.

Definition 2.2 Unknown Variable Set U: This is a set of variables whose values are needed in
the evaluation procedure and cannot be predicted statically. These variables are not bound to the
environment. They can take any value in their domain.

Generally, when we encounter the loop bounds which depend on the dynamic input data, such an
unknown variable is introduced in the complexity formulae.

Definition 2.3 Complezity Function C(S): This is a mapping from the high-level construct to its
complexity ¢. The complexity ¢ is a mapping from the initial store o to the execution time of S

C() is not usually a number. It can include some symbolic variables. For example, a loop construct

on the SUN SPARCstation 2:

DO10I =1, N
f1 = £2 + £3
10 CONTINUE

We can consider that the complexity for this construct is:

C(DO)=0.7-N + overhead

Note that C'() is a little more complicated than 7'() since C'() is not only a function of a statement
and its variables, but also of a set of unknown variables. We chose to keep them among polynomials.

Take the above example, C(DO) = 0.7 - N + overhead, if N happens to be a variable which we
want to keep, e.g., dummy argument, outer loop induction variable and etc. We are allowed to keep
because only its value in the initial store is needed, we do not need to evaluate N to its effective
value. We just keep it as it is. But if IV is impossible to be evaluated, e.g., it is a random number or
simple input datum, N cannot be known statically. The worse case is that we need to know the real
value right now, we will be stuck here. We have two solutions: (1) keep the unevaluatable variable
as it is, or (2) represent it with a symbol, called UNKNOWN VARIABLE, chosen in unknown
variable set.

The first solution is dangerous because we may encounter many these variables in a module, or
same variable with different values; and sometimes, keeping variable literally is not always possible
because of our polynomial expression, as shown in the following:

2This is an approximation. IEEE NaN values may change the execution time, as well as cache or register effects.
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S1 DO 10 I = 1, 2*x)
Body
10 CONTINUE

Here, N cannot be used in the complexity formulae associated to 52 since its value in the initial
store is irrelevant:

S2 READ *, N
DO10I =1, N
f1 = £2 + £3
10 CONTINUE

Here, N can be used in the complexity formulae associated to 53 because its value in the initial
store is relevant for the first loop. However, an unknown value symbol is also needed for the second
loop:

S3 DO 10 I =1, N
£f1 = £2 + £3
10  CONTINUE
READ *, N
DO 10 I =1, N
£f1 = £2 + £3
10  CONTINUE

The second solution is not very appealing since formulae with undefined values are almost mean-
ingless at first glance. However, if such variables are not used too often and if the user is given some
way to relate each unknown variable to a particular code construct or variable, such formulae may
convey useful information. Also, unknown variables have to be introduced to prove the correctness
of our scheme.

C() is a function of statement which produces a function of the unknown variable set U and of
the current environment o. The complexity of statement 5, under environment ¢ and unknown
variable # is denoted as C'(\9)- (&, @). We also use C'(.5) and/or C'(5)- 7 to represent the complexity
of statement S when no ambiguity arises because no unknown values are required.

2.2.1 Dynamic Model

This is the approximation of the real world made to hide some issues like operating system or
cache interferences. The dynamic model is used to prove the correctness of the static model. We
introduce two new definitions here:

Definition 2.4 Let Begin(S) be the Beginning Time of statement S for a given execution of S on
a given machine.

Definition 2.5 Let End(S) be the Ending Time of statement S.
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Both are specific numbers, which refer to a fixed past time, like C library function time(3v). We
have made the following assumptions from observation:

1. A program is a sequence of statements. The statement is run one after the other.

e No latency between two statements. i.e., 51;52 means that 52 will be executed imme-
diately after 51 finishes.
Begin(52) <= End(S51)

e No overlapping between two statements. i.e., 51;52 means that 52 will be executed only
after 51 finishes.
Begin(52) >= End(S51)

2. The execution of a statement is determined by two factors: language semantics and its im-
plementation.

From item 1, we can think that two consecutive statements 51 and 52 can be predicted as the sum
of the prediction for each statement as following:

T(S1;52) = T(S1) + T(52)

Since the boundaries are well defined, there exists a clear-cut between the two statements, albeit in
practice, it is difficult or sometimes highly unlikely to get once an optimizer has scrambled machine
instructions.

To predict the execution time of a statement, we depend on the item 2.

A timing schema for a high-level language construct is a formula computing an execution time
of the construct. The formula describes how an execution of a statement is computed with the
execution time of its components. For example, for an assignment statement: S: var = exp ;its
timing schema can be interpreted as following;:

T(S)=T(var)+ T(exp)+ T(=)

where T'(var), T(exp) and T(=) is execution time of the statement component var, exp and =
respectively.

In summary, a real program is considered to be composed of a sequence of statements, although the
number is not definite. There exist in practice some constructs like tests, loops and unstructured
that they can simple generate sequences of statements dynamically, but statically, they will bump
into problems because the number of the statements cannot be determined statically. In order to
solve this problem, we have to decide these unknowns artificially, although it can cause big deviation
in performance evaluation, i.e., probability is fifty-fifty for tests.

2.2.2 Static Model

Static model means that the program is analyzed statically and that approximations have to be
made for tests and fix-points (loops and unstructured) and I/Os, so as to cope with any possible
input data.
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1. A program is a sequence of statements. The complexity of the program is the sum of the
complexities of the statements associated with its adequate state. We assume that the number
of statements is definite, which is the difference between dynamic model and static one.

2. Fach statement consists of a number of atomic operations. ( can also be called primitives )
such as 4+, —. Each atomic operation is assigned a cost. The complexity of the statement is
the sum of the costs of all the atomic operations.

That is, each statement can be divided convergently into a number of atomic operations (
primitives )

The item 1 implies that a statement is a good unit in decomposing a program and/or subroutine
in question. In other words, the complexity of the module ( program, subroutine or function in
Fortran ) can be predicted as the summation of predictions of its statements. We can think that
two consecutive statements S1 and 52 can be predicted as the sum of the complexities for each
statement as following;:

C(51;52) = C(S1) + C(52)

The item 2 describes how a complexity of a statement is computed with the complexities of its
components. For example, for an assignment statement: S: var = exp ; its complexity can be
calculated as following;:

C(S) = C(var)+ C(exp) + C(=)

where C'(var), C(exp) and C(=) is complexity of the statement component var, exp and = respec-
tively.

In other words, the complexity of a complex statement is estimated recursively according to its
structure, as it is defined in PIPS intermediate representation. See Appendix A for more.

2.2.3 Problem with the Dynamic Model

From now on, we will stick to our set-up static model to evaluate the program. But there is a big
gap between the two theoretical models, let alone the real world model. Let us examine in more
detail the approximations made between the real world and the dynamic model.

In our dynamic model, we can see that the execution time of the two instructions 51 and 52 below:

S1: i1 = i2 + i3

S2: i1 = il + i2
should be same. There are two fetches, one add and one write. But the experiment result shows
that they are not same at all: 51 takes about 0.18 psec on SUN SPARCstation 2 while 52 only
needs 0.10 psec. It is simply because i1 is already in the memory, very likely in register, so 52
needs less time than S'1.

This is the kind of problem we cannot tackle with in our model. Fortunately, we only need an
approximately accurate execution time, we can calibrate our time table a little bit to make the
whole estimation accurate enough.
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2.2.4 Model Summary

In this section, we have introduced how we gradually obtained the static model from the real world
model by approximation. Although we know that there are some intrinsic problems in our static
model. From now on, we will stick to our set-up static model whenever we need to predict the
execution time of program statically.

In the next two sections, we will talk about the complexity algorithms.

2.3 Complexity Algorithm for Structured Sequential Programs

Now we assume that we know how to compute elementary instruction execution times with the
dynamic models. Their associated complexities are not data dependent but constant. Let us
combine them to evaluate the complexity of structured sets of instructions. We use the word
statement in the general, recursive sense of PIPS: a statement is either a block of statements, a
test, a loop, a function call, or an unstructured control flow graph of statements. For example, a
whole DO loop is considered as one statement, whereas the Fortran instruction DO I=1,N is not.

Now we are considering complexity of structured program, which means the program contains
neither GOTO statement to jump out nor statements where GOTO statement can jump in. Let us
describe the bottom-up recursive analysis.

2.3.1 Complexity for Primitives

We initially started the evaluation of the complexity in terms of floating-point operations; then
it gradually appeared that integer operations could be equally important, and also that after all,
memory accesses could as well be the real bottlenecks, so we decided to count them all.

Cost of Fortran predefined functions

The execution time evaluation is performed bottom-up, cumulating elementary operation duration
or “costs”. Cost is misleading word but it has been kept for historical reasons. A cost is assigned
to each predefined function, that may be:

e a numerical operation: +,—, %, EXP,MOD, . LT...,T(+)=C(+)
o a logical operation: .AND..NOT.

e a memory read: N, 1.

e a memory write with assignment “="

The user must provide the cost table associated with his target machine dynamic model. He
specifies the cost file directory using a special properties ( See Section 4.6.2 for more information )
if the machine model exists. Else he should build files describing a new dynamic model.
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Overloaded Operators

The EXP operation hides at least three different functions according to the type of the operand
which can be floating-point real, double-precision, complex. The complex one: e*** = e%(cosb +
i % sinb) can be five times longer than the simple floating-point one, as there is a sin, a cos and
an exponentiation and two multiplications to perform instead of just an exponentiation. Thus, for
a particular operation, the cost table contains an entry for each argument type: integer, floating-
point, double, complex, double-complex. According to the Fortran semantics, an operation that
has two arguments of different types is given the cost associated with the “heaviest” type, even
though in some cases, it may be wrong: the sum of an integer and a complex number may require
only a single precision floating-point addition.

Cost of Memory Accesses

Our dynamic target machine model includes neither cache nor virtual memory, nor does it account
for registers. Accordingly, a memory access has a unique cost for each data type (cf. Section 3.5.3),
we have T'(=) = C(=). However, we distinguish the memory read and the memory write. The
former is used for every variable name which appearsin the right-hand side of assignment instruction
“="_1in function calls to arguments, or in ranges of loops: more generally, in every expression.
The latter is used for every variable name that appears in the left-hand side of the assignment.
Experiments on a SUN SPARCstation 2, presented in Chapter 5, show that this simplification is

acceptable.

Cost of Array Element Address Computation

When the variable name is an array name followed by indices, additional time is consumed to
compute the address of the array element accessed; namely, integer multiplications and additions.
This time should also be accounted for with the chosen machine model. Although this depends
on the code optimizer very much ( strength reduction, common subexpression computation, ... ),
we found out that a finite set of elementary “instructions” is sufficient to model the combination
of compiler, optimizer, runtime and operating system on the execution time. We distinguish array
access costs among locally declared, globally declared and formally passed. See Section 3.5.5 for
information about these differences on SUN SPARCstation 2.

2.3.2 Complexity of an Expression

To know the cost of an operator, one must first know the types of its arguments to determine which
kind of operation takes place, then find the relative cost for the operator in the cost table operation.

The evaluation of an expression cost is complicated by the overloading of most arithmetic operators.
To know the cost of an addition, one must first know the type of its arguments, because the floating-
point operation costs more than that of integer. So we evaluate the expression bottom-up, beginning
with the leafs of the syntax tree (constants, variables or function calls) whose types are known.
The types of sub-expressions are propagated upwards towards the root. For example, IM x JM
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will have cost of 3 according to a uniform all-one cost table: 2 units for memory reads and 1 unit
for multiplication operator.

2.3.3 Complexity of a Statement

We have different complexity constructors for different statement constructors. According to control
graph introduced in Section 2.1.5, statement complexity is the instruction complexity, which is one
of block, test, loop, call and etc. They will be introduced separately in the following.

Complexity of a Call

The complexity of a call is exactly the summary complexity of the corresponding subroutine or
function translated into the environment of the caller, plus the calling overhead. Fortunately,
Fortran is a language using call-by-reference to pass the arguments, so we do not need to know
the argument types, since only their addresses are involved. So we can think that the overhead
of calling procedures depends only upon the number of arguments. As the number of arguments
increases, the overhead augments proportionally. We will discuss this assumption in Section 3.5.5
and show its limit.

Complexity of an assignment

In PIPS intermediate representation, an assignment is a simple case of call We refer to it as
expression = expression, so the total complexity equals the sum of the two expressions, because
the value obtained for the left-hand side is produced in a register that has just to be store. For
example, the following assignment has the cost 5.

C 5 (STMT)
JJ = I+J-2

There are two memory reads, one plus operator, one minus operator and one memory write, so
the above statement has constant complexity of 5. In PIPS, the assignment is considered as a call.
Because the memory access has been charged same cost, the assignment is considered to have zero
cost.

2.3.4 Complexity of a Structured IF

Although IF construct is one of statement, we prefer to give it a full subsection because of its
importance in execution time prediction.

IF cond THEN Sy, ELSE Stq,c ENDIF

This statement is structured if there is no GOTO jumping in or out of Sy.,. and/or Syus.. Let us
call p the probability that cond is true, ¢ the probability that it is false, p+ ¢ = 1. We assume that
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the overheads for both branches are equal, because there will be two assembly instructions less in
evaluating the condition but two more after the true branch statements in true case than in false
case. See below the assembly cost produced by the GNUS gcc compiler for a SUN SPARCstation 2:

Evaluation of condition

bl L_True
nop
b L_False
nop
L_True:
True Branch Statements
b L_End
nop
L_False:

False Branch Statements
L_End:

We use the following probabilistic definition of the complexity:

CUF...)=C(cond)+ p-C(Suue) + ¢ - C(Starse) + Covna

The correctness of such a complexity formula with respect to the execution time 7'(.5) - & defined
by the dynamic model is that for any given store &, 3@ € U, such that T(S)-d =C(5)-(d,1),
where U is a set of unknown values which are required to cope with the non-computability of the
execution time. In other words, our complexity function maps a statement and a store to a set of
possible execution times. The actual execution time must belong to this set for the complexity to
be correct.

Proof We make several intuitive hypotheses first:

1. V& € %, 34, € U such that:
T(cond)- & = C(cond)-(J,u;)
which means that, provided a given state o, when the condition is evaluated on the real
machine, we can always find a set of variables u, satisfying the equation.

2. V& € i,EIu] € U such that:
T(Strue) -G = C(Strue) ) (5:7 U_i)

3.V e i,ﬂu} € U such that:
T(Sfalse) G = C(Sfalse) ) (5:7 ?Fz)

Now suppose that the condition evaluation does not change the environment, and suppose that
overhead is included in the complexity formula, we consider two different cases:
Case 1: if condition is true, we have:

T(IF.)-G = T(F cond THEN Sy.. ELSE Sa,. ENDIF) -G
= T(cond)- &+ T(Strye) -0
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Applying Hypothesis 1 and Hypothesis 2, we can find 4, and 47, so we have:

T(IF.)-& = C(cond)-(G,0)+ C(Siae) - (5,101 (2.1)

Case 2: if condition is false, we can get:

T(IF.)-G = T(F cond THEN Sy.. ELSE Sa,. ENDIF) -G
= T(cond) -G+ T(Stase) &

Applying Hypothesis 1 and Hypothesis 3, we can find 4, and 47, so we have:
TUF..)-6 = C(cond)-(F,4.)+ C(Sase) - (6, ) + overhead (2.2)
Let p be probability of true case, then ¢ = 1 — p for false case, from Equation (2.1) and Equa-

tion (2.2), we have:

TUF...)-6d = p-[T(cond) -G+ T(Sue) - 61+ (1 —p)-[T(cond) &+ T(Stase) - 5]
= T(cond) -G+ p-T(Sirue) + (1 —p) -T(Staise) - &
= Cleond) - (3,12) + - C(Suae) - (318) + (1= p) - C(Spae) - (7, 7)

g
g

So there must exist a certain @ C U, such that ¥ € 4, ® 4; ® 45, satisfying u, C @, ) C @ and
s C 4. Now we combine two cases:

TUF...)-6d = C(cond)- (G,4.)+p-C(Stue) - (6,41) + (1 —p) - C(Stase) - (7,

(cond) - (3,0) + b+ C(Su) - (3,) + (1= 1) - C(Syae) - (3,7)
Cleond) +p - C(Sirue) + (1= p) - C(Sase)) - (0, 0)
C(IF...))-(d,1)

)

cond
(
(

If cond is not particular, as a first coarse approximation, we use the values p = ¢ = 1/2 in the
current implementation and we maintain another kind of correctness by keeping track of the number
of approximations made. See counters in Section 4.2.2 for more information.

To keep it tractable, we assume that branch probabilities are statistically independent, so that we
can use the two same constants p and ¢ for every execution if the probability of the test cannot be
detected easily.

Now the problem is to correctly evaluate them as often as possible.

2.3.5 Complexity of a Sequential DO

Do loops are the key control structures to estimate the execution time of scientific programs.
Although DO construct is one of statement, as IF', we prefer to give it a full subsection because of
its importance in time-predicting.

Suppose that we have a loop like:
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DO index = lower, upper, increment
body
ENDDO

The evaluation of lower, upper, increment may call functions, whose complexity must be added
to the overall execution time as loop entrance overhead. The complexity of the Do loop body
may depend on the index, so we must integrate it on the index rather than multiply it by the
iteration count. We hereafter include in C,4, the looping overhead of the loop index test and index
increment.

We assume that the overheads for lower bound, upper bound and increment are constants. (
See Section 3.5.6 for explanation. ) These overheads include the evaluation of the these three
expressions. C(loopheader) is used to denote the addition of these three, i.e., C'(loopheader) =
C(lower)+ C(upper) + C(increment). And we also assume that loop initialization overhead and
branching overhead are constant too. We use C,,;; and Cy, 4o, Tespectively.

The complexity of the loop is given below:

upper
C(DO...)- & = Cinit + C(loopheader) - a; + Z (C(body) - d; + Chranch) (2.3)

i=lower

Proof We know that the environment is changing all the time as the loop induction variable
changes. It is not our purpose to calculate the C(body) as index changes, we want to find out
a unique formula to calculate C'(DQO) once. Generally, we cannot obtain a formula that can be
applied to all cases, that is to say, we have to add some restrictions on loop body without changing
the actual behavior.

This formula applies if we are able to properly evaluate lower, upper and tncrement as polynomials
and to prove that (upper — lower) % increment > 0, i.e., at least the loop is executed.

By induction we assume that C'(body) is already obtained.

Case 1: C(body) is not dependent on loop header.

This is the simplest case since complexity is fixed. That is to say, the environment does not affect
the complexity of the loop body and we can consider C'(body) is a constant. Assuming that the
loop iteration is N;,,,. Since both C'(body) and Cj,4pep are constants, we have:

upper
NIOOP : (C(bOdy) ‘I’ Cbranch) - Z (C(bOdy) . —I_Cbranch)
i=lower
upper
= Y (Clbody)- i + Coranch) (2.4)
i=lower
and
C(loopheader) = C(loopheader) - c; (2.5)

From the loop definition and Equation (2.4) and (2.5), we have the following formula:



66 CHAPTER 2. COMPLEXITY ESTIMATION IN PIPS

C(DO...) = Cipu+ C(loopheader)+ Niyop - (C(body) + Coranch)
upper
= Cinit + C(loopheader) + Z (C(body) - d; + Chranch)

i=lower
upper

= Cinit + C(loopheader) - 7; + Z (C(body) - 73 + Chranch) (2.6)

i=lower

Case 2: C(body) is a function of loop header, it can be the function of lower bound, upper bound,
increment and/or any combination of these variables.

Now we add our restriction: C'(body)is a function of the loop headers, where the function takes the
form of polynomial. With the algorithm introduced in Section 2.3 later in this chapter, we have
the chance to calculate them once and for all.

It is the only case we can use the Equation (2.3) to calculate the complexity of DO loop.

For sequential loops, the statistics of the loop are computed by adding those of the expressions
lower, upper, increment, and body. For parallel loops, it would be easier to have body with worst
execution time.

2.3.6 Complexity of a Block

A basic block is a group of statements with unique entry and exit points such that if the entry
statement executes, all other statements in the basic block will execute.

g .

oy statement;
Oy : statements
g, - statement,,

Once the control graph is computed, the construction of PIPS internal representation of programs
guarantees that there is no GOTO jumping in or out of the middle of a block, so that the n statements
are always executed sequentially. The complexity of the block is simply as below:

V&, di such that:

C(block) - (dg, 1) = Zn:(C(statementi) (03, 1))

i=1

Proof The proofis by induction on the statement number n. We know that for two statements,
it is correct by definition. And for 3, 4, it will be correct too, until n. The only part is to
update a complexity with respect to o;, into a complexity with respect to oy. To make it easier
the implemantation uses oy, the initial store as unique reference, and preconditions to update the
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local complexity. The use of transformers would let us decrease the number of unknown variables
introduced in complexity formulae at the expense of implemantation simplicity.

The statistics of the whole block is the sum counter to counter of the statistics of its statements.
PIPS detects only DO loop parallelism (nor COBEGIN ... COEND neither FORK, JOIN).

2.4 Complexity Algorithm for Unstructured Control Flow Graph

In this section, we will talk about the unstructured programs. Unstructured codes require a more
complex technique.

2.4.1 Control flow graph and PIPS programs representation

Any Fortran program, even those containing GOTOs, can be represented by a graph whose nodes
represent elementary instructions, and whose edges stand for GOTO jumps. Most of nodes have only
one outgoing edge, IF-GOTO-ELSE-GOTO0 nodes have two, and the computed and assigned GOTO can
have more. This graph is called a control flow graph (cf. [ASU86]); Internal representation of PIPS
uses such graphs. Little unstructured pieces of code are encapsulated into one node in such graphs
and viewed from the rest of the program as if they were single, structured blocks of instructions.

2.4.2 Complexity of an Unstructured Control Flow Graph

Let us now define a complexity for an unstructured program represented by its control flow graph.
Let {51, 9,...,5,} be the set of the graph nodes, and 5, the entry node. We are sure there is only
one, because of the definition of the graph: if there were more than one entry point, that would
mean there would be GOTOs reaching from outside of the graph into the middle of it; the origin
vertex would actually be a part of it.

Let ¢y, ¢q,...,¢, be the complexities associated with 51,.5,...,5,, inductively assumed known.
Let us call p;; the probability of going to node 5; from node S5;. Apparently, the probability to
go to any node, from node 5;, is 1, so 2?21 pi; = 1. We will at last associate to each node S; the
average complexity g; of the code still to be executed between 5; and the exit of the graph (g; is a
sort of “global cost”). Our goal is the evaluation of ¢, as it is the average complexity of the code
executed between the first node 5, and the exit node.

Here is a recursive definition of the g;: the global cost of a node is its proper cost ¢; plus the sum of
the global costs of its successors g; weighted by the associated probabilities p;; to jump from node
S; to node 5}, as shown in Equation (2.7).

gi=¢c¢+ Z Pij - 9; (2.7)

S; successor of 9;

Naturally, p;; = 0 if .5} is not a successor of 5; , so the sum can be expressed more regularly:
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gi=¢ + szj - 9; (2.8)
i=1

There is a such an equation for each node. We can obtain a system of n equations with n unknown,
the ¢;, which can be written in a matrix form:

g1 C1 P11 P12 - Pin g1
9> Ca P21 P22 Pon 92
=1+ . . R I (2.9)
9n Cp Pn1 Pn2 *tr Pnn In
Consequently, we have:
1 —pu —P12 s —Pin g1 C1
—P21 1—py - —P2n 92 Ca
. . . : . = . (2.10)
—Pni —Pn2 e 1= Pnn In Cn

We assume G = {g1, 92, -+, 9.} and C' = {¢y,¢q,- -+, ¢, }. Finally, we get

(I-P)-G=C

Is (I — P) always invertible? It should be possible to prove that, as soon as the program is not
pathological. An infinite loop, Si: GOTO Si generates a horizontal null line in the matrix (I — P)
and makes it no invertible. But fortunately, (I — P) generally is invertible in most cases.

Suppose A is the inverse of matrix (I — P), that is:

A=(I-P)" (2.11)

and suppose a;; is the ¢, line and j;; column element of A, we have:

G:(I—P)_l-C:A-C (2.12)
that is:
g1 Q11 Qa2 -+ Qip C1
9> Qo1 Aoz -+ Qap Ca
S I (2.13)
9n Up1  Ap2 cer Qpp Cn

We extract from Equation (2.13) the complexity of the whole graph:
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1 S =5+ A(I)
IF(I.LEQ.N) GOTO 4
I=71+1
GOTO 1

4 MOY = S/N

Figure 2.2: The Original Fortran Program

g1 = a1 ¢+ @ia-C+ -+ -y, (2.14)

The computation of the p;; involves the following cases:

e Node §; is always executed immediately after node 5;, which means p;; = 1
e Node §; is never executed immediately after node S;, which means p;; = 0

e Node 5; has more than one successor. That is to say there are £ nodes, namely, 5;;,, 9., - .., Sij,
and any of them can be executed immediately after node 5;, and the probabilities from node
S; to these k nodes are p;;,, pij,, - - -, Pij, respectively, such that Zzzf Pij.. = L.

So the problem becomes how to correctly calculate the matrix inversion. Press et al. [PFTV86]
provided the algorithm which is used in our implementation.

2.4.3 Example
Now we present an example to illustrate the Equation (2.7). Let us try the unstructured program
in Figure 2.2. Figure 2.3 represents its control flow graph.

We assume that p is the probability from 52 to S4. The transition probability matrix of this flow
graph is:

0 1 0 0
100 1-p p
P= 10 0 0
0 0 0 0
We have
1 -1 0 0
_ 0 1 p—-1 —p
I=F=V 1 0 1 o0
0 0 0 1
and consequently
1 1 1—p p
-t _ L l=p 1 1-p p
(I-P) p 1 1 P
0 P
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Entry
S1
1
52
ﬁ \L‘p
54 S3
1
Fxit

Figure 2.3: The Unstructured Control Flow Graph

Finally, we can get the complexity of the graph g¢;:

c c 1-p)-c
=y e U-re
p p p

If p = 0, the complexity of the graph is not defined because 51, 52 and 53 form an infinite loop.
The program execution will never reach S4.

If p=1/n: then we have:
go=n-(ci+e)+(n—1)-c3+cq (2.15)

51, 52 are executed n times, and $3 (n — 1) times, 54 once. This matches the intuition of a DO
loop.

2.5 Symbolic Calculation of Polynomial Summation

In this section, we introduce how to calculate symbolic polynomial summation, and problem that
arises from the formula in practice.

2.5.1 The Formula of Symbolic Calculation

In the complexity evaluation, we need to calculate polynomial summation symbolically. The prob-
lem looks like:
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C= ZI: i: Z exp) (2.16)

t1=a1 i2=az 1n=an

where a;, and b, (k=1,2,---,n) may be the numerical constants or linear function of i;, provided
J < k, and exp is a linear function of ¢y, and ' is polynomial result which may contain a; and by
and must not contain .

The calculation of Equation (2.16) is done from right to left. The above problem becomes the
calculation of the expression of the following form:

u

C = Z(CO—I—cli—l—cziz—l—---—l—cmim) (2.17)

i=l

where ¢, (k =1,2,---,m) are polynomial which do not contain ¢, that means we can consider ¢
as constant coefficients. So the problem in Equation 2.17 becomes

C:Zco—l—chi—l—Zcziz—l—---—l—Zcmim20021+012i+022i2+ —I-CmZZ (2.18)
i=] i=] i=] i=] i=] i=] i=]

In order to calculate the Equation (2.18), we only need to calculate 3 (i"). Fortunately, Knuth
[Knuth73] and Spiegel [Spiegel74] provided the formula:

LN nptl 1 Bipnt~t  Bap(p— 1)nP~?
> (i) = . tor - T +... (2.19)

i=1

where p and n are non-negative integers, the series terminates at n or n? according to that pis odd
or even. If n = 0, the result is 0. The By are Bernouilli number defined by the series:

e z  Byx? By’ Bsa°
e —1 2t o T T
and
1 1 tl B1$2 1 B2$3 + +B3$6 + | | <
— —cot— = el <w
2 2 2! 41 6!

Until now, we can claim that we are generally able to calculate symbolic polynomial. Apparently, we
have no problem to perform operations like addition, subtraction, multiplication of two polynomials,
to substitute a symbolic variable with an expression or a constant, to perform 3 operation between
two bounds, because we have:

sup sup in f
Z exp(i Zeacp Zeacp + exp(inf) (2.20)
i=inf

The only general problem is division operation. Generally speaking, we have no way to perform
division operation for any two arbitrary polynomials. In our implementation, if we encounter this
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case, our estimator will report error and exit. But there is only one exception, i.e., when divider
polynomial is a monomial, that is, one term polynomial. Because we only need to convert the
division to multiplication of its reciprocal. For instance, divided by 3m? means multiplied by
1/3-m™%

2.5.2 Problems of Symbolic Calculation

In general, we cannot know the static values of symbolic variables before the execution. This raises
some issues in practice.

Tawbi [Tawbi90] describes a problem related to the symbolic calculation. She uses the following
example:

DO 10 i = 1, n

S1
DO 10 j = 2, i
S2
DO 10 k = j, m-2
10 S3
In this case, assuming M; denotes the iteration number of 5; when I = 1,2,.-.,, we have the
following:
Ml =n

n

My =Y (i-1)

i=1

The calculation of M3 is a little difficult and tricky and cannot be derived directly by the standard
formula:

M, = ZZ(m —j-1) (2.21)

i=1 j=2

because if m — j — 1 > 0 it is correct for all the values of ¢ and j. But if not the error can be
enormous. For example, take n = 300 and m = 100. The result when using Equation (2.21)
is —104650. It is obviously wrong since execution time cannot be negative. The real number of
iteration of S3 is 964859. But what is wrong with the Equation (2.21)?

In Fortran, the loop body is not executed if the upper bound is less than lower bound. In the above
example, the loop on j is not executed, since ¢ = 1, but it is included in the Equation (2.21); and
the calculation on k£ will be executed for all the values of j only if m — 2 > n. If m — 2 < n, the
loop nest iteration number of S3 i.e., M3 in fact is divided into two parts as following:
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DO 10 i = 2,
DO 10 j =

10 S3

DO 201i =m1, n
DO 20 j = 2

20 S3

and M5 can be calculated as:

n g

Ifm—2>n:M;=> > (m—j—1) (2.22)

i=2 j=2

2 ¢ n m—2

dim—j-1)+ (m—j—1) (2.23)

i=2 j=2 i=m—1 j=2

ITm-2<n:M;=

The Equation (2.22) and Equation (2.23) will give the right answer no matter what values m and
n take.

We have taken notice that in order to well calculate the number of iteration of loop, we have to
vary the counter of loop according to different cases to assure the right answer. Therefore, in order
to calculate the number of instantiations of the loop body S, we need to:

1. split the loop body into several chunks where the number of iterations should not be negative.
This is to avoid the errors occurred in the calculation of M5 above.

2. calculate M; while making symbolic expressions calculations

This adds a lot of extra work to the simple static evaluation based on a discrete integration, for we
cannot evaluate values of symbolic variables prior to execution. In the example, the values of m
and n are required. And the most important, sometimes we even have no ideas at all about the real
values of symbolic variables. As you can see, for this small piece of Fortran code, the right answer
is already complicated, let alone the real Fortran program which are generally several thousands
lines. The answer for real program could be too long to be meaningless.

In order to avoid this kind of problem, we decide that it is up to user to check the loop bound
problem because most programs do not contain dead loops or dead iteration. Such cases seem to
happen when there is mistake or when some complicated loop pattern is generated by a compiler.
W. Pugh and D. Wonnacott [PW92] discussed the similar problem. W. Pugh [Pugh94] describes
methods to count the number of integer solutions to selected free variables of a Presburger formula,
or sum a polynomial over all integer solutions of selected free variables of a Presburger formula.
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2.6 Summary

In this chapter, we have firstly introduced PIPS, on which complexity in PIPS is based, and the
complexity itself and its algorithms to calculate and proven them correct.

2.6.1 Top-Down vs. Bottom-Up Analysis

The complexity evaluation is performed one module at a time in topological order. This is possible
because of the non-recursive nature of Fortran. In this way, each time a subroutine or function is
encountered, its complexity has already been evaluated. So we use bottom-up analysis. When the
complexity of a sub-module is required, it is assumed to be available, somewhere in the database,
managed by pipsdbm. A top-down complexity analysis could be performed. The information
computed would then be the number of time each piece of code is executed.

2.6.2 Proper Complexity and Cumulated Complexity

The proper complexity and cumulated complexity are similar to those of effects (cf. Section 2.1.6).
Proper complexity is related to the complexity of the next statement, while cumulated complexity
is related to the complexity of next block. The extreme case of cumulated complexity is summary
complexity, which is the complexity of the whole module. No use was formed for proper complexity.



Chapter 3

Target Machine Model

Each computer manufacturer has its own way to deal with the numerical computations. As com-
puter technology advances, the supercomputer is getting more powerful. In order to know the
performance of these supercomputers, we need to know the approximate cost for each operation,
memory accesses, etc.

We are interested in execution time evaluation, but various optimization techniques that exist at
different levels: multiple ALU, cache, pipeline, etc. make this task very difficult. The question is
to determine which machine features have to be taken into account and which do not.

In this Chapter, let us first have a look at sequential machines. In section 3.1, we enumerate some
parameters that could reasonably be part of a machine model, keep only the most important ones
for a simple implementation and use. Then we will discuss the characteristics of parallel machines:
its architecture and classification in section 3.2. We will present two simple models: all-1 and fp-1,
that are implemented in our prototype in Section 3.3. Finally, we will show how we obtain the real
cost table for SUN SPARCstation 2. But we postpone the experimental verification to Chapter 5.

3.1 Sequential Machines

Sequential machines are the starting point for our machine model, because they are simpler ones.
In this section, we present the impact of computation models, and then the impacts of memory
and processing elements.

3.1.1 Sequential Machine Model

We are going to list some models of computation which have the impact on the performance.

Sequential Von Neumann Model

For more than 40 years, the Von Neumann Principles have dominated computer architectures. This
computational model was first used to build uniprocessors. A classical von Neumann computer

75
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Figure 3.1: Von Neumann Computer Model

consists of a program control unit (CU), an arithmetic logic unit (ALU), an input/output (I/0),
and memory (M), as shown in Figure 3.1. The CU and the ALU collectively make up the processing
element (PE).

The von Neumann model is based on the following principles:

o A single processing element separated from memory by a communication bus;
e Linear organization of fixed-size memory cells;

¢ Low-level machine language with instructions performing simple operations on elementary
operands; and

e Sequential centralized control of computations.

These principles are simple and well understood; considerable progress has been made with them
and confidence in this model has grown over the years. One reason for the success of the von
Neumann computer is the flexibility of its implementation. For example, communication between
processor and memory may be achieved with separate or multiplexed data and address buses. Also,
the von Neumann model leaves room for a variety of processor and memory organizations, such as
hierarchical memory.

RAM Model

The conventional uniprocessor can be abstracted as a Random-Access Machine (RAM) model. This
theoretical model is useful for algorithm development and for complexity studies. It also constitutes
the starting point for the theoretical parallel models.

The worst time complexity or just complexity of a RAM program is the function f(n) which is the
maximum, over all inputs of size n, of the sum of the time taken by each instruction executed.
Since each step takes a fixed amount of time, the RAM model can be used as our dynamic model
which was introduced in Section 2.2.1.
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Pipelining

The process of pipelining divides a task into many subtasks and assigns them to a chain of processing
stations. These stations are called pipeline segments. Parallelism is achieved when several segments
operate simultaneously. It is possible to use the principle of pipelining either at the instruction
level or at the arithmetic level.

This implementation improvement may be hidden in our dynamic model if no pipeline bubble exists
or if bubble can be statistically taken into account as a slowdown coefficient.

Vector Processors

Vector processors are specially designed to handle computations formulated in terms of vectors. A
vector processor has a set of instructions that treat vectors as single operands. The vector processor
could conceivably be implemented by replicating the number of scalar ALUs to the size of a vector.
Since vectors are one-dimensional arrays and the same sequence of operations is repeated for every
vector element, vector processing is ideally suited to pipeline arithmetic.

Often uniprocessor computer systems are equipped with vector co-processors in order to speed up
vector computations. Sequential code can sometimes be vectorized. This simple and inexpensive
technique usually provides significant speed improvements over a purely scalar operation, and
meanwhile causes a big problem for evaluation. Since vector processing is quite close to parallel
processing, vector units are not taken into account in our sequential model.

3.1.2 Multiple Processing Units

All CPU manufacturers introduce in their chips some parallelisms that high level programmers do
not need to know and, at the same time, cannot control. For example, integer and floating-point
computations, and address calculations are often performed in the meantime, or at least overlapped
in superscalar and/or superpipelined machines. This makes exact static time evaluation of user
programs almost impossible or at least very expensive [Jonkers92, Wang93]. We cannot determine
approximate overall time by counting only the most costly operations ( especially floating-point ),
since loads of the different units, on supercomputing machines, are generally well balanced. Ideally,
the integer computation unit runs as much as the floating-point one, and so does the CPU as a
whole, compared to the memory ports activity. If this remark applies for real programs, it could
inspire to measure only one of three activities, or to take the average.

For a coarse and fast approximation, one can compute separately the time spent in the different
types of units: 71,,, in CPU, T},, for floating-point computations, etc. then divide each time by
the number of appropriate units available, and take the maximum of all quotients. That solution
gives its best results when the work for all unit types is homogeneously mixed in the program.

A finer simulation of the overlapping may be obtained by maintaining some sort of reservation table
throughout the complexity evaluation [Wang93].
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3.1.3 Memory Issues: Register, Cache and Virtual Memory

The memory system of a computer is sometimes dubbed as “the von Neumann bottleneck” because
of the critical role it plays in affecting performance of the computer. In this subsection, we show
the impacts of the memory hierarchy from register to cache memory and virtual memory.

Scalar and Vector Registers

Registers are memory cells used by CPU, exist at one level under the cache. It is a source of error
in the evaluation of memory reference time: some frequently used data are kept in scalar or vector
registers, and their access time is about three times faster than cache. As a first approach, the loop
indices can be supposed to be in scalar registers, the other variables staying in the cache or main
memory.

Cache and Virtual Memory

Virtual-memory systems, as they exist today, fulfill a role similar to cache memories for CPU,
except that virtual-memory systems manage a different portion of the memory hierarchy. Cache-
management algorithms attempt to make optimum use of a high-speed memory for which main
memory serves as a backup buffer. Active items tend to move from main memory to cache, and
inactive items tend to migrate back to main memory.

Stone [Stone87] defines the effective access time as:

teff =h- tCGChé + (1 - h) . tmain (31)

where h is cache hit’s probability and 1 — A is cache miss’ probability which is also the probability
for main memory access.

Virtual-memory systems attempt to make optimum use of main memory, while using an auxiliary
memory, usually a rotating magnetic disk memory, for backup. Therefore, to the first order of
approximation, the high-speed buffer memory of a cache system corresponds to main memory of a
virtual-memory systems, and main memory of a cache system corresponds to an auxiliary memory
of a virtual-memory systems.

The principles that govern the behavior of cache and virtual memory systems are largely the same.
Namely:

o Keep active items in the memory that has the higher speed;
e As items become inactive, migrate them back to the lower-speed memory; and

o If the management algorithms are successful, the performance will tend to be close to the
performance of the higher-speed memory, and the cost will tend to be close to the cost per
bit of the lower-speed memory.
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Comparison | High-Speed Memory | Low-Speed Memory
CPU Register Cache Memory
Cache Cache Memory Main-memory
Virtual Main-Memory Auxiliary-Memory

Table 3.1: Relative High and/or Low Memory

Memory access delays are comparable to CPU execution times, depending upon the number of
banks, access ports, ALUs and FPUs, etc. So it is important to include them in the complexity
evaluation. For example, we can first make the rough assumption that a memory access takes a
certain amount of time on the average; but the fact that the cache hit access time may be at least
four and up to twenty times faster than the cache miss leads to consider cache memory [Stone87].
Can one statically decide that a certain reference will be a cache-hit or cache-miss? Though
determining whether arrays accessed by arbitrary functions access the same memory location is
undecidable [Ber66], an approximating method can be used. We suggest to use an average hit ratio
and to let the user adjust it according to his knowledge.

The virtual memory raises the same problem as the cache memory, except that for the users inter-
ested in CPU time, page faults are invisible. A page fault penalty can be 1000 to 10,000 as costly as
a page hit. However, as the supercomputer client pays for the product memory space * cpu time,
he is not interested in an evaluation of elapsed time. So this feature does not have to be handled
although the delays generated by the page fetching are several orders of magnitude longer than all
sorts of operations we count.

Summary of Memory Issues

Table 3.1 shows the memory comparison. For CPU, the high-speed memory is register while low-
speed memory is cache; but for cache memory, the cache becomes the high-speed and main memory
is low-speed; finally for virtual memory, main memory is high-speed while auxiliary memory is low-
speed.

3.2 Parallel Machines

Parallel machines are considered to be much more complicated than sequential ones. All issues
discussed in the previous section apply here. And besides that, parallel machines have their own
characteristics. Here we only briefly introduce two items related to parallel machines: architecture
and classification. In Chapter 6, more characteristics are taken into account.

3.2.1 Parallel Machine Architecture

Parallel computer architectures may be characterized by the following criteria: processor complex-
ity, mode of operation, memory structure, interconnection network, and number of processors and
memory size.
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Processor Complexity

Processor complexity refers to the computing power and the internal structure of each processing
element. Homogeneous systems are those in which all processors have identical capabilities, e.g.
BBN TC2000 which was used to carry out our experiments. Heterogeneous systems are those in
which processors are not identical, as for instance when they are specialized for performing certain
functions. Processor complexity varies from one architecture to another. Homogeneous systems
are more common and our target machine is assumed homogeneous.

Besides the homogeneity of processors, the computer’s power also hinges on the power of its pro-
cessors. We can roughly distinguish them by splitting them into three categories: large-grain,
medium-grain and fine-grain architecture. (1) Large-grain architectures have few, but powerful
processors. The Cray X-MP has from one to four extremely powerful processors. (2) Medium-grain
architectures have an intermediate number of processors, with intermediate processing power. For
example, Sequent multiprocessor. (3) Fine-grain architectures employ a large number of smaller
processors. The Connection Machine CM-2 has 65536 bit-serial processors.

Mode of Operation

Mode of operation is a general term referring to both instruction control and data handling. The
traditional mode of operation is command-flow, so called because the flow of events is triggered by
commands derived from instruction sequences. Another method is to trigger operations as soon
as their operands become available, as in data-flow, in which computations take place only if their
results are requested by other computations. A von Neumann control flow machine is assumed.

Memory Structure

Memory structure refers to the mode of operation and the organization of computer memory.
Memories can be accessed by using either addresses or data content ( as in associative memories ).
In some new computer model, such as neural networks, memory consists of interconnection weights
that indicate how easily connections can be made. A standard shared-memory is assumed.

Interconnection Network

Interconnection network refers to the hardware connecting processors together or processors and
memories. There are generally three types:

¢ Bus is communication path shared by the processors, connecting them to the memory unit.

e Crossbar will connect each processor directly with every memory modules, so there is no
memory contention.

¢ Multilevel is a connection between two points via a number of intermediate switching stages.

The effect of interconnection network makes the memory hierarchy more difficult to modelize and
we chose to ignore this factor.
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Number of Processors

Number of processors and memory size simply indicate how many processors the parallel system
contains and how large the main memory is.

As part of automatic parallelization, the complexity estimator has to consider the number of pro-
cessors of the machine. This parameter alone is good enough to simulate coarse-grain parallelism,
but for little tasks, the cost of process creation must be considered, as it becomes comparable to the
task cost. The operating system behavior is more important in the model than a simple processor
model.

3.2.2 Classification for Parallel Machines

In 1972, Flynn [Flynn72] proposed a first classification scheme for parallel computer architectures.
The classification is based on the distinction between multiple instruction streams and one instruc-
tion stream, and between multiple data streams and one data stream. By this approach Flynn
obtained four classes of computer architectures:

e Single Instruction stream — Single Data stream (SISD)
SISD is standard sequential machine model and it comprises all conventional uniprocessor
systems. Vector computers, which have instructions that operate on entire arrays rather than
on scalar entities, are also included here. This kind of machines is what we talked about in
the previous section.

e Single Instruction stream — Multiple Data stream (SIMD)
SIMD denotes any parallel computer architectures with only one instruction stream and
synchronized processing elements. It consists of multiple ALUs under supervision of a single
control unit (CU). The CU synchronizes all the ALUs by broadcasting control signals to
them, but on different data that each of them fetches from its own memory. So it is also
called data parallel or array processors. Actually, the SIMD machines are the CM-2 from
Thinking Machines Corp., MP-1 from MasPar, TC2000 from BBN, etc.

o Multiple Instruction stream — Single Data stream (MISD)
MISD is not incorporated in any existing parallel machines, so it is of no real use practically.

e Multiple Instruction stream — Multiple Data stream (MIMD)
MIMD refers to any parallel computer architectures with multiple instruction streams and
mostly unsynchronized processing elements. MIMD machines are Paragon from Intel Corp.,
CM-5 from Thinking Machines Corp., etc.

The above classification leaves us with two essential classes of parallel computer architectures, viz.
SIMD and MIMD. Although these two terms are widely, frequently used, they only give a very
vague distinction between the various kinds of parallel computer architectures.

The two classes can be modelized in a similar way, with a special handling of test for SIMD
machines. To keep things manageable, we restrain the scope of our estimator to MIMD machines
exploited in SPMD mode, which stands for Single Program Multiple Data.
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# int float double complex double-complex
+ 1 1 1 1 1
- 1 1 1 1 1

Table 3.2: Unity Cost for Operation

3.3 Two Trial Models

Before we use operation costs for the dynamic model of real machine, we first present two cost
tables which are used to obtain purely theoretical results. We find them equally important because
they give users some interesting information about their programs.

Each cost table is divided into six files: index, memory, operation, transcend, trigo and overhead.

3.3.1 All-One Cost Table

In the work reported here, we assume that in the ideal machine, very similar to the RAM model used
for theoretical complexity, each arithmetic operation, memory read, memory write and intrinsic
function invocation consume one unit of time. All other activities, including 1/O operation are
assumed to be instantaneous. In this way, the result is in much more machine-independent manner.
For example, the overhead of synchronization and/or communication is a function of the target
machine and not of the program. Therefore, we decided to ignore that time.

We detail the complexity cost in the following categories:

Operation Costs of All-1

Since it is called all one, each operation has an execution time of 1 regardless of the operation
types. For example, an excerpt of all-1 operation cost table is shown in Table 3.2, the plus operator
always has unit cost 1, so does minus operator for any kind of operand.

Memory Costs of All-1

The assignment “=” is performed in no time because the cost is considered to be included in

memory access. The memory access ( including load and store ) is equally given unit cost 1, as
shown in Table 3.3.

Array Index Costs of All-1

When an element of array is accessed, there is some extra costs. For example, we need to take the
dimension of the array into account and calculate the offset of multi-dimensional arrays. Obviously,
there is a big difference of access between the array reference with constant indexes and the one
with varying indexes.
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# int float double complex double-complex
MEMORY-LOAD 1 1 1 1 1
MEMORY-STORE 1 1 1 1 1
= 0 0 0 0 0

Table 3.3: Unity Cost for Operation for Memory Access

Dim Case ‘ Local Formal Global

1 * 1 1 1
2 *% 1 1 1
3 * *x x 1 1 1

Table 3.4: Unity Cost for Array Index

In our all-1 theoretical cost table, we do not distinguish between these cases, we think of them
all as equivalent. For example, A3 is a three-dimensional array, A3(2,3,4) has the same cost as
A3(1,j7,k) where ¢,7 and k are varying, e.g., loop induction variables.

The cost is shown in Table 3.4 where asterisk sign means that it can be a constant or varying index.

Transcendental Costs of All-1

All the transcendental functions are given equal unit cost 1. An excerpt of that table is shown in
Table 3.5. This is not realistic as transcendental execution times are likely to be data dependent.
Trigonometric Costs of All-1

Trigonometric functions are also given equal unit cost 1. We also include hyperbolic functions, such
as sinh. An excerpt of that table is shown in Table 3.6. This is another approximation sine these
operation execution time are data dependent.

# int float double complex double-complex
MIN 1 1 1 1 1
MAX 1 1 1 1 1
EXP 1 1 1 1 1
ALOG 1 1 1 1 1

Table 3.5: Unity Cost for Intrinsic Transcendental Functions
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# int float double complex double-complex
SIN 1 1 1

DSIN
CSIN
COS
SINH
DSINH

1
1
1
1
1
1

—_ = e e

1 1
1 1
1 1
1 1
1 1

—_ = e e

Table 3.6: Unity Cost for Intrinsic Trigonometrical Functions

# int float double complex double-complex
MEMORY-LOAD 0 0 0 0 0
MEMORY-STORE 0 0 0 0 0
= 0 0 0 0 0

Table 3.7: Floating-Point Cost for Memory Access

Overheads of All-1

The loop initialization overhead is taken as 1. And no time is charged for loop branching overhead,
return overhead and call overhead.

3.3.2 Floating-Point-One Cost Table

The Floating-Point-One Cost Table fp-1 is almost the same thing as all-1 except that it takes
only floating-point operations including load and store into account while integer operations are

excluded. For example, memory accesses are not taken into account. So we give them zero cost, as
is shown in Table 3.7.

And in Table 3.8, floating-point operations are accounted. Although others, such as double precision
operations, may cost more than floating-point operations, we also include them in the table with
the same weight.

# int float double complex double-complex
+ 0 1 1 1 1
- 0 1 1 1 1

Table 3.8: Floating-Point Cost for Operation
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3.3.3 Summary of Trial Cost Tables

In this subsection, we introduced the all-1 and fp-1 cost tables. Although both remain ineffective
in practice, it can give some nice results of the program. For example, how many operations are
executed in a program.

3.4 Experimental Machine Model

In this section, we present experiment to define the elementary costs for a SUN SPARCstation 2,
and then fill the cost tables for that machine.

3.4.1 The Limit for Machine Modelization Accuracy

There are a few good reasons for restraining ourselves from over-sophisticating our machine model —
the dynamic model. Firstly, the static evaluation of complexity itself contains intrinsic uncertainty
due to the problems described in Section 2.2. The second reason is our ignorance of the assembly
code that compiler generates, though we need the assembly code to determine the real machine
execution time in Section 3.5. Last, the more sophisticated the model, the more complicated
the evaluator, and the longer the evaluation. The duration of the evaluation time must also be
weighted against the accuracy gained and its usage. So we need a simple, effective method to obtain
elementary costs of target machine.

Bentley et al. [BKV91] described how to make an elementary C cost model for a list of machines.

3.4.2 A Simple Program to Start

If you want to estimate the cost for floating point division, for instance, a trivial program does the
job. Here is an example to get the time of floating-point division on a machine.

main()

L

it 1,n;

float 1,12 {3;

n = 1000000;

f2 =13 = 3.0;

for (i=0;1 < n; i++ )
1 =12 /13

}

On UNIX systems, it is easy to time programs with the time command. Generally, three kinds of
information will be available at the end of the run:

e User time: describes the time spent in user mode, where instructions the compiler generated
on user’s behalf get executed, in addition to any subroutine library calls linked with your
program. ( Cache-miss is buried here too.)



86 CHAPTER 3. TARGET MACHINE MODEL

¢ System time: is a measure of time spent in kernel mode where operating system intervenes
the program.

¢ Elapsed time: is a measure of the actual (wallclock ) time that has passed since the program
was started.

Taken together, user time and system time are called CPU time:

CPU time = user time + system time

If you have all the machine resource at your disposal, you can run the program and obtain an
approximation. For the programs that spend most of their time computing, the elapsed time
should be very close to the CPU time. For instance, if the program takes the 25 seconds to do
a million floating-point divides, then you know that each one costs about 25 microseconds. Of
course, we have included the loop overhead in 25 microseconds, we can run that program once on
the null loop to subtract out that time. The tight loop guarantees that both code and data will
be in any registers the machine might have, i.e., an arbitrary division operation in a real program
might take a lot longer. Or a smarter compiler might notice that the expression doesn’t change at
all in the loop body, and therefore push the division outside the loop and then not even execute
the empty loop body. Fortunately, this experiment gives useful approximations for many compilers
and machines. We assume the execution time not to be data dependent.

Alternatively, we can do this job more automatically, i.e., use the UNIX system C library function
times. This function gets process times, i.e., it returns time-accounting information for the current
process and for the terminated child processes of current process. All times are in 1/HZ seconds,
where HZ is 60 on SUN SPARCstation 2, which is the clicks per second.

The buffer points to the following structure:

struct tms {

clock_t tms_utime; /* user time */

clock_t tms_stime; /* system time */

clock_t tms_cutime; /* user time, children */
clock_t tms_cstime; /* system time, children */

};

What we need are only tms_utime which is the CPU time used while executing instructions in the
user space of the calling process and tms_stime which is the CPU time used by the system on
behalf of the calling process. Because instructions we need to time do nott contain any procedure
call, so we do not need tms_cutime which is the sum of the tms_utimes and tms\_cutimes of the
child processes, and tms_cstime either which is the sum of the tms_stimes and tms_cstimes of
the child processes. Upon successful completion, times() returns the elapsed real time, in 60ths of
a second, since an arbitrary point in the past. This point does not change from one invocation of
times() to another within the same process.

So we only need to add a small procedure counter between what we need to time. We built a
counter procedure in C as in the following;:
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#include <stdio.h>

#include <sys/types.h>
#include <sys/times.h>

int
counter_()
{
struct tms buffer;
int t;
times (&buffer);
t = (int) ( buffer.tms_utime + buffer.tms_stime );
return (t);
}

Careful readers could notice that there is an underscore after the procedure name counter, that is
because our ultimate goal is to time Fortran program. We prefer the time function in C to these
available in Fortran, simply because this time function in C provides more precise timing figures,
that is, one-sixtieth second, while time functions available in Fortran can only provide seconds
elapsed. If we want to extend its usage to Fortran program, we have to tackle the interface prob-
lem between Fortran and C, and this underscore is strictly demanded by the C—Fortran interface
protocol. See [SUNF88] for details.

3.4.3 Automating the Elementary Measurements

We want to find the cost of a few operations, it is easy to modify a tiny program with a text editor
and run it by hand a few times. But as soon as you time more than a few operations, it pays to
have a program do the work.

J. Bentley et al. [BKV91] proposed a C program namely mintime.c which is used to time a few
C operations:

#include<stdio.h>
#include<sys/types.h>
#include<sys/times.h>
#define CLICKSPERSEC 60

int jobclicks()

{

struct tms buffer;

times (&buffer);

return (int) (buffer.tms_utime + buffer.tms_stime);
¥

#define loopl(CODE) start = jobclicks(); \
for ( i=0; i<n; i++) { CODE; } \
clicks = jobclicks() - start; \
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sumclicks += clicks; \
printf("%5d", clicks);

#define loop(CODE) sumclicks =0; \
printf(" %-15s", "CODE"); \
loop1(CODE) loopi(CODE) loopi(CODE) \
loop1(CODE) loop1(CODE) \
printf("%10.2f\n", sumclicks#*1.0e8/ \
(CLICKSPERSEC * n * 5));

main()
{
int n,i,11,i2,1i3;
int clicks,sumclicks,start;

n = 1000000;

printf("Null Loop\n");
loop( {} )

printf("Int Operations\n");
i2 = i3 = 5;

loop(il = i2 + i3)

loop(il = i2 - i3)

loop(il = i2 * i3)

loop(il = i2 / i3)

The listing shows a minimal timing program which produces the cost of several C instructions
shown in the following. For each operation, we see the cost of five experiments measured in the
basic system time unit of “clicks” ( 1/60th of a second on SUN SPARCstation 2), followed by the
average cost in microseconds.

The first dozens lines give us access to the system timing routines. This is the part of the problem
that varies most from system to system — the time function gives less accurate times but is
more portable. The middle part of the program contains the two macros that are the heart of the
timing experiment: loopl runs a single experiment, while loop performs a group of five and prints
out the operation name and average cost. These are macros rather than functions because we pass
executable code to them as parameters, which could reduce the function call overhead considerably.
The main function invokes the desired experiments.

The output of mintime.c:

Null Loop
{3 27 26 27 29 27 0.45
Int Operations
i1 = i2 + i3 40 40 39 40 44 0.68
i1 = i2 - i3 42 41 39 40 43 0.68
i1 = i2 * i3 76 7T 73 75 T4 1.25
i1 = i2 / i3 121 118 117 120 118 1.98

As a side-product, we made a complete program which times almost all C operations on SUN
SPARCstation 2. The interested readers can see the full output in Appendix B of the thesis.

The complete program has the same basic structure as mintime.c but adds several bells and
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whistles, e.g., the average number of microseconds taken by the null loop is subtracted from later
operation ( but the raw time clicks is still printed ). Some changes are cosmetic and some changes
are invisible: some dummy operations are added between the inner loops in an attempt to avoid
identical cache alignments. We also added a simple test for statistical robustness. The only sub-
stantial change, however, is a large set of operation.

3.4.4 Elementary Fortran costs on SUN SPARCstation 2

What we did in the previous subsection is to obtain the elementary C operation cost on SUN
SPARCstation 2. Now we turn our attention to elementary Fortran operation cost.

We use the counter.c procedure provided in the previous subsection, and write a small Fortran
program.

program ftime

real f,f1,f2
integer i,n
integer start, end
integer count

c
n = 1000000
f1 =1.2
f2 = 3.4

start = counter()
do 10i =1, n

10 continue
end = counter()
print *, end-start
start = counter()
do 20i =1, n

f =11+ f2

20 continue
end = counter()
print *, end-start
end

and in the meantime, provide a Makefile below:

ftime : counter.o ftime.o
f77 counter.o ftime.o -o ftime

As you can see that, we use SUN SPARCstation 2 {77 compiler with default option. The rest is
for machine, SPARCstation 2 knows how to link the object files together to create a executable file
which can produce the cost of Fortran operation while using C library function.

In this way, we can get the click numbers for empty loop and for a statement. In order to be more
precise, we perform the test five times and take the arithmetic average as the final execution time.
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With the same reasoning, we can virtually get all execution time on SUN SPARCstation 2. We
show the Fortran cost on SUN SPARCstation 2 in Table 3.9.

Note that in Table 3.9, 7; (i = 1,2, --,5) means the click numbers of each operation executing one
million times. Raw Time means the seconds while executing one million times or microseconds
while executing once, but with loop overhead ( loop initilization overhead and loop branching
overhead ). Because we execute the statement one million times, the loop initializtion overhead
can be ignored, so Raw Time indicates the time of the statement in question and loop branching
overhead.

3.5 Empirical Cost Tables on SUN SPARCstation 2

In this section, we present the empirical cost table on SUN SPARCstation 2.

3.5.1 Assumptions

We now assume that basic assembly codes as 1d, sub, add, st, tst, mov, nop, bge, b, sll, sethi
etc. have the unit complexity cost 1. According to our experiments on SUN SPARCstation 2,
it is a reasonable assumption and good tradeoff, for we do not need to get a little more precise
while making enormous efforts. Based on that assumption, we can roughly claim that each above
assembly operation costs 0.05 microseconds (usec). Of course, we will show how we get that result
immediately in the following Section 3.5.2. And equally, we prefer to give another result here: loop
branching overhead is about 7, which is obtained in Section 3.5.6. We prefer to state the results
here because we will use them throughout this section. In the next six subsections, we are going
to figure out the costs on SUN SPARCstation 2: operation, memory, index, trigo, transcend and
overhead.

3.5.2 Operation Costs
In Table 3.9, we have presented the elementary Fortran costs on SUN SPARCstation 2. Now in

order to get precise costs, we need to have a look at the assembly code generated for each operation
by the compiler {77 with default options.

Integer Costs on SUN SPARCstation 2

For integer add and minus, besides the branching overhead 7 instructions, there are only four
instructions as loop body:

L50:
1d [%17+-0x£9¢c], %00
1d [%17+-0x£981, %01
add %00,%01, %02

st %02, [%17+-0xfa0]
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Null Operation

Integer Operation

1l =124 143

1l =122 —143

1l =142% 143

il =142/43

1l =12 — —23
11 =12 % %3
Real Operations
rl=r24+7r3
rl=r2—-7r3
rl =r2%xr3
rl=7r2/r3
rl=r2—-—7r3

rl = r2 % *r3
Double Precision Operations

dl = d2+ d3
dl =d2— d3
dl = d2+d3
dl = d2/d3

dl =d2— —d3
dl = d2 x xd3
Complex Operations
cl=¢2+c3
cl=c2—-¢3
cl = 2% ¢3

cl =¢2/c3
cl=¢c2——c3

cl = 2% xc3
Double Complex Operations
1l =22+ 23

xl =22 —23
xl = a2 23
xl =a2/x3
xl =22 ——23

zl = 22« x23

T1

16

30
31
69
64
30
58

36
36
38
56
37
431

46
48
50
85
63
1037

132
129
178
236
148
2304

123
122
174
266
197
3040

2 T3
17 17
31 30
30 31
66 68
61 63
30 30
57 57
37 36
35 36
37 37
57 57
38 39
430 432
46 46
46 45
48 49
81 82
64 63
1036 1037
133 128
128 128
179 180
235 232
149 148
2305 2302
122 124
123 121
168 175
282 272
196 196
3039 3049

T4 T5
17 17
31 30
30 31
65 69
61 59
30 31
57 58
36 37
33 35
37 35
55 54
37 38
430 431
47 48
46 45
54 53
85 81
63 64
1051 1042
128 129
129 128
188 184
232 231
147 148
2305 2304
121 123
126 124
178 176
277 275
196 196
3050 3049

Raw Time

0.28

0.51
0.51
1.12
1.03
0.50
0.96

0.61
0.58
0.61
0.93
0.63
7.18

0.78
0.77
0.85
1.38
1.06
17.34

2.17
2.14
3.03
3.89
2.47
38.40

2.04
2.05
2.90
4.57
3.27
50.76

Table 3.9: Elementary Fortran Cost on SUN SPARCstation 2
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L62:
1d [%17+-0xf9c], %00
1d [%17+-0x£98] ,%01
sub %00,%01, %02
st %02, [%17+-0xfa0]

As we can see clearly, there are two loads 1d, one store st and the operation whose execution
time we want to know. According to our assumption above, they are identical in term of cost, so
there are 11 instructions in total. And from Table 3.9, we know they need 0.51usec, so we can
consider that each instruction needs about approximately 0.05usec. Which means integer addition
or subtraction costs one complexity unit, about 0.05usec. So are other basic operations like 1d, st,
tst, nop, etc. This is the result we claimed above in Section 3.5.1. Until now, we think we justify
that result. With this weapon in hand, we have no problem to obtain result for other operations.

For integer multiplication, the assembly codes are the following;:

1d [%17+-0xf9c], %00
1d [%17+-0x£98] ,%01
call .mul,2

nop

st %00, [%17+-0xfa0]

So from Table 3.9, we know that it needs 1.12 psec with the loop branching overhead 7 units, 1.12
pusec is about 22 or 23 units, thus we can think that integer multiplication has the cost of 12 or 13
units. Meanwhile, we can conclude that the cost of call .mul,?2 is about 12 units.

For integer division, the assembly codes are:

1d [%17+-0xf9c], %00
1d [%17+-0xf98], %01
call .div,2

nop

st %00, [%17+-0xfa0]

With the same reasoning as for integer multiplication, and with a timing of 1.03 usec, the cost for
integer division is about 10.

For minus minus, the assembly codes are:

1d [%17+-0xfc8], %00
sub %g0,%00,%01
1d [%17+-0xfcc], %02
sub %02,%01,%03
st %03, [h17+-0xf£8]

We can see that except two loads 1d and one store st, there are two subs. So it has cost of two
sub, so the cost is 2. But from Table 3.9, we know it needs 0.50usec, the same as one sub, i.e., one
complexity cost. It exists some discrepancy. So we believe its cost is between 1 and 2, we chose 2
unit costs.
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And for power operation with 2 as power, the assembly codes are:

add %17 ,-0xfac, %00
add %17,-0xfa8,%o1
call _pow_1ii,2

nop

mov %00,%11

So with the same reasoning as stated above, the cost is about 9 units.

Floating-Point Costs on SUN SPARCstation 2

When we talk about floating-point operation, we mean that they are real operands, in Fortran,
they are likely to be REAL*4. For addition and subtraction in floating-point operations, we have
almost the same kind of assembly codes, so we consider them together as follows:

1d [%17+-0xf90],%f24
1d [%17+-0xf8c],%f25
fadds  %f24,%f25,%f26

st %£26, [%17+-0xf94]
1d [%17+-0x£90],%£f31
1d [%17+-0xf8¢c],%f0

fsubs  %f31,%f0,%f1

st %f1, [%17+-0xf94]

They have the same amount of execution time, about 0.60 psec, total 12 instructions, including
loop branching overhead 7 units, 2 loads 1d, one store st and fadds. So fadds is about 2, and so
is fsubs.

For floating-point multiplication, we can get assembly code as:

1d [%17+-0xf90] ,%f6
1d [%17+-0xf8c] ,%f7
fmuls  %f6,%f7,%f8

st %£8, [%17+-0xf94]

The execution time is 0.63 psec, about 12 units, so with the same reasoning, fmuls has about 2
unit costs.

For real division, assembly code is as follows:

1d [%17+-0x£90],%f13
1d [%17+-0x£8c],Y%f14
fdivs  Y%f13,Y%f14,%f15

st %£15, [%17+-0xf94]

The execution time is 0.93 usec, about 18 units, so fdivs is about 8 units.

For double subtraction, assembly code is as follows:
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1d [%17+-0xfa0],%f4
fnegs  Yf4,%f5

1d [%17+-0xfa4],%f6
fsubs  %f6,%f5,%f7

st %£7, [%17+-0xfas]

We can see clearly that cost for double subtraction is cost of £subs i.e., 2, plus cost of fnegs i.e.,
1. Then the final result is 3.

For floating-point power, assembly code is as follows:

add %17 ,-0xfa4d, %00
add %17 ,-0xfa0,%o01
call _pow_rr,2

nop

st %0, [%17+-0xfa8]

From Table 3.9, we know the raw time is 7.18 psec, about 143 units, so 140 units for floating-point
power.

Double Precision Costs on SUN SPARCstation 2

For double precision, we can think that they need twice as much time as single precision, so we can
assume that 1d2 has double cost of 1d, that is 1d2 is 2, and so is st2. So we will put these values
as memory access cost, which will be introduced in the next subsection.

For addition and subtraction, the assembly code for double precision is as follow:

1d2 [%17+-0x£b8] ,%£20
1d2 [Y%17+-0xfa8],%f22
faddd  Y%f£20,%£22,%f24

st2 %24, [%17+-0xfc8]

Reasonably, the raw execution time is about 0.78 usec, about 15 units cost, we need to subtract
the loop branching overhead 7, so we get that faddd is about 2. Same thing for fsubd, which is
about 2.

For multiplication, the assembly code is

1d2 [%17+-0xfb8],%f8
142 [%17+-0xfa8],%f10
fmuld  %£8,%f10,%f12

st2 %£12, [%17+-0xfc8]

The raw execution time is 0.86usec, about 17 units, so fmuld is about 4.

For division, the assembly code is:
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1d2 [%17+-0xfb8],%f18
1d2 [%17+-0xfa8],%£20
fdivd  Y%f18,%£20,%£22

st2 %£22, [%17+-0xfc8]

The raw execution time is 1.38 psec, about 27 units, so £divd is about 14.

For double subtraction, the assembly code is:

1d2 [Y%17+-0x£b0],%f12
fnegd %f12,%f12

1d2 [%17+-0x£c0],%f14
fsubd  Y%f14,%f12,%f16
st2 v£16, [%17+-0x£d0]

Here we think it is the addition of two costs fnegd and £subd, So double precision double subtraction
cost is 8 units.

For power operation with 2 as power, the assembly code is:

add %17 ,-0xfc0, %00
add %17,-0xfb0, %01
call _pow_dd,2

nop

st2 %£0, [%17+-0x£fd0]

With same reasoning, so double precision power cost is 342 units.

Complex Costs on SUN SPARCstation 2

For complex addition, the assembly code is:

add %sp,LP1,%00
add %17,-0xfc0,%o1l
add %17 ,-0x£b0, %02
call __Fc_add,s3

nop

add %sp,LP1,%00
add %17 ,-0x£d0, %01
1d [%00], %02

1d [%o0+4], %04

st %02, [%o1+0]

st %o4, [%o1+4]

The raw execution time is 2.17 usec, about 43 units. Here we do not need to calculate the cost
for call, we can think that there two 1d2 and one st2, along with complex add. Hence we get
2x1d2+ st2 + X + 7 =43, and X = 30. So we think the cost of complex addition is about 30.

The same reason for complex minus, it is about 32. We do not need to list all of these assembly
codes, we only give the final results. So complex multiplication is about 47, complex division is
about 64, complex double minus is 36 and complex power is 755.
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# int float double complex double-complex
+ 1 2 2 32 28

— 1 2 2 32 28

* 12 2 4 47 45

/ 10 8 14 64 78

—_— 2 3 8 36 50

*k 9 140 342 755 1000

Table 3.10: Operation Costs on SUN SPARCstation 2

# int float double complex double-complex
MEMORY-LOAD 1 1 2 2 2
MEMORY-STORE 1 1 2 2 2
= 0 0 0 0 0

Table 3.11: Memory Costs on SUN SPARCstation 2

Double Complex Costs on SUN SPARCstation 2

We only give results here. The raw execution time for double complex add is 2.04 usec, about 41
units, so we use the same reason as above, the double complex add is about 28, so is minus. Double
complex mult is about 45, and double complex division is about 78. Double complex minus 2 is 50
and power is 1000.

Operation Cost Summary

In this subsection, we have obtained the operation costs on SUN SPARCstation 2. The operation
cost file of the machine is shown in Table 3.10.

3.5.3 Memory Access Costs

The memory access costs include memory load and store. It is pretty easy to get the cost on SUN
SPARCstation 2. In fact, we did get these costs in the previous subsection as by-products. The
results are shown in Table 3.11.

3.5.4 Intrinsic Costs

We use the same technique here and we can get the costs on SUN SPARCstation 2. If the type
of argument cannot be passed by the SUN Fortran compiler, such as complex argument for MIN,
we just ignore it and use a dash sign to denote that this cost is not available. Of course, it does
not include all the functions available, we can add more functions in test as needed. The costs are
shown in Table 3.12.
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# int float double complex double-complex
MIN 16 18 26 - -
MAX 16 18 26 - -
SQRT - 122 152 358 494
DSQRT - - 140 - -
CSQRT - - - 358 -
EXP - 56 88 440 370
DEXP - - 86 - -
CEXP - - - 382 -
ALOG - 100 - - -
DLOG - - 66 - -
CLOG - - - 348 -
ALOGI10 - 176 - - -
DLOG10 - - 160 - -

Table 3.12: Intrinsic costs on SUN SPARCstation 2

The costs for trigonometric are shown in Table 3.13.

3.5.5 Reference Costs

When an element of an array is accessed, the way the compiler generates code to access that element
depends on the array declaration, which means whether the array is declared locally, passed as
argument of the subprogram or passed as a global memory, i.e., in “common” declaration. We will
investigate these three cases one by one and give the verification results on SUN SPARCstation 2
with SunOS {77 compiler.

In this subsection, we use ¢ to indicate constant in the Case column of Tables, and ¢ to indicate
varying index. We are always using SUN Fortran compiler {77 with default options.

Locally Declared Array

For the one-dimension floating-point array al, we have three kinds of overheads.

1. index is a constant, as al(4). We can find out that the instruction al(4) = 1.2 needs 4
assembly instructions.

2. index depends on loop induction variable ¢, as al(7); the memory access is about 5 units.

3. index is a fixed number but expressed in symbolic variable; i.e., k = 10 is set, while we stick
to using al(k) to access that memory instead of a1(10). In this case, the memory access is
about 6.

I do not think that the third case is representative, so I only consider the first two cases because
they happen much more frequently in the real code. The result is shown in Table 3.14, for the first
two rows.
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# int float double complex double-complex
SIN - 92 108 736 -
DSIN - - 108 - -
CSIN - - - 736 -
COS - 92 131 742 -
DCOS - - 132 - -
CCOS - - - 742 -
TAN - 110 147 - -
DTAN - - 147 - -
ASIN - 300 280 - -
DASIN - - 339 - -
ACOS - 401 356 - -
DACOS - - 358 - -
ATAN - 31 36 - -
DATAN - - 82 - -
ATAN?2 - 151 233 - -
DATAN2 - - 230 - -
SINH - 310 290 - -
DSINH - - 290 - -
COSH - 172 152 - -
DCOSH - - 152 - -
TANH - 307 288 - -
DTANH - - 288 - -

Table 3.13: Trigonometric Costs on SUN SPARCstation 2

For multidimensional arrays, the memory locations used are also consecutive. In fact, it is the first
subscript which varies most rapidly, so-called “left-most” or “column-wise” array. The result is
shown in Table 3.14.

In the Table 3.14, we list until three dimensional array. Of course, we can give result of array
with more dimensions if needed. Note that in the Table 3.14, Dim means dimension, C'ase means
whether the reference is constant or not, and with the order, i.e., ¢t means the first reference is
constant while the second one is varying reference, likely a loop induction variable. Number of core
instruction means the how many assembly instructions are needed to access that array element. For
instance, because of Fortran “column-wise” characteristics, access to a2(3,7) is about 11 instruction
units while a2(7,3) is only 5, that accounts for the importance of the reference order. Fstimated
means that, if we adopt the number of core instruction, the theoretical result of that array element
access time. Note that we use 10 as exterior loop counts, the same is true for Experiment values.
Faxpertment means the real clock time, the unit is pusec. And finally we give the Dif ference
between the Fstimated and Faperiment. We need to calibrate the result we get, so we add the
Corrected No. to mean the calibrated number of core instructions, which is used as standard cost
table elements.
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Dim | Case | N of Core Ins. | Estimated | Experiment | Difference(%) || Corrected No.
1 C 4 6.10 6.07 0.49 4
1 i 5 6.55 6.94 -5.62 5
2 cce 4 64.55 69.87 -7.61 5
2 ci 11 99.55 89.50 11.23 10
2 ic 5 69.55 74.37 -6.48 6
2 ii 13 109.55 94.48 15.95 11
3 cce 5 699.55 694.47 0.73 5
3 cci 13 1099.55 954.00 15.26 11
3 cic 11 999.55 908.68 10.00 10
3 cii 18 1349.55 1050.68 28.45 14
3 icc 5 699.55 745.68 -6.19 6
3 ici 16 1249.55 995.68 25.50 13
3 iic 15 1199.55 996.00 20.44 13
3 iii 20 1449.55 1100.33 31.74 14

Table 3.14: Array Index Costs - Locally Declared

Dim | Case | N of Core Ins. | Estimated | Experiment | Difference(%) || Corrected No.
1 C 4 6.90 7.28 -5.22 5
1 i 6 7.90 8.06 -1.99 6
2 cce 13 110.90 107.26 3.39 13
2 ci 22 155.90 157.76 -1.18 22
2 ic 10 95.90 99.19 -3.32 10
2 ii 22 155.90 158.52 -1.65 22
3 *Ee 25 1802.90 1975.24 -8.73 25
3 K 38 2552.90 2561.34 -0.33 38

Table 3.15: Array Index Costs - Passed by Arguments

Array Passed by Argument

If the size is hidden, e.g., the size is passed by the argument, in the local subroutine, the compiler
knows nothing about the array effectively declared and its size, so it will need more time to compute
the offset. The result is shown in Table 3.15.

In Table 3.15, the column meaning is the same as explained for the “Locally Declared” reference.
The difference is that for three-dimensional array, only the third reference of array can make
difference. In the table, we use * to denote both ¢ and ¢. That is, no matter what the reference is,

the result remains the same.
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Dim | Case | N of Core Ins. | Estimated | Experiment | Difference(%) || Corrected No.
1 c 4 6.60 7.28 -9.34 5
1 i 5 7.10 8.06 -11.91 6
2 cce 4 65.25 70.66 -7.66 5
2 ci 11 100.25 90.83 10.37 10
2 ic 4 65.25 75.66 -13.76 5
2 ii 13 110.25 100.30 9.92 12
3 cce 4 650.40 706.67 -7.96 5
3 ccl 15 1200.40 1003.99 19.56 13
3 cic 11 1000.40 902.33 10.87 9
3 cii 16 1250.40 1015.66 23.11 13
3 icc 5 700.40 751.66 -6.82 5
3 ici 18 1350.40 1078.99 25.15 14
3 iic 15 1200.40 1012.33 18.58 13
3 iii 18 1350.40 1084.67 24.50 14

Table 3.16: Array Index Costs - Passed by Global Memory

Array Passed by Global Memory

If the array is passed by global memory, such as COMMON in Fortran, then the cost for array
access is shown in Table 3.16.

In Table 3.16, the column’s meaning is the same as explained for the “Locally Declared” reference
earlier.

Index Cost Summary

In this subsection, we have obtained the index costs on SUN SPARCstation 2. The index cost file
of the machine with SUN Fortran compiler {77 along with default options, is shown in Table 3.17.
The difference between cost in Table 3.17 and the measurement is less than 25%.

3.5.6 Loop and Call Overheads

In order to begin our experiments, we need to use loop to time certain operations. So we need to
know the loop overheads first. Let us see the example shown in Figure 3.2.

There are two kinds of loop overheads, one is the loop initialization overhead, the other is the loop
branching overhead. The loop initialization overhead is encountered only once when the loop is
reached, and loop branching overhead is the overhead when the loop body reaches its end and goes
over to the very beginning where the condition-checking is performed to see whether to execute the
loop body one more time or not.
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Dim Case | Local Formal Global
1 c 4 ) )
1 i 5 6 6
2 cc 5 13 )
2 ci 10 22 10
2 ic 6 10 5
2 ii 11 22 12
3 cce 5 25 )
3 ccl 11 38 13
3 cic 10 25 9
3 cii 14 38 13
3 icc 6 25 )
3 ici 13 38 14
3 iic 13 25 13
3 iii 14 38 14

Table 3.17: Summary of Array Reference Costs on SUN SPARCstation 2

subroutine matinit(c, size, 11, 12, n, length)
integer size
real c(size,size)
integer count
integer 11,12
integer tsum, start, t, lend, length(5)
integer j,1i,k1,k2

C

C loop overhead
tsum = 0
do j =1, 5

start = count()
doi=1,n
do k1 =1, 11
do k2 =1, 12
c(k1,k2) = 0.
enddo
enddo
enddo
lend = count()
t = lend - start
length(j) = ¢
enddo
end

Figure 3.2: Loop Overhead Detecting Program
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Loop Initialization Overhead

There are nested loops here, from outside to inside. But they have one thing common, they have
same initialization overhead. We present the assembly code here:

L26:
1d [%fp+0x4c],%o0
1d [%o00] ,%01
st %ol, [hfp+-0x24]
mov 0x1,%15
1d [%£p+-0x24] , %00
sub %00,%15, %00
st %00, [%fp+-0x24]
1d [%£p+-0x24] , %00
tst %00
bge L38
nop
b L32
nop

We consider that the loop should have several iterations, so branching to L32 is little probability
event. Generally it is highly unlikely. Because we already assume all these instructions have the
unit cost 1, so we consider that the loop initialization overhead is 11, we just exclude the absolute
branch statement to 132 and following no-operation instruction.

Loop Branching Overhead

L39:
add %15,0x1,%15
1d [%£p+-0x24] , %00
sub %00,0x1, %00
st %00, [%fp+-0x24]
tst %00
bge L33
nop
b L32
nop

Same thing again here. The branching instruction to L32 only happens once as exit of the loop,
we do not take it into account. So the loop branching overhead is 7.

Call Overhead

When there is a call in Fortran program, it needs extra costs to pass the arguments, initiate the
subroutine and/or function. So we want to know these costs.

Fortunately, Fortran is call-by-reference language, only reference is passed, that is, when arguments
are passed, only their addresses are transferred. Hence, we do not need to consider the types of the
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T1 T2 T3 T4 T5 Raw Net
Null Operation

{ 17 16 17 16 17 0.277 0.000
call © 37 38 37 38 38 0.627 0.350
call 1 44 44 44 44 44 0.733 0.457
call 2 60 49 50 59 49 0.890 0.613
call 3 76 58 57 58 57 1.020 0.743
call 4 88 70 69 69 70 1.220 0.943
call 5 104 78 79 83 79 1.410 1.133
call 6 115 90 91 91 91 1.593 1.317
call 7 127 117 100 127 101 1.907 1.630

Table 3.18: Call Overheads on SUN SPARCstation 2

Number of Argument | Unit Cost
0 7

9

12

15

19

23

26

37

|| O | W N =

Table 3.19: Call Subroutine Overheads

argument, only pointers are taken into account. We present our result of call invocation overhead
in Table 3.18.

The overhead was measured for difference number of arguments. Note in Table 3.18 that Raw
means execution time along with the loop overhead, while Net is the time without loop overhead.
We also found that no simple formula can cope with the sudden increase when 7 arguments are
passed. This is probably due to SPARC register window. We did not find many calls with more
than 7 arguments in real program. We show all loop overhead in Table 3.19.

Return Overhead

There are always two assembly instructions for Fortran return statement. So we think that it has
2 complexity units.

Overhead Summary

In this subsection, we have obtained the overhead costs on SUN SPARCstation 2. The overhead
cost file of the machine is shown in Table 3.20.
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# Cost
LOOP-INIT-OVERHEAD 7
LOOP-BRANCH-OVERHEAD | 11
CALL-ZERO-OVERHEAD 7
CALL-ONE-OVERHEAD 9
CALL-TWO-OVERHEAD 12
CALL-THREE-OVERHEAD 15
CALL-FOUR-OVERHEAD 19
CALL-FIVE-OVERHEAD 23
CALL-SIX-OVERHEAD 26
CALL-SEVEN-OVERHEAD 33
RETURN-OVERHEAD 2

Table 3.20: Overhead on SUN SPARCstation 2

These results are consulted when our estimator encounters the construct whose overhead is listed
above.

3.5.7 Summary

In this section, we have described the dynamic cost tables on SUN SPARCstation 2. Based on SUN
SPARCstation 2, we present a way of how to combine the execution time and assembly codes to
obtain the corresponding cost tables, finally a set of complete cost tables on SUN SPARCstation 2
is presented.

We will verify the predictive power of these empirical cost tables in Chapter 5. They were obtained
experimentally. They showed that the present implementation in PIPS is much too coarse but I
did not have time to reprogram the estimator interface with the cost tables.

3.6 Discussion

Our model has drawbacks related to the compiler and language.

3.6.1 Problems with Compiler

It is a fact of life that virtually all programs that are run on today’s supercomputers are written in
a high-level language, and in almost every case that language is Fortran for scientific computing.
Since underlying model of Fortran ( single type of storage, sequential execution ) is so unlike
that of any modern supercomputer ( multiple-level memory hierarchy, multiple processors, vector
operations, etc.), the job of fitting the program to the machine falls onto the compiler. There is a
hierarchy of levels at which optimizations can be performed on these programs. At the lowest level,
single operations or statements are examined. The subsequent steps include optimization within
basic blocks, optimization of the flow graph, and interprocedural analysis. We can cope with the
former by multiplying the entries in cost tables, but we cannot take the later into accounts.
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3.6.2 Fortran vs. C

During the experiments, we have observed an interesting situation: the same program is running
considerably faster when it is coded in Fortran than in C. For instance, we tested empty loops and
floating-point additions:

main()

{

int i,n;
float £1,£2,£3;
int start, end;

n = 1000000;
£2 = 1.2;
£3 = 3.4;

start = counter_();

for ( 1=0; i<n; i++ )

end = counter_();

printf("click is %d\n", end-start);

start = counter_();
for ( 1=0; i<n; i++ )
f1 = £2 + £3;

end = counter_();
printf("click is %d\n", end-start);

10

20

program fna
integer counter
integer i,n

real f1,£f2,f3
integer start,end

n = 1000000
f2 =1.2
£3 = 3.4

start = counter()
do 10 i =1, n

continue
end = counter()
print *, ’click is ’, end-start

start = counter()
do 20 i=1, n
fi1 = £2 + £3
continue
end = counter()
print *, ’click is ’, end-start
end

After running the program, we get for C program, 26 and 60 clicks, for null loop and floating point
addition ( with null loop overhead ), for Fortran program 17 and 42 clicks. In order to explain the
difference, let us have a look at the assembly codes of both programs. excerpts:

The C program is 99 lines long. The two loops are:

L22:

L20:

1d [%fp+-0x4],%10
1d [%fp+-0x8],%11
cmp %10,%11

bge L21

nop

1d [%fp+-0x14],%f2
fstod  %f2,%f4

1d [%fp+-0x10],%£6
fstod  %f6,%f8

faddd %8 ,%f4,%f10
fdtos %£10,%f11

st %f11, [hfp+-0xc]
1d [%fp+-0x4],%12

add %12,0x1,%12
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st %12, [fp+-0x4]
b L22
nop
L21:
call _counter_,0

The Fortran program: 223 lines long and the assembly codes are:

L34:
L29:
1d [%17+-0xff4],%f0
1d [%17+-0xff0] ,%f1
fadds %0, %f1,%E2
st %f2, [%17+-0x1000]
L27:
add %16,0x1,%16
1d [%£p+-0x30], %00
sub %00,0x1, %00
st %00, [Y%fp+-0x30]
tst %00
bge L29
nop
b L28
nop
L28:
call _counter_,0

Although the assembly code of Fortran program is larger than the one of C program, but Fortran
program runs relatively faster than C program. In this example, the floating point addition in
Fortran takes about 25 clicks, about 0.42usec while the same code in C needs 34 clicks, about
0.57pusec, 35% more time is needed. That accounts more or less for usefulness of Fortran in the
scientific programming world.

3.7 Summary

In this chapter, we have introduced a methodology to represent target machine characteristics.

We first looked at the characteristics of sequential and parallel machines. Then we presented our
two implemented all-1 and fp-1 models. Finally we also introduced how to get the elementary
operations costs on machines, and specifically, we obtained experimentally the elementary Fortran
costs on SUN SPARCstation 2 as well as some elementary C costs.

Meanwhile, we also mentioned some problems with SUN compilers.



Chapter 4

Implementation

The approach used in this implementation is to analyze each module ( i.e., program, subroutine,
function ) once and to accumulate elementary execution time for operations, memory accesses,
intrinsic functions, etc. We chose this approach because it is both efficient enough to allow us
to run it since its own complexity is approximately linear with respect to the module size, and
machine-independent since dependencies are factored in the cost tables as explained in Chapter 3.

We first introduce the PIPS programming environment, and later we detail the components of our
complexity estimator. The PIPS data structures used by the complexity estimator include the call
graph, control flow graph, preconditions and effects. Then we explain how the complexity program
works, its interfaces with terminal and X-windows, and finally its main features.

4.1 Environment

PIPS is written principally in C language under UNIX environment. On top of the UNIX operating
system, NewGen and various utilities from the PIPS programming environment are also used.

4.1.1 NewGen

NewGen is a software engineering tool that helps programmers define and implement sophisticated
data types. Data domains are defined with a high level specification language, called DDL (Domain
Definition Language) [JT89] that allows user define domains to be built over basic domains with
operators like Cartesian product, union, list or array.

NewGen analyzes a set of specifications and produces a collection of macros, functions, predicates,
and pre-defined constants that enable programs to create, initiate, access, update and delete objects
of these types as if the programming language had been especially tailored to manipulate these data

types.
NewGen is used as the basis of PIPS. All major data structures of PIPS are declared via NewGen.

107
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4.1.2 PIPS

The whole complexity estimator program is a part of PIPS project. All work is done in PIPS
programming environment.

We have defined several environmental variables needed in PIPS programming environment. There
are two files: pipsrc.sh for the standard shell and pipsrc.csh for the C-shell environment. COSTDIR
environment variable is set there, it contains the name of the directory where cost tables are stored.
In that directory, several kinds of cost tables which are detailed in Section 4.6.2 must be formed
for the complexity analyzer to work.

An input program is a set of user source files. They are split by PIPS during the program ini-
tialization phase to produce a PIPS-private source file for each procedure, subroutine or function.
Each module is analyzed once by the phase. A set of modules is processed in a bottom-up order of
the call tree.

4.2 Complexity in PIPS

After this quick introduction to the PIPS development environment, we present the implementation
of our static prediction method as a PIPS phase, called complexity in PIPS environment.

We now describe the data structures used to represent the complexity of a set of instructions. In
this Chapter, we interchangeably use the words complexity, execution time and costs, although we
can tell the difference: cost is an elementary execution time while complexity is a formula mapping
an environment ¢ to a set of possible execution time.

The complexity data structure of PIPS is composed of two elements: a polynomial and statistics
counters about unknown information. We introduce them in the following.

4.2.1 Polynomial Form

We choose to internally express complexities as symbolic polynomials over program variables and
unknown values as we explained earlier in Section 1.4.3.

The polynomial library has been developed by several people of CRI, especially Pierre Berthomier.
It is a component of C3 library, which has been under development since 1986 at CRI with CNRS
C3 funding. It is made from the monomials, which are made from vectors. The vector library is
the essential part of C3 library.

We define a polynomial as a list of monomials and monomial as a list of vectors. Now we have a
tour to see these basic data structures.

Vector Data Structure

The vector is composed of three elements, a variable, a value and a pointer points to its own data
structure. We give the definition:
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Pv &e—mr— X 2 Y 1 Z 3 ~——NULL

Figure 4.1: Data Structure of Vector in PIPS

typedef struct Svecteur {
Variable var;
Value val;
struct Svecteur *succ;
} Svecteur,*Pvecteur;

Generally speaking, Variable is defined as a pointer to char, and Value is defined as an integer.

Example:

The vector V =2-X + Y +3- 7 is shown in Figure 4.1 where Pv is a pointer to the vector V.

Monomial Data Structure

Monomial consists of two elements, one is coeflicient of the monomial, and the other is a pointer
to the corresponding vector. We present the definition below:

typedef struct Smonome {
float coeff;
Pvecteur term;

} Smonome, *Pmonome;

There is a small difference between the vector of monomial and vector itself. In vector, the Value
is coeflicient of the variable, but in monomial, it becomes the exponent. So the data structure
representing vector V =2-X +Y + 3. Z is interpreted as the monomial X?Y Z3.

Example:

The monomial 2 - X?Y Z? is represented in Figure 4.2. Pm is a pointer to this monomial.

Polynomial Data Structure

Polynomial consists of two elements, one is a pointer to monomial, the other is a pointer to another
polynomial. We implement polynomials as lists of monomials. The C definition is as follows:
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Pv \—' X 2 Y 1 Z 3 ——NULL

Figure 4.2: Data Structure of Monomial in PIPS

typedef struct Spolynome {
Pmonome monome;
struct Spolynome *succ;
} Spolynome, *Ppolynome;

Example:

Given a polynomial 2 - X?Y Z%? + 6XY?Z? — 3, see Figure 4.3 where Pp is the pointer to the
polynomial, Pm is the pointer to the monomial and Pv is the pointer to the vector.

In the Figure 4.3, there is a special variable TCST, which stands for CONSTANT TERM. Conse-
quently, the exponent is 1.

4.2.2 Counters

Although it is almost impossible to get the precise execution time of a given set of instructions, we
can expect a good approximation. The information of the accuracy of the computed polynomial,
with respect to the real complexity of statement, is included in the complexity data structure. The
statistics counters contain three kinds of counters to summarize the different sorts of approximations
which can be performed during the evaluation: variable, range and if counters.

Variable Counters

When evaluating the complexity of an expression, we do not care about the values of the variables,
but only about the operation costs. On the contrary, when scanning loop bounds, we want to know
the value a variable can have in loop expressions, in order to evaluate the number of iterations
performed. We distinguish four counters:

1. symbolic counts the variable which appears literally and needs not to be evaluated. What
we need to know is its data type, e.g., integer or real. Symbolic variables include the vari-
ables selected by users in order to keep them symbolic, e.g., parameters read from a disk
configuration file, loop indices and formal parameters of a function.
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Figure 4.3: Data Structure of Polynomial in PIPS

2. guessed counts the variables which had to be evaluated and whose value could not be found.

3. bounded counts the variable which has to be evaluated and whose value cannot be found
exactly, where the prediction are used. In this case, we chose the worse estimation.

4. unknown counts the variables which are totally unknown.

Range Counters

A bad evaluation of the range of a loop can lead to catastrophic results. The following counters
give an idea about it, especially the percentage of unknown range:

1. profiled counts the loop range whose range is measured with some profiling. ( not imple-
mented )

2. guessed counts the loop range whose bound contains variable of the kind symbolic and
guessed.

3. bounded counts the number of loop ranges whose bound contain variables of the kind

bounded.

4. unknown counts the number of loop ranges which are totally unknown.
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If Counters

A wrong evaluation of a test probability can also lead to a completely wrong result. For example,
the WHILE structure implemented with a backward GOTO. Typically boolean could be a convergence
test in a numerical program. So the way those probabilities were evaluated must included in the
complexity information:

1. profiled counts the test whose probability was measured. ( not implemented )

2. computed counts the test whose probability was computed. This may happen if the boolean
expression is a function of the indices of surrounding loops; in this case, the probability is the
ratio of two polyhedral volumes.

3. halfhalf counts the test that we know nothing about and whose probability was supposed to
be fifty-fifty.

Summary of Counters

These counters are not displayed in the current implementation. They are not necessary if unknown
variables are introduced each time, they are theoretically required. They are useful if the user is
willing to control the approximations made by because he wants a simple formulae or a numerical
value as complexity.

4.3 Prerequisites for Complexity

Complexity program cannot work without the following supporting data structures: call graph,
interprocedural control flow graph, preconditions and effects. We introduce them one after the
other in greater detail below.

4.3.1 Call Graph

Call-graph is the tree', which describes the calling relations between the procedures. There is the
definition of a call graph:

Definition 4.1 The Call Graph G of a set of modules N is a directed graph G=(N,FE), where each
subprogram is denoted by a node, N denotes the set of nodes and E denotes the set of edges. There
is one-to-one correspondence in G between N and Q, and (p,q) € F and p,q € Q iff subprogram p
contains a call to q, and execution of p may lead to the activation of subprogram q.

Example:

1No recursivity is allowed in standard Fortran
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Figure 4.4: Calling relation of ESSAI

program essai

integer i, j, k

do i=1, 1000

if (i.gt.500) call P(i)
enddo

call P(10)

j=t
call Q(j)

k=1
call R(k)

end

subroutine P(x)
call R(x)

x =1+ 3(0,1)
end

subroutine Q(y)
call P(y+1)
end

subroutine R(z)

do k=1, 100
Z=zZ*2

enddo

call T(z)

end

function S(a,b)
S=(a+3) /b
end

subroutine T(w)
W = WKW
end

Since P, Q and R are called by ESSAI, so they are all callees of ESSAI. Hence, R and S are callees
of P, and in the meantime P is callee of Q and ESSAI, R has only one callee T while S has none.

The calling relation of ESSAT is shown in Figure 4.4.
The PIPS’s display ESSATD’s callgraph is:
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ESSAI
P
R
T
S
Q
P
R
T
S
R
T

If you prefer see them separately, for example, if you just want to see the callees of P, it is feasible
and call trees are calculated automatically.

P
R
T
S

This shows clearly that if we want to calculate the complexity of P, we first need to know the
complexity of R and S. likewise T’s complexity is required in order to know the complexity of R.

4.3.2 Interprocedural Control Flow Graph

Interprocedural Control Flow Graph ( henceforth abbreviated ICFG ) is a little complicated than
Call-graph, because loop and branch statements are involved. Each call will produce an edge from
caller to callee. It is defined as follows:

Definition 4.2 The Interprocedural Control Flow Graph G of a Program @ is a directed graph
G=(N,FE,a), where ) may contain several subprograms and each subprogram is denoted by a node,
N denotes the set of nodes and E denotes the set of edges, a is the initial node. There is a path
from a to every node of G. There exists an edge (p,q) € F and p,q € N iff subprogram p contains
a call to q, and execution of p may lead to the activation of subprogram q.

We use the same example above to illustrate the difference between the call graph explained above
and ICFG. If we only want to ICFG without loop and branch. The three kinds of ICFGs are shown
in the following:s
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ICFG only: ICFG with loop: ICFG with control:
ESSATI ESSATI ESSATI
P DO DO
R P IF
T R THEN
S T P
P S R
R ENDDO T
T P S
S R ELSE
Q T ENDIF
P S ENDDO
R Q P
T P R
S R T
R T S
T S Q
R P
T R
T
S
R
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The call graph and ICFG display facilities in PIPS were implemented by the author. They are
routinely used by people who used to take a guide look at an unknown application. However, only
the interprocedural control flow graph is used to recursively evaluate the complexity of a module.
The interprocedural ordering is managed by pipsmake. See Section 2.1.3 for more.

The difference between call graph and ICFG is obvious: call graph is concerned only with calling
relations among the modules, while for ICFG, in addition to calling relations, it is also concerned
with calling times and structure. As shown in the both graphs of our example, ESSAT calls P
twice, this relation is displayed in ICFG, while not in call graph. If we use ICFG with loop and/or
control, we can have more information.

4.3.3 Preconditions

We have mentioned preconditions in Section 2.1.8, we want to introduce it a step further. PIPS’s
precondition is information about scalar variables available before a statement is executed. The
variable can be defined prior to the current statement, or the value of variable can be passed by
the COMMON variable or even by the arguments of a subprogram. For example, a variable is
assigned to a certain constant somewhere in the program, and is not modified again in the rest of
the program. We can assume that this variable is known for each statement in the rest of program.
This information is carried by preconditions. A precondition is computed for each statement.

We will show how we exploit that information in Section 4.7.1.
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4.3.4 Effects

We have mentioned effects in Section 2.1.6. FEffects are used to decide where we must evaluate
the variable at some time, especially when trying to delay the evaluation to reduce the number of
unknown variables used in complexity.

We will show how that information is exploited in Section 4.6.3.

4.4 Description of Complexity Evaluation Code

The complexity evaluation process is a bottom-up traverse of the PIPS abstract syntax tree of the
program. It recursively computes the complexity associated with each program sub-structure, from
the expressions and assignments up to the main program level, through all the possible structures,
such as loop, test, unstructured control flow graph, etc.

4.4.1 C File Descriptions

There are nine files in the complexity development directory:

comp_scan.c This file contains all the major scan functions using the Abstract Syntax Tree
of a program to analyze the module and count elementary operations.

main.c This is only used for debugging purposes, complexity user interface in tpips or wpips.
See Section 4.5 for more.

comp_prettyprint.c This file controls how to prettyprint the complexity estimation format
of output.

comp_expr_to_pnome.c Here is the place where expression needs to be evaluated or connected
as polynomial. e.g., loop bound expressions, if we are obliged to know the value of the
expression, it may be a constant or be denoted by some symbolic variables chosen to be kept.
See Section 4.4.3 for more.

comp_math.c The math library for complexity is here. e.g., addition integration are defined
there.

comp_unstr.c When unstructured control flow graphs are encountered, procedures in that
file are used.

comp_util.c Some useful routines that do not belong to others. e.g., complexity verification
and tracing procedure.

polynome_ri.c This file gathers some functions interfacing polynomial library and the PIPS
internal representation.

comp_matrice.c matrice inversion procedures are there. They are designed for floating point
operations. The algorithm used is a LU decomposition.
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4.4.2 Abstract Syntax Tree Scan

The evaluation program starts with a module name, a main, a subroutine or a function. The
evaluation of the complexity is performed by walking up the abstract syntax tree ( henceforth
abbreviated AST ) and combining the call costs using the rules defined in Appendix A.

4.4.3 Expression to Value

In comp_expr_to_pnome.c, we need to transform some expressions to values ( symbolic or constant
), for example, the loop bounds. Statements are either call to functions or statement built with
one constructor, sequence, if or loop. Unstructured statements are dealt with in Section 2.4. The
expression has almost the same structure as AST, and goes over the expression until the atomic
variable. The trickiest procedure is evaluate_var_to_complexity, which decides when and how
a variable can be used via complexity polynomial, or if it fails to be evaluated in the evaluation
procedure, an UNKNOWN variable will be introduced.

For the conversion, the C3 library is used. simplify_sc_to_complexity(ps,var) makes the full
use of Psysteme ps to simplify the variable var. For example, M1 - M2 = 1 where M1 is formal
parameter and M2 is an induction variable, the procedure returns M2 = M1 - 1 packed in the
polynomial of the complexity. The statistics counters of this complexity are all zero because no
approximation is made in that case.

4.4.4 Unstructured Control Flow Graph

When unstructured control flow graphs are encountered, procedures in comp_unstr.c file are used.
The algorithm introduced in Section 2.4.2 about unstructured control flow graph is implemented
there. The algorithm is based on a matrix inversion implemented in comp_matrice.c file. The
algorithms for unstructured are introduced in Section 2.4.

4.5 Interfaces to Complexity Estimator

In PIPS interactive environment, there are high-level objects and functions which are user-visible.
Objects can be viewed and functions can be activated by one of PIPS interfaces. We have two
standard interfaces: pips, the tty style interface which is encapsulated by shell procedure, and
wpips, the X-window based XView interface. Besides these two, we have a development interface
which is used to debug the complexity estimation program.

In order to show the different interfaces, we give a small Fortran program. We chose Cholesky
decomposition as the demonstration example. Cholesky decomposition is the LLT decomposition
of a symmetric positive definite matrix, and uses an algorithm much like LU decomposition. The
example subroutine is cholesky.f which is shown in Figure 4.5 in Page 118.
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subroutine cholesky(a,n)
real a(n,n)
integer i,j,k,n

do k = 1,n
a(k,k) = sqrt(a(k,k))
do i = k+1i,n
a(i,k) = a(i,k)/a(k,k)
do j = k+1,1
a(i,j) = a(i,j) - a(i,k)*a(j,k)
end do
end do
end do

end

Figure 4.5: Cholesky decomposition subroutine

4.5.1 Terminal Interface

There are several commands in PIPS, you can use either pips directly with different options, or
separate commands, actually they are shell scripts, such as Init, Display, Delete, etc. We have to
make it clear that these shell script commands will ultimately call pips associated with appropriate
options. So we only explain some of these commands which are documented by manual pages in
PIPS programming environment.

Init creates a workspace or/and set the current workspace. It creates a new workspace when a
readable file.f is provided and sets it as current workspace. Otherwise, it sets its argument
as current workspace.

Display creates various prettyprints and supports browsing. It can be used on any workspace. It
is the simplest command to analyze a program with pips and browse results of any text types.
It calls pips with appropriate arguments, and runs a pager on the pretty-printed results.

Delete removes a (set of ) workspace(s).

After the simple introduction to these commands, we will see how to use these commands. First,
we create the workspace using;:

shell> Init -f cholesky.f cspace

which means that we take cholesky.f as input Fortran program and create a workspace called
cspace. Then, we want to see the the complexity analysis result of this subroutine, we use:

shell> Display -w cspace -m cholesky -v comp

which means that we want to see the complexity analysis result ( comp is an abbreviation for
complexity ) of module cholesky in workspace cspace. The workspace cspace does not have to
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c 3%N~3 + 8*N"2 + N + 1 (SUMMARY)
SUBROUTINE CHOLESKY(A,N)
REAL A(N,N)
INTEGER I,J,K,N
c
c 3*N"3 + 8*%N"2 + N + 1 (DO)
DOK=1, N 0002
c 9 (STMT)
A(K,K) = SQRT(A(K,K)) 0003
c 9*K~2 — 18%K.N + 9*N"2 — 25%K + 25*N + 3 (DO)
DO I = K+1, N 0005
c 13 (STMT)
A(I,K) = A(I,K)/A(K,K) 0006
c 18+#I - 18*K + 3 (DO)
DO J = K+1, I 0008
c 18 (STMT)
A(I,J) = ACI,1)-A(I,K)*A(J,K) 0009
ENDDO
ENDDO
ENDDO
c 0 (STMT)
c
END

Figure 4.6: Cholesky Complexity Output with Display

be specified if the Init has been used recently. So we can remove -w cspace in the example. The
-v option is the verbose option, which causes more information printed out while processing. The
output with all-1 cost table is shown in Figure 4.6.

Note that in the Figure 4.6, SUMMARY means the summary complexity of the module, STMT means
the statement complexity and DO means the loop complexity, including the complexity of loop body.

When it is no longer needed, the workspace is deleted by:
shell> Delete cspace

This shell interface is described in [Baron90].

4.5.2 X-Window Interface: wpips

When wpips is invoked in X-Window System, the user use the mouse and buttons to perform what
he wants. The on-line Help is never far away from the user, although it is not very useful for the
moment because it is not context sensitive.

At any shell prompt of X-window with PIPS programming environment, type wpips, the control
window will appear. The control window of wpips is shown in Figure 4.7. We first click the Select,
choose the workspace and module, as shown in upper part of Figure 4.8, and then click to Props
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[*] #View Pips ET]
(Select w) ( Props w) (Edit/View w) ( Transform ) (Help v) (Lo %) { Quit 7)

Message:

Directory: Jhomefusers/pips/Pips/Development/Lib/complesity

Workspace: none

Module: none Memory:

Figure 4.7: The Control Window of Wpips

button to require sequential views of Statements & Complexities, and finally, click the Fdit/View
button to display result. wpips will automatically open another window to show the result when
it is ready, as shown in lower part of Figure 4.8.

We can see from this figure that statement number 0009 has the complexity result 2. That is
because we chose the fp-1 cost table, so only floating point operations are taken into account. In
that statement, only two operations are present, — and %, so it has result 2. This explanation holds
for statement number 0003 and 0006.

More complex analyses require more selection in the Props menu, e.g., to use intra or inter proce-
dural preconditions as input for the complexity phase. And of course, more time is needed.

Finally, we can click Quit to quit the wpips.

4.5.3 Development Interface

Besides these two standard interfaces, we have another interface unique to the complexity phase.
It is reserved exclusively for the complexity evaluation program developers and not for the users.

Using this interface, the developer can obtain additional information unavailable through the stan-
dard interfaces. For example, we can get all the trace calls, which will be introduced in Section 4.7.4.
At the same time, we can see all the intermediate complexities as well as matrices for the unstruc-
tured piece of code.

We add a small explanation for the Figure 4.6. Because we used the all-1 cost table, so each access
and operation all costs one unit of complexity. But there is an exception, we add one more overhead
for arrays that are more than two dimensions, because there is a calculation of the address to be
accessed. So for A(I,.J), one unit cost for A,I and J, and one for overhead. Hence, the complexity
for A(I,J) is 4. In statement 0009, there are four accesses of two-dimensional array A and two
operations — and *. So the complexity result of statement 0009 is 4 x4 + 2 = 18.
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[*] #View Pips ET]
(Select w) ( Props w) (Edit/View w) ( Transform =) (Help v) (leg w) (Quit %)
Message: PRINTED_FILE made for CHOLESEY,
Directory: fhome/users/pips/Pips/Development/Lib/complaxity
Workspace: cspace
Module: CHOLESEY Memory:
[*] #wiew Pips Display Facility ET]
[ TF3*NAT + 172%HA2 + 1/6*N (SUMMARY D ?
SUBROUTIME CHOLESKEY (AN .
REAL ACN,N) |
INTEGER I,T,K.M =
[
C 1/3%NAT + 1/72%NA2 + 1/6%N (DO
Do K =1, HN nooz
L’_' 1 (STMT)
AlkLED = SORT{ACK, KD 0003
[ fa2 — 2®KON 4+ NAZ — 2%k 4+ 2#=N (DO
Do I =kH, N noos
C 1 [STHT)
BT,k = ACT KISACK, KD Qooe
C 2% — 2%K (D0
Do T =k+1, I noog
C 2 [S5THT)
AT,T) = ACL,T0-ACT. K)*&(T K noos
ENDDO
EMDDOO
ENDDO
C 0 CSTHTD
[
END
—/
Sequential VYiew Maodule: CTHOLESKY

Figure 4.8: Snapshot of Cholesky Complexity Result
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SUBROUTINE SAMPLE
REAL A(100)

N = 10
DOI=1,N

A = A(T) + 1.0
ENDDO

Figure 4.9: An Example sample.f

C 52 (SUMMARY)
SUBROUTINE SAMPLE
REAL A(100)

C 1 (STMT)
N =10 0001

C 51 (DO)
DOI=1, N 0003

C 5 (STMT)

A(I) = A(T)+1.0 0004

ENDDO

C 0 (STMT)
END

Figure 4.10: Complexity with Default Properties

4.6 Parameters of Estimator

For the time being, only a pure static evaluator has been implemented and only sequential Fortran
programs are taken into account. In this section, we present the current implementation and
describe advanced features, which are not available through the two standard PIPS user interfaces.
These features can be activated by changing special global variables known as “properties” in PIPS.

Default properties are always available, all current properties can be printed out by the command
properties. But if the user prefers to modify some or all of them, he can overwrite the default
values which are stored in the file properties.rc at standard PIPS development directory. The
user can override the default properties, some or all of them, by creating a file with the same name
at the current working directory. We have elaborated this in [Z192].

Example sample.f, shown in Figure 4.9 is used to explain the complexity properties.

The default complexity result of the example in Figure 4.9 is shown in Figure 4.10.

4.6.1 Variables

If the user decides to keep some variables un-evaluated no matter what they are, he can specify
the variable names in the file properties.rc of current directory. For example, they want to keep N
and M un-evaluated, just modify the variable as COMPLEXITY_PARAMETERS "N M", which guarantees
that N, M remain as they are.

The complexity result with all-1 cost table of sample program in Figure 4.9 is shown in Figure 4.11.
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C B*N + 2 (SUMMARY)
SUBROUTINE SAMPLE
REAL A(100)

C 1 (STMT)
N = 10 0001

C 5N + 1 (DO)
DOI =1, N 0003

C 5 (STMT)

A(I) = A(I)+1.0 0004

ENDDO

C 0 (STMT)
END

Figure 4.11: Complexity with Unevaluated Variable

A more realistic use of this facility would affect if N=10 was changed into READ *, N.

In addition, PIPS may identify variables which may remain unevaluated. If COMMON variables
are read in the module, that means they are assigned somewhere else. These variables are kept in
the module’s complexity result. So are unassigned formal parameters.

4.6.2 Cost Tables

We provide a way to choose the cost table desired, or to build a new one if needed. For example,
if you only want floating-point operations to be accounted for, you can select a non-standard
COMPLEXITY_COST_DIR, which is supposed to save a set of cost tables. you put the line
COMPLEXITY_COST_TABLE "all_1" into the file properties.rc of current directory, which means you
want to use the indicated cost tables save at indicated directory. The result of sample program in
Figure 4.9 with all-1, the uniform cost table, is shown in Figure 4.11. You can also use the floating-
point only cost table, called fp-1, which produces a new result. The result of sample program in
Figure 4.9 with fp-1 cost table is shown in Figure 4.12. As you can see, only floating-point operation
is counted.

If user wants to print out that table, he can set COMPLEXITY_PRINT_COST_TABLE TRUE to check.

4.6.3 Early Evaluation vs. Late Evaluation

If the user want to see the result more clearly, they will prefer to postpone the variable evaluation
as lately as possible. There is COMPLEXITY_EARLY_EVALUATION property which can be set to TRUE.

Figure 4.13 shows the late variable evaluation. Although the estimator knows that N has the value
10, but the user prefers to see 5 x N + 1 instead of the number 51, but finally as the late result, NV
is replaced by its proper value 10.

The scheme may also reduce the number of unknown variable. For example, in Figure 4.14, n is an
unknown variable and is not changed between loop 10 and loop 20. If we use default complexity
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C N + 1 (SUMMARY)
SUBROUTINE SAMPLE
REAL A(100)

C 0 (STMT)
N =10 0001

C ¥ + 1 (DO)
DOI=1, N 0003

C 1 (STMT)

A(I) = A(T)+1.0 0004

ENDDO

C 0 (STMT)
END

Figure 4.12: Complexity with fp-1 Cost Table and Unevaluated Variable

C 52 (SUMMARY)
SUBROUTINE SAMPLE
REAL A(100)

C 1 (STMT)
N = 10 0001

C 5N + 1 (DO)
DOI =1, N 0003

C 5 (STMT)

A(I) = A(I)+1.0 0004

ENDDO

C 0 (STMT)
END

Figure 4.13: Complexity with Late Evaluation
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n=*f(..)
do 10 i =1, n

10 continue
do 201 =1, n

20 continue

Figure 4.14: Example of Late Fvaluation

evaluation, i.e., early evaluation, we will get complexity result with two unknow variables UU_10
and UU_20. See Section 4.7.3 for explanation of these symbols.

But if we defer the evaluation of variables, only one unknown variable is present. That means we
effectively reduce the number of unknown variables.

4.6.4 Other Printout and Debugging Parameters

Besides what we have mentioned above, there are some other parameters related to complexity
program. They are stored in the same place properties.rc and can be overridden by the local ones.
We introduce them briefly in the following:

COMPLEXITY_PRINT_STATISTICS O means that the approximate counters option — one of the two
components of our complexity — is turned off. ( cf. Section 4.2)

COMPLEXITY_INTERMEDIATES FALSE means we do not want to see the intermediate complexities
while the evaluation program is running.

COMPLEXITY_TRACE_CALLS FALSE means we do not want to see all the procedure calls while the
evaluation program works. This tracing facility is introduced in Section 4.7.4.

4.7 Features of Estimator

Besides the properties we could turn on or off, there are some intrinsic features of our estimator.
We will list and introduce them in the following.

4.7.1 Preconditions

PIPS uses preconditions, information about the input store of statements, to sharpen various
analyses. All the preconditions are built at top of the C3 library, which is also used to extract the
information from the preconditions. One major source of precondition information is constant: An
example is given in Figure 4.15.

In this loop, n is set to 10 initially. So the loop upper bound n of loop 10 is replaced automatically
by 10. However, it is important to make sure that the preconditions are up to date. Consider the
second part of the example, n is added 20. In this case, we need to use the new value of n instead of
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subroutine prec2
n = 10
do 10 i =1, n
u=1.0
10 continue
n=n+ 20
do 201i =1, n
t =1.0
20 continue
end

Figure 4.15: xample of Preconditions

old one. The precondition output is shown in Figure 4.16. The result is produced by pips terminal
interface command Display while set prettyprint option to prec for preconditions.

Note that n has been changed between the two loops. We have to use different values for each
loop. The precondition knows how to get the right value, e.g., in the Figure 4.16, after statement
N = N+20, N is added 20. So N is 30 as shown in Figure 4.16.

Preconditions are heavily used by the result simplification, which is the topic of next subsection. As
you will see from the example, all kinds of simplifications are based on the program’s preconditions.

4.7.2 Simplifying Complexity Results

When a subroutine is called, maybe several formal parameters have been passed. The complexity
results should contain the formal parameters in the polynomial but not the intermediate variable(s),
which are local to the subroutine. Look at the first example of simplification shown in Figure 4.17.

For this example, the summary complexity of the module should contain n instead of k, for k is
a private integer variable and is not known by the outside world. We call such variables local
variables.

Please note that no matter how complex the function is , as long as k is a linear function of n, the
final complexity result always contains n as its component. Let us look at a more complex example
shown in Figure 4.18.

There are three embedded loops here loop 10, loop 20 and loop 30 respectively. For the innermost
loop, its lower bound jj + 10 is dependent on the index of loop 20, which is determined by the
two indices of the outermost loop. Remember that we use a bottom-up method to accumulate the
complexity. Confined in this innermost loop, we cannot know the relation between this loop and
outer loop. So we must obtain what we need in the innermost loop. Naturally preconditions come
into use.

We give the output of complexity result for this example shown in Figure 4.19.

Our method is to put each induction variable into a hash table when encountering a loop, and delete
that induction variable when leaving the loop. This allows us to save a copy of the variable, which
has not been evaluated by the complexity program. So for the loop 30, the complexity information
contains only the outer loops’ induction variables i, j and formal parameter m. For loop 20, the
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10

20

PO {3
SUBROUTINE PREC2
PO {3
N =10
P(1) {N==10}
DO 10 I =1, N
P(I,N) {1<=I, I<=N, N==10}
U=1.0
P(I,N) {I<=N, 1<=I, N==10}
CONTINUE
P(I,N) {N==10}
N = N+20
P(I,N) {N==303}
DO 201 =1, N
P(I,N) {1<=I, I<=N, N==30}
T=1.0
P(I,N) {I<=N, 1<=I, N==30}
CONTINUE
P(I,N) {N==303}

END

Figure 4.16: Precondition of Example 2

0001

0003

0004
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0008
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subroutine subi(a,n)
real a(1000)
integer m,n
k=3%mn+ 2
do 10 1 =1, k
a(i) = a(i) + 1.0
10 continue
return
end

Figure 4.17: Example 1 of Simplification

subroutine sub2(m)
integer m
do 10i =1, m
ii =1+ 2
do 20 j = ii, m + 2
jj = 3%i — 2%j - 2
do 30 k = jj + 10, 100

t =t + 1.0
u=u+1.0
30 continue
20 continue
10 continue
return
end

Figure 4.18: Example 2 of Simplification

complexity result is given in terms of 1 and m, for loop 10, the result contains merely the formal
parameter m.

According to our complexity algorithm, shown in (2.3) of Section 2.3, the total complexity for
theloopis2 + 2 + 0 + 6x( (M+10) - (JJ+2) + 1 ) which equals -18+%I + 12+%J + 6%M + 83
when substituting JJ with the expression JJ = 3*I-2%J-2 . Here 6 is loop body complexity, 1 is
added because K is read each time in the loop, and 4 is the range complexity, that is, 2 for the
expression JJ+2 ( variable JJ and plus sign, each has one complexity unit.) and the same thing for
the expression M+10.

4.7.3 Locating Unknown Loop Bound

Our estimator provides another facility to locate the unknown loop bound with respect to its
statement number, preceded by UL_ for unknown lower bound, UI_ for unknown increment and
UU_ for unknown upper bound. For example, the complexity result of program sample of Figure 4.9
is shown in Figure 4.20.

If the number is not present, it won’t be there in the final result.
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C 4xM~3 + B7#M"2 + 60%M + 2 (SUMMARY)
SUBROUTINE SUB2(M)
INTEGER M
C 4*M~3 + 57+#M"2 + 60xM + 2 (DO)
DO 10 I =1, M 0002
C 3 (STMT)
II = I+2 0003
C 12%I172 - 24*I.M + 12*%M~2 - 126*I + 126*M + 118 (DO)
DO 20 J = II, M+2 0005
C 7 (STMT)
JJ = 3%I-2%]J-4 0006
C -18+I + 12*J + 6*M + 83 (DO)
DO 30 K = JJ+2, M+10 0008
C 3 (STMT)
T =T+1.0 0009
C 3 (STMT)
U =U+1.0 0010
C 0 (STMT)
30 CONTINUE 0011
C 0 (STMT)
20 CONTINUE 0012
C 0 (STMT)
10 CONTINUE 0013
C 0 (STMT)
END
Figure 4.19: Example 2 of Simplification
C 5*xUU_10 + 1 (SUMMARY)
SUBROUTINE SAMPLE
REAL A(100)
c 5+UU_10 + 1 (DO)
DOI =1, N 0002
C 5 (STMT)
A(I) = A(I)+1.0 0003
0 (STMT)
10 CONTINUE 0004
C 0 (STMT)
END

Figure 4.20: Complexity with Unknown Loop Bound
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SUBROUTINE SAMPLE
REAL A(100)
N =10
DOI=1,N
A = 1.0
ENDDO

Figure 4.21: An Example trace.f

4.7.4 Tracing of Complexity Estimation

We still use an even simpler program shown in Figure 4.21, we shown the program tracing output
in Figure 4.22.

The tracing output begins at the left part of the figure and continues in the right part. Vertical
bars in the figure help locate the indent level. At the very beginning, TRACE bumps into a
statement with ordering (0,1), which is interpreted as an instruction as well. And this instruction
is considered unstructured according to PIPS intermediate representation shown in Appendix A.
This unstructured is interpreted as a statement, which is a block, which is comprised of several
statements.

4.7.5 Debug

There is an environment variable called COMPLEXITY_DEBUG_LEVEL for debugging, which is set 0 as
default. This variable indicates which debug level we prefer. It can vary from 0 to 9, the higher
the level, the more information. For example, if it is set to 9, we can have maximum information
available, including all matrix results.

4.8 Summary

This chapter contains a detailed presentation of our execution time estimator and its implemen-
tation. The PIPS programming environment is briefly introduced. The data structures designed
to estimate execution times are shown as well as the PIPS data structures used in our algorithms.
We end up the implementation part with a list of C files and some explanations about the key
functions. The complexity user interfaces are presented from a functional point of view. They are
made of the two standard PIPS user interfaces plus a set of parameters that can be set by advanced
users only. Some special features can also be activated.
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complexities TRACE | | | | | >indices
>statement @, ordering (0 1) | | | | | | >expression
>instruction | | | | | | >syntax
| >unstructured | | | | | | >reference TRACE:I
| >statement @, ordering (1 1) | | | | | | | >indices
| >instruction | | | | | | | <
I | >block I I I I I I <
| | >statement @, ordering (1 2) | | | | | | <
| | >instruction | | | | | | <
| | | >call TOP-LEVEL:= | | | | | <
| | | >arguments | | | | | <
| | | >expression | | | | | <
I I I | >syntax I I I I <
| | | | >reference TRACE:N | | | | >expression
| | | | >indices | | | | | >syntax
I I I I < I I I I |  >call TOP-LEVEL:10.
| | | | < | | | | | <
| | | | < | | | | | <
| | | < | | | | <
| | | >expression | | | | <
| | | | >syntax | | | | <
| | | | >call TOP-LEVEL:10 | | | <
| | | | < | | | <
| | | | < | | | >expression -> pnome
| | | < | | | >normalized -> pnome
| | | < | | | | >pvecteur -> pnome max -1
| | | < | | | | <
| | < | | | <
| | < | | | <
| | >statement @, ordering (1 3) | | | >expression -> pnome
| | >instruction | | | >normalized -> pnome
| | | >loop TRACE:I label TOP-LEVEL:@ | | | | >pvecteur -> pnome max 1
| | | >range | | | | >var TRACE:N->pnome, max 1
| | | >expression | | | | <
| | | | >syntax | | I | <
| | | | >call TOP-LEVEL:1 | | | <
| | | | < | | | >expression -> pnome
| | | | < | | | | >normalized -> pnome
| | | < | | | | >pvecteur->pnome max -1
| | | >expression | | | | <
I I I | >syntax I I I | <
| | | | >reference TRACE:N | | | <
| | | | >indices | | | <
| | | | < | | | <
| | | | < | | <
I I I | < | | >statement @00000, ordering (1 5)
| | | < | | | >instruction
| | | >expression | | | >call TOP-LEVEL:RETURN
| | | | >syntax | | | >arguments
| | | | >call TOP-LEVEL:1 | | | <
| | | | < | | | <
| | | | < | | | <
| | | < | | <
| | | < | | <
| | | >statement @, ordering (1 4) | | <
| | | >instruction | <
| | | | >call TOP-LEVEL:= | <
| | | |  >arguments | <
| | | | >expression <
| | | | | >syntax <
| | | | |  >reference TRACE:A <summary complexity TRACE

<

Figure 4.22: Tracing of Sample Subroutine
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Chapter 5

Experiments on Sequential Machines

In this chapter, we show that our estimator can generate exact results by comparing its output for
a real application tmines.f with the results obtained manually by Nahid Emad [Emad91]. Then, in
order to validate our result, we will time a subroutine EFLUX from FLO52 program of the Perfect
Club Benchmark Suite [Cybenko91], and compare its effective execution time with its predicted
execution time according to the complexity result obtained by our estimator. The time difference
is pretty small, less than 5% despite the large ranges of values of two variables 12 and J2.

5.1 Comparisons with Manual Calculation

We use the program tmines.f from ONERA®, which was written by Marc Bredif. Because Nahid
Emad [Emad91] studied the floating-point complexity of all 11 modules of tmines.f during her
internship at CRI, so we can take advantage of her results in order to compare. We only need
to select the cost table fp-1 to restrict the complexity analysis to floating point. The program
resolves the potential equations and calculates the irrotational isentropic flow in a convergent tube
with varying rectangular section. The call graph of TMINES is shown below:

TMINES
MAILLA
POLTRI
CALMAT
RESUL
ROMAT

PREPCG
CALCG

DES

REP

PROD
RESUL

The convergence loop is not shown because it is seen as an unstructured piece of code by PIPS.
In Emad’s paper, it is observed that variables n:, nj and nk are parameters used in the program

1A French Aerospace Research Center

133
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as array dimensions and as control variable for many loops. In order to reduce her complexity
formulae, F'mad introduced 5 intermediate variables:

a = nt*njxnk

08 nj * nk

¢ ni * nk

a (ni—1)*(nj—1)*(nk—1)
5= (ni-1)#(nj—1)

Actually, the COMMON parameters used in tmines.f are IM, JM and K M. The initialization
code insures that ni = IM, nj = JM and nk = KM. We use C,,(5) to denote the manual
complexity obtained by Nahid Emad for statement S and C,(.9) to denote the estimated complexity
of our estimator for statement S, and if both happen to be the same, we use simple C'(.9) to denote

both of them.

In this section, we compare the results for each module. Note that Loop Label in all tables means
that the corresponding loop, while Module means the final complexity of the module, it is a kind
of combination of its containing loops’ complexity, not necessarily the sum of them.

5.1.1 Mailla Subroutine

The results are:

| MAILLA Subroutine

Loop Label Manual Complexity Estimator C'omplexity
1 3/2%xni—3 3/2xIM — 3
2 ni M
3 12 % ni 12 IM
20 4% 4+« IM.JM. KM
200 (ni—1)(3*njxnk+419) |3« IMJM.KM -3« JM.KM 4+ 419 IM — 419
12 12 (ni — 1) 12« IM — 12

[ Module | Txa—3%3+543%ni—517 | T+ IMJM.KM — 3 JM.KM + 434+ IM — 417 |

Despite several test statements in Loop 3, MAILLLA is a well-structured subroutine. We suppose
statically the probabilities are all fifty-fifty for those tests as usual. As a matter of fact, the
probabilities of these test statements cannot be determined statically by a human, so the best bet
is fifty-fifty. This leads to the same result for Loop 3. There are no discrepancies for the loops,
but for the whole procedure are different. We looked for the reason why there is a difference in the
estimator but could not find any. We manually checked the result, confirming that the result of
our estimator is correct. We think that the difference probably came from Emad’s miscalculation.



5.1. COMPARISONS WITH MANUAL CALCULATION 135

5.1.2 Poltri Subroutine

The results are:

POLTRI Subroutine |

LoopLabel | Manual Complexity | Estimator Complexity
111 8 8
1 351 351
2 6912 6912
| Module | 7217 | 7217 |

The number of floating point operation is numerically known, because the loop ranges are constants.
The two results are equal.

5.1.3 Calmat Subroutine

This subroutine builds the matrix used in the calculation. It contains 170 lines of code. The results
are:

| CALMAT Subroutine |

LoopLabel | Manual Complexity Estimator C'omplexity
2 144 % (ni — 1) 144 % IM — 144
205 ni— 1 M -1
4 3x(ni—1) IxIM -3
5 12 % (ni— 1) 12« IM — 12
3 48 % (ni — 1) 48 x IM — 48
207 32 (ni—1) 32« IM — 32
8 468 * (ni — 1) 468 x IM — 468
30 5536 * (ni — 1) 5536« M — 5536
40 126 * (ni — 1) 126 x IM — 126
45 2% (ni—1) 2% IM — 2
46 8x(ni—1) 8xIM —8
10 5912 x4 5672« IM.JM — 5672 IM — 5672 JM + 5672
1 5912 x & 5672+« IM.JM. KM — 5672 IM.JM — 5672« IM. KM
—5672+ JM. KM 45672« IM + 5672 JM + 5672« KM — 5672
Module 5912 x & 5672+« IM.JM. KM — 5672 IM.JM — 5672« IM. KM
+5 —5672+ JM. KM 45672« IM + 5672 JM + 5672« KM — 5672

If we simplify our estimated result, it should be 5672 % & + 3. After investigation, we finally figure
out that the difference is due to miscalculation of original author. Because C'(L10) should be

C(L10) = (nj — 1) * [C(L30) + C(L40) + C(L45) + C(L46)] = 5672 7

and not all of those above. The author probably took extra loop costs into accounts, very likely
that of 2, 205, 4, 5, 3 and 205. As we can see:

C(L10) = (nj—1)#[C(L30)+ C(LA0) + C(L45) + C(L46) + C(L2)
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+C(L205) + C(L4) + C(L5)+ C(L3)]
= 59127

This modified formula matched the manual result. This is the kind of mistakes that a human can
easily make, because humans are not reliable, consummate. On the other hand, the machines are
not prone to commit that kind of mistakes.

5.1.4 Resul Subroutine

This subroutine prints out the result. The complexity results are:

| RESUL Subroutine |

LoopLabel | Manual Complexity | Estimator Complexity
10 36 36
100 63 xni — 63 63« IM — 63
| Module | 63 * ni — 54 | 63« IM — 54 |

The two results are identical.

5.1.5 Prepcg Subroutine

The complexity results are:

| PREPCG Subroutine

LoopLabel | Manual Complexity Estimator C'omplexity

2 33xnj—18 24 % JM

3 40 % nj 40 J M

5 32 (nj—1) 32x JM — 32

6 24 % (nj—1) 24« JM — 24

20 ni* (129« nj — 74) 120« IM.JM — 56 x IM

1 1294 v — 74 % ( 120« IM.JM. KM — 56« IM.KM
| Module | 1294 v — 74 % ( | 120« IM.JM. KM — 56« IM.KM |

As we can see, there is a difference in Loop 2. After investigation, we find out that there is a test
statement with obvious probability, the true-ratio is one over loop count, as the following:

DO2J =1,JM
S1
IF (J.EQ.JM) THEN
ELSE
S2
ENDIF
2 CONTINUE
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Where C'(S51) = 15 and C(52) = 18. We can see clearly that false-ratio is (JM —1)/JM. As we

have said earlier, our estimator supposes half-half, so we have:
C(L2)=JM x(C(S1)+1/2xC(52))=24«JM
while manual result is:
Co(L2)=IM x (C(S1)+ (JM - 1)/JM «C(52)) =33+« JM — 18

Therefore the probability makes that difference. In this subroutine, the manual result is correct
because it takes right probability. It is no surprise to see the final result deviates. If we instruct the
estimator to take that probability at that test statement, we can get right result for Loop 20 and
final result. We have mentioned earlier in Section 1.4 about the dynamic estimation of probability.

5.1.6 Romat Subroutine

This subroutine computes, among the others, an incomplete decomposition of Cholesky, to produce
a prerequisite for the conjugate gradient method. The complexity results are:

| ROMAT Subroutine |

LoopLabel | Manual Complexity Estimator C'omplexity
11 126 * (ni — 1) 126 x IM — 126
23 2% (ni—1) 2% IM — 2
33 16*(ni—1) 16« IM — 16
24 * (ni—1) 4xIM —4
28 *(ni—1) TxIM —7
25 * (ni—1) 2% IM — 2
26 *(ni—1) IxIM -3
29 108*(m 1) 108 x IM — 108
27 11 (ni—1) M IM —11
91 14 % (ni—1) 14 IM — 14
92 14 % (ni—1) 14 IM — 14
93 16 % (ni — 1) 16« IM — 16
99 28 (ni—1) 28 x IM — 28
50 16 % (ni — 1) 16« IM — 16
2 371~ 31V« IM.JM — 371« IM — 371« JM + 371
1 37l xa 3T« IMJM.KM —371«IM.JM — 3711« IM. KM
=371« JM KM 4371+« IM + 371« JM 4+ 371« KM — 371
Module 371+ a4+ 21 91« IM.JM.KM =371« IM.JM — 427« IM. KM
+129%x a — T4 % ( =371« JM. KM 4371+« IM + 371 JM 4 371« KM — 350

In fact, the complexity of ROMAT is easy to calculate interprocedurally as:
C.(Romat) = 371« a+ 21+ C.(Prepcg)

Cy(Romat) = 371 a + 21 + C,,( Prepeg)

Because ROMAT calls PREPCG and there is a small difference in PREPCG, so it is normal that
there is a small difference here in ROMAT. But for this difference, the results are the same.
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5.1.7 Des Subroutine

The complexity results are:

| DES Subroutine

LoopLabel | Manual Complexity Estimator C'omplexity

10 3x(nj—1) 3xJM -3

11 8% nj 8x JM

12 8x(nj—1) 8x JM —8

13 8x(nj—1) 8x JM —8

1 ni* (27 xnj — 18) 27« IM.JM — 18« IM

100 27+ o — 18 % ¢ 27« IM.JM KM — 18+« IM. KM
| Module | 27+ o — 18 % ¢ |27*IM.JM.KM—18*IM.KM

The two results are identical.

5.1.8 Rep Subroutine

The complexity results are:

| REP Subroutine

LoopLabel | Manual Complexity Estimator C'omplexity

21 8% nj 8x JM

22 8x(nj—1) 8« JM —8

23 8x(nj—1) 8« JM —8

30 3x(nj—1) 3« JM -3

20 ni* (27 xnj — 18) 27« IM.JM — 18« IM

200 27+ — 18 % ¢ 27« IM.JM KM — 18+« IM. KM
| Module | 27+ — 18 % ¢ |27*IM.JM.KM—18*IM.KM

The two results are identical.

5.1.9 Prod Subroutine

The complexity results are:

PROD Subroutine

LoopLabel | Manual Complexity Estimator C'omplexity

10 18 % ne 18 IM

11 24 % (ni— 1) 24« IM — 24

12 12 (ni — 1) 12« IM — 12

2 nj* (54 * ni — 36) 54+« IM.JM — 36« JM

1 bd*xa —36% 0 54« IM.JM. KM —36« JM. KM
| Module | bd*xa —36% 0 | 54« IM.JM. KM —36« JM. KM |
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The two results are identical.

5.1.10 Calcg Subroutine

This subroutine applies conjugate gradient method with the previously decomposed matrix LD L.
The decomposition is performed with Cholesky’s algorithm in romat. The complexity results are:

| CALCG Subroutine |

LoopLabel | Manual Complexity Estimator C'omplexity
21 2% 2x IM.JM. KM
30 2%« 2x IM.JM. KM
50 2%« 2x IM.JM. KM
41 2% 2x IM.JM. KM
51 2% 2x IM.JM. KM
Module nmaz * (118 * « 63.38« IM.JM. KM — 2215« IM. KM
36«5 —36+(+4) —16.62« JM. KM + 3.38

Again, this estimation is interprocedural:

Cm(Caleg) = nmax *[10* o+ C(Des) + C(Rep) + C(Prod) + 4]
= nmar *[10xa+ 27T+a— 18+ )+ 2T+ a— 18 () + (54 + o — 36 % 3) + 4]
= nmaz*(118+x o —36* 5 —36+(+4)

There is a big difference here between the two results. Let us first have a look at the original
program in Appendix C.1. Original calcg has a loop labeled 1 (Loop 1) with 1 as lower bound and
nmaz as upper bound. It contains all the five loops cited above and three subroutines. But in this
module, there are some error-checking statements, something like I F() return, which cause great
problem for complexity estimation.

Figure 5.1 shows the simplified control flow graph. According to the control analyzer of PIPS,
Loop 1 is converted to IF statement with GOTO statement at the end of IIF scope to go back
to the beginning of IF statement, i.e., from S8 to 52 in the Figure. And we have seen equally
that inside the Loop 1, there are two paths the lead to irregular exits, i.e., 52 — 512 — S7 and
53— 59 — 511 — S57.

Because these test statements are simply error-checking, so they are very unlikely to happen, we
should give them zero probability without hesitation as suggested in [Wang93]. Due to several
occurrences of these error-checking tests and the half-half policy used in the implementation, we
obtained this wrong result. In this case, manual result is correct simply because a human is more
intelligent than machine. But a look at the complexity counters would warn the user.

Now let us assume that our estimator has extra knowledge that those error-checking tests are
small probablily events. We categorily give them zero probability and remove them from the
control flow graph. As shown in Figure 5.1, we remove the part of graph that is surrounded by
the discontinuous lines. After that, we can find that the graph resembles the example we have
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Figure 5.1: Calcg Simplified Control Flow Graph
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presented in Section 2.4.3. So we can reuse the Equation 2.15. We have no problem to get the right
result:

C(Calcg) C(S1) + nmaz * [C(S2) + C(S3) + C(54) + C(S5) + C(S8)] + C(S6) + C(S7)
nmax * [10 x « + C(Des) + C(Rep) + C(Prod) + 4]

nmar*[10kxka+ (27T+*a— 18« )+ 27T+ a — 18 % () + (bd *+ o — 36 % ) + 4]
nmax * (118 x o — 36+ 3 — 36« + 4)

= Cn(Caleg)

We give the original subroutine and its corresponding complexity result in Appendix C. The
interested user can find the corresponding complexity of each statement in Appendix C.4.

5.1.11 Tmines Program

Tmines module is main program of tmines.f program. Note that both nmaanl and nmaz are set
to 50 at the beginning of the program. We can easily obtain as worse case manual complexity:

Cm(Tmines) = Cp(Mailla) + C(Poltri) + Cp(Calmat) + C'(Resul)
+nmaznl * [Cp(Romat) + Cp(Caleg) + C(Resul)]
= Txa+5912xa— 2+ 6+ 606 *ni+ 6706
+50 % [129% o + 371 & — T4 +50* (118 k@« — 36 % 8 — 36« { +4) + 63 * ni — 33]
= Txa+5912xa— 2+ 6+ 606 *ni+ 6706
+50 % [6029 x v + 371 x & — 1800 x B — 1874 %  + 63 x ni + 167]
= 301307 % o« + 24462 x @ — 89998 * 3 — 36 * { + 3756 * ni + 15056

And for estimated complexity:

Ceo(Tmines) = C.(Mailla) + C(Poltri)+ C.(Calmat) + C(Resul)

+nmaznl * [Ce(Romat) + C.(Caleg) + C(Resul)]

= b67T9x IM.JM KM — 5672 IM.JM — 5672+« IM. KM — 5675« JM. KM
+6169 % IM + 5672 JM + 5672 % KM — 6203
+50 % (554.38 « IM.JM.KM — 371« IM.JM — 449.15« IM. KM
—387.62« JM. KM 4+ 434« IM + 371 JM + 371 « KM — 400.62)

= 33398« IM.JM. KM — 24222 « IM.JM — 28129.55672 IM. KM
—25056 « JM. KM + 27869 « IM 4 24222 « JM + 24222« KM — 26234
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| TMINES Main Program

Module Manual Complexity Estimator C'omplexity
Mailla | 7T+a— 3+ 3+543 *ni — 517 TxIMJMEKM —3+«JM.KM 4434« IM — 417
Poltri 7277 7277
Calmat 5912 % & 5672+« IM.JM. KM — 5672« IM.JM — 5672+« IM.KM
+5 —5672 % JM. KM + 5672+ IM + 5672 JM + 5672« KM — 5672
Resul 63 * nt — 54 63« IM — b4
Romat 37lxa+ 21 91« IMJM. KM — 371« IM.JM — 427« IM. KM
+129 % v — T4 % ( =371+ JM. KM + 371 IM + 371« JM + 371 « KM — 350
Calcg nmaz * (118 * « 63.38x IM.JM. KM — 2215« IM. KM
—36%5—36+() —16.62+« JM. KM 4+ 3.38
301307 % a 4 24462 * 33398« IM.JM. KM — 24222« IM.JM
Tmines —89998 x f — 36 x —28129.55672 % IM. KM — 25056« JM. KM + 27869 « IM
+3756 * ni + 15056 424222 % J M + 24222« KM — 26234

As we have noted the difference is too big to be used, and we think that it is normal. The difference
in CALCG is amplified by nmaznl. i.e. 50 in TMINES. Therefore, so much big difference is the
correct inference.

5.1.12 Summary and Discussion

In this section, we have compared all results of 11 modules of tmines.f program.

Among these, the results for POLTRI, RESUL, DES, REP and PROD are completely identical;
the results for MAILLA, CALMAT, PREPCG and ROMAT are almost the same; and results for
CALCQG is a failure, and so is TMINES.

Although there is so big difference in final module TMINES, we only need to do one thing to
minimize the discrepancy: instruct the estimator the right probability in CALCG, then everything
will be alright.

5.2 Results of a Perfect Club Program FLO52

The Perfect Benchmarks are a collection of benchmark applications which were contributed by
various large system vendors and which have been used to characterize supercomputer performance.

In this section, we present experimental results of our complexity program on a real Fortran pro-
gram. We chose a medium-sized one — TFS.f from the PERFECT Club (cf. [Cybenko91]). It has
almost 2000 lines and its application area is computational fluid dynamics. In order to focus on the
most important functions, we have gotten rid of the irrelevant routines, such as plotting a graph
and timing. This leaves 27 routines, and we succeeded in evaluating 23 of them. The analysis were
performed using both the all-1 and fp-1 models. The results are shown in Table 5.1 and Table 5.2
respectively.

IL and JL are COMMON variables, so we can keep them in the complexity results. 12, J2,
112, JJ2, LPRNT and NRES are formal parameters passed by the corresponding callers. In the
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|| Module | Complexity ||
ADDX 1591272432+ 112.JJ2+ 95« ILU_RANGEFE
+168+« IL+11%J242%xJJ2—4+«U_RANGE + 22
BCFAR 240 IL — 101
BCWALL 253« 1L — 113
CIRCLE 20« IL.JL+ 1L+ 2
COLLC 60 12.J2+ 94 IL.JL +62x 1L +4*%J2+56xJL + 103
COORD 13xIL+16xJL+7
CPLOT 36« IL + 308
DFLUX 995 IL.JL — 775 IL — 553 « JL + 387
DFLUXC 459 IL.JL — 326« IL — 305 JL + 197
EFLUX 490 IL.JL — 445+ IL — 315« JL + 281
FORCF 87+ IL — 65
GRAPH 31+ 1L+ 32
GRID 32+« IL.JL4+14+«1L+23+«JL+ 14
INIT 3312024 J2+1
INTPL 458.93
MESH 230
METRIC 52+« IL.JL 4+ 14% 12 —-52+ 1L —37T«JL+ 39
PRNTFF |93%I2.J2.LPRNT (—1)4+ 186 I2 — 91« [2.LPRNT (—1)
—93% J2.LPRNT " (-=1)4+ 91+« LPRNT (—1)
PRNTXY 17« IL.JL.LPRNT (-1)+ 2% IL.LPRNT (-1)+4
PSMOO 400 IL.JL — 416« IL — 416« JL + 478
RPLOT 37T« NRES +51
STEP 244 % IL.JL + 28« 12 — 244 « IL — 213 % JL + 222
XPAND 5« ILJL+b%xIL+7*xJL+9

Table 5.1: Complexity Results Using all-1
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|| Module | Complexity ||
ADDX 28 [2.J2+42+112.JJ2+ 12+« IL.U_RANGE + 43« IL — 12x U_RANGE — 3/2
BCFAR 36« IL+2b%1L—36
BCWALL 55« IL — 38
CIRCLE 5+ IL.JL
COLLC 4% 12.J24+10xIL.JL +6x1L
COORD 4+« 1L +5+«JL+4
CPLOT 8% IL
DFLUX 1006« IL.JL —96xIL —83«JL + 78
DFLUXC A8+« IL.JL — 34 IL — 34 JL + 23
EFFLUX 70« IL.JL —64+«IL—41+JL 435
FORCF 25 IL — 19
GRAPH 8xIL+8
GRID 8xILJL+2+«IL+4%JL
INIT 4% 12.J2
INTPL 88
MESH 80
METRIC 8« IL.JL —8xIL—8xJL+8
PRNTFF 17 I2.J2.LPRNT (=1)4+ 34+ 12— 17« I2.LPRNT" " (-1)
17« J2.LPRNT " (=1)+ 17+« LPRNT (—1)
PRNTXY 0
PSMOO A8« IL.JL — b6 IL — b6 JL 478
RPLOT 13« NRES +8
STEP A8+« IL.JL — 48 x IL — 48 x JL + 48
XPAND 0

Table 5.2: Complexity Results Using fp-1
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routine ADDX, U_ RANGE which is short for UNKNOWN_RANGE appears. This is due to the
variable J1, which serves as upper loop bound. It depends on the input, so we cannot know it at
compile-time. But it could be kept in the formulae because it is constant over the program. The
user should declare it constant with properties file properties.rc.

5.3 EFLUX of FLO52

We chose eflux.f from FLO52 to verify our results because most computations of FLLO52 happen
there. FLObB2 is one of 13 Benchmark programs from Perfect Club. We give the original eflux
program in Figure 5.2.

We can expect that the complexity result will contain both I'L and J L because they are both global
variables. In order to check our estimated complexity, we need to obtain reasonable ranges of the
both variables 11 and JL.

1. From the original program FLO52 of Perfect Benchmark Club, we could observe from line 81,
155, 202, 316, 338 and 441 where I'L and JL are modified, that there are consecutive lines as

following:
IL = NX + 1
JL = NY + 1
I2 = NX + 2
J2 = NY + 2

and nowhere else. So we conclude that IL =12—1and JL =J2 — 1.

2. In subroutine eflux, declarations are:

COMMON/LIM/ IL,JL

COMMON/ADD/ DW(194,34,4)

COMMON/FLX/ FS(193,34,4)

DIMENSION W(I2,J2,4),P(I2,J2),X(I2,32,2)

and in the loop labeled 30, there is

DO 30 J
DO 30 J

2, JL
2, IL

FS(I,J,4) = QSP*(W(I,J+1,4)+P(I,J+1))+ ...

so we can see that the first index of FS' is 193 and cannot be surpassed by I'L, so 1L < 193;
for P(1,J + 1) reason JL < 33.

3. From above item, IL > 2 and JL > 2.

Now let us have a look at the output of the complexity evaluation program obtained with Sun-
SPARC cost table:
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SUBROUTINE EFLUX (I2,J2,W,P,X)
c EULER FLUXES
COMMON/LIM/ IL,JL
COMMON/ADD/ DW(194,34,4)
COMMON/FLX/ FS(193,34,4)
DIMENSION W(I2,J2,4),P(I2,J2),X(I2,J2,2)
DO 10 J=2,JL
DO 10 I=1,IL

XY = X(I,J,1) -X(I,J-1,1)

YY = X(I,J,2) -X(I,J-1,2)

PA = P(I+1,J) +P(I,])

QSP = (YY*W(I+1,J,2) -XY*W(I+1,J,3))/W(I+1,J,1)
Qs = (YY*W(I,J,2) -XY*W(I,J,3))/w(I,J,1)

FS(I,J,1) = QSP#W(I+1,J,1) +QSM*W(I,J,1)
FS(I,J,2) = QSP*W(I+1,J,2) +QSM*W(I,J,2) +YV*PA
FS(I,J,3) = QSP*W(I+1,J,3) +QSM*W(I,J,3) -XV*PA
FS(I,J,4) = QSP*(W(I+1,J,4) +P(I+1,J)) +QsM*(W(I,J,4) +P(I,]))
10 CONTINUE
DO 20 N=1,4
DO 20 J=2,JL
DO 20 I=2,IL
DW(I,J,N) = FS(I,J,N) -FS(I-1,J,N)
20 CONTINUE
DO 25 I=2,IL

XX = X(I,1,1) -X(I-1,1,1)
YX = X(I,1,2) -X(I-1,1,2)
PA = P(I,2) +P(I,1)
FS(I,1,1) = 0.

FS(I,1,2) = —-YX#PA

FS(I,1,3) = XX#PA

FS(I,1,4) = 0.

25 CONTINUE
DO 30 J=2,JL
DO 30 I=2,IL

XX = X(I,J,1) -X(I-1,J,1)

YX = X(I,J,2) -X(I-1,7,2)

PA = P(I,J+1) +P(I,])

QSP = (XX*W(I,J+1,3) -YX*W(I,J+1,2))/W(I,J+1,1)
QSM = (XX*W(I,J,3) -YX*W(I,J,2))/w(I,J,1)

FS(I,J,1) = QSP#W(I,J+1,1) +QSM*W(I,J,1)

FS(I,J,2) = QSP*W(I,J+1,2) +QSM*W(I,J,2) -YX*PA

FS(I,J,3) = QSP#W(I,J+1,3) +QSM*W(I,J,3) +XX*PA

FS(I,J,4) = QSP*(W(I,J+1,4) +P(I,J+1)) +QsM*(W(I,J,4) +P(I,J))
30 CONTINUE

DO 40 N=1,4

DO 40 J=2,JL

DO 40 I=2,IL

DW(I,J,N) = DW(I,J,N) +FS(I,J,N) -FS(I,J-1,N)
40 CONTINUE

RETURN

END

Figure 5.2: Original Eflux Subroutine of FLO52
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C 1878*IL.JL - 1711%IL - 999%JL + 1033 (SUMMARY)
C NAME=EFLUX
SUBROUTINE EFLUX (I2,J2,W,P,X)
C EULER FLUXES
COMMON/LIM/ IL,JL
COMMON/ADD/ DW(194,34,4)
CSRD COMMON/FLX/ FS(193,33,4)
COMMON/FLX/ FS(193,34,4)
DIMENSION W(I2,J2,4),P(I2,J2),X(I2,]2,2)
C 699+IL.JL - 699*IL + 18+JL - 7 (D0)
DO 10 J = 2, JL 0002
C 699+IL + 11 (DO)
DO 10 I =1, IL 0004
C 54 (STMT)
XY = X(I,J,1)-X(I,J-1,1) 0005
C 54 (STMT)
YY = X(I,J,2)-X(I,J-1,2) 0006
C 48 (STMT)
PA = P(I+1,J)+P(I,J) 0007
C 95 (STMT)
QSP = (YY*W(I+1,J,2)-XY*W(I+1,J,3))/W(I+1,J,1) 0008
C 92 (STMT)
QSM = (YY*W(I,J,2)-XY*W(I,J,3))/W(I,J,1) 0009
C 72 (STMT)
FS(I,J,1) = QSP*W(I+1,J,1)+QSM*W(I,J,1) 0010
C 78 (STMT)
FS(I,J,2) = QSP*W(I+1,J,2)+QSM*W (I,J,2)+YY*PA 0011
C 78 (STMT)
FS(I,J,3) = QSP*W(I+1,J,3)+QSM*W (I, J,3)-XY*PA 0012
C 121 (STMT)
FS(I,J,4) = QSP*(W(I+1,J,4)+P(I+1,J))+QSM*(W(I,J,4)+P(I,] 0013
& ) 0013
C 0 (STMT)
10 CONTINUE 0014
C 208*IL.JL - 208*IL - 136%JL + 219 (D0)
DO 20N =1, 4 0016
C 52+IL.JL - 52%IL - 34*JL + 45 (D0)
DO 20 J =2, JL 0018
C 55%IL - 41 (D0)
DO 20 I =2, IL 0020
C 45 (STMT)
DW(I,J,N) = FS(I,J,N)-FS(I-1,J,N) 0021
C 0 (STMT)
20 CONTINUE 0022
C 167+IL - 156 (DO)
DO 26 I =2, IL 0024
C 54 (STMT)
XX = X(I,1,1)-X(I-1,1,1) 0025
C 54 (STMT)
YX = X(I,1,2)-X(I-1,1,2) 0026
C 23 (STMT)
PA = P(I,2)+P(I,1) 0027
C 5 (STMT)
FS(I,1,1) = 0. 0028
C 10 (STMT)
FS(I,1,2) = -YX*PA 0029
C 9 (STMT)
FS(I,1,3) = XX*PA 0030
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C 5 (STMT)
FS(I,1,4) = 0. 0031
C 0 (STMT)
25 CONTINUE 0032
C 699%IL.JL - 699*IL - 681%JL + 692 (D0)
DO 30 J = 2, JL 0034
C 699%IL - 688 (D0)
DO 30 I = 2, IL 0036
C 54 (STMT)
XX = X(I,J,1)-X(I-1,J,1) 0037
C 54 (STMT)
YX = X(I,J,2)-X(I-1,71,2) 0038
C 48 (STMT)
PA = P(I,J+1)+P(I,J) 0039
C 95 (STMT)
QSP = (XX*W(I,J+1,3)-YX*W(I,J+1,2))/W(I,J+1,1) 0040
C 92 (STMT)
QSM = (XX*W(I,J,3)-YX«W(I,J,2))/W(I,J,1) 0041
C 72 (STMT)
FS(I,J,1) = QSP#W(I,J+1,1)+QSM*W(I,J,1) 0042
C 78 (STMT)
FS(I,J,2) = QSP*W(I,J+1,2)+QSM*W (I,J,2)-YX*PA 0043
C 78 (STMT)
FS(I,J,3) = QSP*W(I,J+1,3)+QSM*W (I,J,3)+XX*PA 0044
C 121 (STMT)
FS(I,J,4) = QSP*(W(I,J+1,4)+P(I,J+1))+QSM*(W(I,J,4)+P(I,J 0045
& ) 0045
C 0 (STMT)
30 CONTINUE 0046
c 272+IL.JL - 272%IL - 200%JL + 283 (DO)
DO 40 N =1, 4 0048
C 68+IL.JL - 68+IL - 50%JL + 61 (D0)
DO 40 J = 2, JL 0050
C 68*IL - 57 (D0)
DO 40 I = 2, IL 0052
C 61 (STMT)
DW(I,J,N) = DW(I,J,N)+FS(I,J,N)-FS(I,J-1,N) 0053
C 0 (STMT)
40 CONTINUE 0054
C 2 (STMT)
RETURN
C 0 (STMT)
END

We have got the complexity of the subroutine eflux.f with our complexity estimator:

Clefluz)= 1878« [L.JL — 1711« I L — 999 « J L + 1033 (5.1)

Now we explain how our estimator obtain that result. In eflux subroutine, there are five outer
loops, whose loop labels are 10, 20, 25, 30 and 40 respectively. We do not need to look into every
one, we just need to pick up one as example. We chose the very first loop, i.e., Loop 10. There
are 9 statements in the loop body of Loop 10. In order to explain clearly, we use the statement
number shown in the complexity result of eflux. For the first statement of the loop body, which
is numbered 0005 in the complexity result output, has 54 as cost of the statement. Because X is
passed as argument and from Table 3.17, we know that the cost for vic is 25. So X(/,J,1)is 25
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and X(I,J — 1,1)is 26 since there is an integer subtraction inside. From Table 3.10, we know
that floating-point subtraction has 2 costs and from Table 3.11 we know that memory access to a
floating point variable is 1. Finally, we can add them together 1 + 25 4+ 2 + 26 = 54.

With same reasoning, we can get the results of all 9 statements. The sum of their costs is 692. For
the inner loop of Loop 10, and from Table 3.20, we know the loop init is 11 and branching is 7, we
have the Equation (2.4), so the inner loop cost is 114+ 1L+ (6924 7) = 699+ 1L 4 11. For the outer
loop, we have 114+ (JL — 1)« [(699+« [L +11)+ 7] =699« [ L+ JL — 699« [ L+ 18+ JL — 7.

With the above inference in mind, we have no problem to get the result of other four loops, we add
them together and get the final result shown in Equation (5.1).

Now we turn our attention to verification. Verification results are shown in Table 5.3.

Table 5.3 contains results from 50 tests. The first column is the test number; the second and
third are values that two variables I'L and JIL could take; the next is the estimated number of
executed instructions, calculated by the Equation (5.1); the fifth column is the estimated number
of microseconds, obtained by assuming each instruction takes about 0.05usec; the sixth is the
number of microseconds we measured; the final is the difference in percentage.

For example, for test 14, we introduce the real values of /L and JL into the Equation (5.1). We get
the result 7478510, which is the number of instruction cycles. As we have assumed in Section 3.5.1,
each instruction cycle is about 0.05usec on SUN SPARCstation 2. Hence, we have 373925usec as
prediction of execution time for corresponding I'L and JL. We timed the code with same I'L and
J L, the real time is 364199usec. The difference is about 2.67%.

5.4 Summary

In this chapter, we have first compared the result generated by our static estimator with the one
obtained manually by a researcher. It showed that in most cases, our estimator works well, and
if we can instruct it a little bit, e.g., indicate probabilities for some statements, we could get very
satisfactory result.

We chose a benchmark program FLO52 from PERFECT Club Benchmark Suite to validate our
complexity results obtained from our evaluation program.

Then, we timed a subroutine EFLUX from FLO52 program of Perfect Club, and compared it with
complexity result. Despite the large range of two variables explored, we got very good result with
a very simple cost table SunSPARC, the prediction error is less than 5%. It is necessary for the
performance evaluator to be aware of the relative amount of time required by different operations.
For instance on the IBM RISC System /6000 computer, handfuls of floating-point multiplication
and additions can be performed in the time it takes to do a single fixed-point multiply or to service
a cache miss or even to get the result of a comparison to the branch unit. More advanced techniques
are needed for the superscalar superpipelined machines.
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Test | IL | JL | Est. Cyc. | Estimated (usec) | Measured (usec) | Difference(%)
1 193 | 33 | 11598825 579941 567799 -2.13
2 193 | 30 | 10514460 525723 513299 -2.42
3 193 | 27 | 9430095 471505 459133 -2.69
4 193 | 24 | 8345730 417286 404766 -3.09
5 193 | 21 7261365 363068 352999 -2.85
6 183 | 33 | 10996195 549810 535633 -2.64
7 183 | 30 9968170 498408 489666 -1.78
8 183 | 27 | 8940145 447007 440033 -1.58
9 183 | 24 | 7912120 395606 388533 -1.82
10 | 183 | 21 6884095 344205 338599 -1.65
11 | 173 | 33 | 10393565 519678 511999 -1.49
12 | 173 | 30 9421880 471094 458733 -2.69
13 | 173 | 27 | 8450195 422510 410733 -2.86
14 | 173 | 24 | 7478510 373925 364199 -2.67
15 | 173 | 21 6506825 325341 318299 -2.21
16 | 163 | 33 9790935 489547 479299 -2.13
17 | 163 | 30 8875590 443779 433599 -2.34
18 | 163 | 27 | 7960245 398012 388966 -2.32
19 | 163 | 24 | 7044900 352245 344233 -2.32
20 | 163 | 21 6129555 306478 300066 -2.13
21 | 153 | 33 9188305 459415 448499 -2.43
22 | 153 | 30 8329300 416465 406699 -2.40
23 | 153 | 27 | 7470295 373515 365399 -2.22
24 | 153 | 24 | 6611290 330564 323433 -2.20
25 | 153 | 21 5752285 287614 280599 -2.50
26 | 143 | 33 8585675 429284 419566 -2.31
27 | 143 | 30 7783010 389150 381033 -2.13
28 | 143 | 27 | 6980345 349017 341366 -2.24
29 | 143 | 24 | 6177680 308884 302433 -2.13
30 | 143 ] 21 5375015 268751 262299 -2.45
31 | 133 | 33 7983045 399152 390599 -2.18
32 | 133 | 30 7236720 361836 353899 -2.24
33 | 133 | 27 | 6490395 324520 317766 -2.12
34 | 133 | 24 | 5744070 287203 280366 -2.43
35 | 133 ] 21 4997745 249887 244266 -2.30
36 | 123 | 33 7380415 369021 361599 -2.05
37 | 123 | 30 6690430 334521 327233 -2.22
38 | 123 | 27 | 6000445 300022 293233 -2.31
39 | 123 | 24 | 5310460 265523 259699 -2.24
40 123 | 21 4620475 231024 225166 -2.60
41 | 113 | 33 6777785 338889 331466 -2.23
42 | 113 | 30 6144140 307207 301266 -1.97
43 | 113 | 27 | 5510495 275525 269699 -2.16
44 113 | 24 4876850 243842 238333 -2.31
45 113 | 21 4243205 212160 207199 -2.39
46 | 103 | 33 6175155 308758 303166 -1.84
47 | 103 | 30 5597850 279892 274199 -2.07
48 | 103 | 27 | 5020545 251027 246233 -1.94
49 103 | 24 4443240 222162 217499 -2.14
50 | 103 | 21 3865935 193297 189366 -2.07

Table 5.3: Verification of Eflux subroutine of FLO52



Chapter 6

Experiments on Parallel Machine

We have shown that good complexity estimation could be obtained statically. We now want to
extend these results to parallel machines which are hot topics in performance debugging today.

Precise prediction of an application execution time on a parallel computer is important in perfor-
mance debugging. In this chapter, we present experimental results obtained with several sample
tests on a NUMA shared-memory multiprocessor MIMD machine, the BBN TC2000!. We have
found that the experience obtained from sequential machines could easily be extended to parallel
machines with minor modification of the algorithm to handle parallel loops. Several empirical mod-
els have been built from the test results and proven to be correct by the experimentation. These
models could be used to characterize the execution time of parallel loops.

After having gathered some experience on execution time prediction with sequential machines, we
got some first-hand experience on parallel machines. We ran many test programs and traced the
activities of the parallel machines. Because we did not have much time to observe the activities of
parallel machines, we only executed a small group of sample programs to get some ideas about the
behavior of parallel machines.

In this chapter, we first briefly present parallel machines, why they are difficult to handle. Then
we introduce some definitions that are used in the chapter. Later, we present BBN TC2000, its
architecture, operating system and performance analyzer. We present our experimental tests with
varying number of processors. Finally, we extract the algorithms from the experimentation and
verify them by comparing the results.

6.1 Introduction

Performance is an important aspect of sequential programming, and even more so far for parallel
programming. When one sits down to write a parallel program, although with much more difficulties
than sequential one, it is expected that the parallel program will execute faster in parallel than
in sequential. Furthermore, there is an expectation that increasing the number of processors will
result in a commensurate decrease in execution time. Unfortunately, it is generally not the case.

!'We thank sincerely CERFACS for allowing us use their BBN TC2000 computer.
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/* Multiprocessor "Hello World" program */
p prog

#include <us.h>

long * nodecount;

PrintHello (dummy, index)
int dummy, index;
{ printf ("Index=Yd: Hello World from node #%d (= h/w node #Jx)\n",
index, PhysProcToUsProc(Proc_Node), Proc_Node);
xmatomadd31( nodecount, -1 );
while ( *nodecount '= 0 ) LockWait (0);

main ()
{ InitializeUs ();
nodecount = (long *) UsAlloc (sizeof (short));
* nodecount = TotalProcsAvailable ();
printf ("\nThere are d nodes in this cluster\n\n",
* nodecount) ;
Share (& nodecount);
GenOnI (PrintHello, * nodecount);

Figure 6.1: Example 1: Source Code

We have a very simple multiprocessor program, see Figure 6.1, it is a multiprocessor version in C
of the “Hello World” program in [KR88] and is only a little more complicated.

This program causes each processor to print out the greeting message:
Index=n: Hello World from node #m (= h/w node #x)

The “Hello World” program uses UsAlloc to reserve space in globally shared memory for node-
count, a variable used for bookkeeping by the processors. nodecount is initialized with the number
of processors available to the current execution of the program, a number obtained via TotalProc-
sAvailable. After using Share to propagate the location of nodecount to other processors, the
program then uses GenOnl to generate tasks that print the “Hello” message for each processor.
The only tricky part is ensuring that each processor performs exactly one task. In general, without
some form of coordination, some processors could get more than one task and others might get none.
For this program, the coordination is simple. After printing its message, each processor atomically
decrements a counter maintained in globally shared-memory ( nodecount ) with xmatomadd31
and then waits until the counter indicates that all messages have been printed. This guarantees
that no processor finishes its task until all messages have been printed. Therefore, all tasks are
generated before any processor finishes. The program is shown in Figure 6.1.
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Figure 6.2: Parallelism Profile of an Application

An interesting fact is that, if we eliminate the busy waiting coordination part of the program shown
in Figure 6.1, only three processors participate the work. One gets 6, one gets 4 and one 2. The
important fact is that it is 12 times faster than the one with coordination. This illustrates that
if the user does not have much work to do on a parallel machine, the more processors the worse
performance.

6.2 Background and Terminology

Generally speaking, researchers consider three main degradations of parallelism, load imbalance,
communication cost and runtime overhead. The first one is due to uneven distribution of workload
among processors, and is application-dependent. The second one is due to the communication
processing and latency, and it depends on both the application and underlying parallel computer.
The last one is caused by setting up the working environment, i.e., the function stack, etc. To give
an accurate performance measurement, all degradations need to be considered. Load imbalance is
measured by degree of parallelism. We give the definition below:

Definition 6.1 Effective Degree of Parallelism: the maximum number of processors busy comput-
ing at a particular instant in time.

Apparently, the parallelism degree is function of time. All processors cannot start to work at the
same time. We can imagine that the processors get to work one by one until no more processor
is available on the machine, and when there are no more tasks, the processors gradually stop
working. By drawing the degree of parallelism over the execution time of an algorithm, a graph
can be obtained, see Figure 6.2. We refer to this graph as the parallelism profile.

Definition 6.2 Parallelism Profile: The parallelism degree of a program over time.

Communication cost is an important factor contributing to the complexity of a parallel algorithm.
Unlike the parallelism degree, which depends on the application as well as on runtime support and
the operating system, communication cost is machine-dependent. It depends on the communication
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network, the routing scheme, and the adapted switching technique, the runtime support and the
operating system.

In our testing suite, we are considering a relatively simpler case to deal only with the parallelism
degree and to ignore communication costs.. We now introduce some definitions here.

Definition 6.3 Time of Task Duration Tt: The execution time needed to finish one task.

Also, we chose identical tasks for our first experiment so as to distinguish between runtime and
operating system influence on one hand and load imbalance on the other.

Definition 6.4 Interstate Time Ti: The wasted time between the execution of two consecutive
tasks on the some processor.

All processors are identical, so we can assume that interstate time is same on any processor. On
some machines, like BBN TC2000, we need to designate the maximum number of processors for a
session, we give the definition:

Definition 6.5 Number of Allotted Processor Np: The number of processors available for a certain
job, which is allotted before the job gets started.

Np can be allotted by cluster ( see [BBNXtra] ) and its value can be obtained by TotalProc-
sAvailable during the execution. Of course, it can not be larger than the number of processors
available on the machine. If you try to allot more processors, the machine will warn you and allot
the maximum processors it actually has. For example, BBN TC2000 machine in Toulouse has max-
imum 64 processors, and if some other sessions use 30 processors, only 34 processors are available,
if you want 40, you will only get 34, because only 34 processors are available.

When processors are allotted, we must know how many of them actively participate the job, we
introduce the number of effective processor definition:

Definition 6.6 Number of Effective Processor Ne: The number of processors that fully participate,
i.e., execute at least two tasks of the program.

Ne in general case is equal to Np when the program is large and parallel enough. But when the
job is not big enough, all processors available cannot be all exploited, only a small part of them
can be used, as explained before with the parallel “Hello world” program. So there are two kinds
of “idle” processors, one is formal processor which symbolically does one job, and the other is null
processor, to its turn, it is even worse because it does nothing at all. We give both definitions in
the following;:

Definition 6.7 Number of Formal Processor Nf: The processor that only does one task during the
work.

The processor participates to the execution but it executes only one task and quits. In this case,
more processors in the execution can only deteriorate the performance because of the heave start-up
overhead. This overhead may be much larger than the task execution time.
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Definition 6.8 Number of Null Processor Nn: Given the amount of tasks, the number of processors
that do not participate the job at all.

Nn is the number of processors that are allotted before the real run, but do not execute any job
at all because of task is not heavy. So we have the following equation:

Np=Ne+ Nf+ Nn (6.1)

Definition 6.9 Number of Optimal Processor Nd: Given the amount of tasks, the number of pro-
cessors that can be effectively exploited to execute the job.

As long as Np is less than Nd, the more processors, the shorter the execution time is; i.e., the
formal processor can be fully eliminated. And when Np is greater that Nd, the more processors,
the longer the execution time is.

6.3 The Machine Description

Before we present our test program, we briefly introduce the machine used for the experiment —
BBN TC2000 and its programming and performance debugging environment.

6.3.1 Basic Characteristics of TC2000

The TC2000 computer is a powerful multiprocessor [BBNInside]. It builds upon BBN’s experience
in design of parallel processor and extends the state-of-the-art of parallel machine. It has the
following features:

1. It employs a number of Motorola 88K microprocessors, each executing individually on the
users’ tasks in a controlled and coordinated way.

2. It employs shared memory to store information. All main memory of the machine is
accessible to every processor, but with varying execution time (i.e., NUMA machines ).

3. The TC2000 processors access the shared memory through an interconnection network called
the Butterfly switch. The switch provides a fast, efficient and effective access path.

4. The TC2000 design is modular and scalable. Processors, memory and 10 capacitty can be
added board by board, as needed by the user.

5. The TC2000 has a balanced architecture. The integer computation, floating point compu-
tation, memory and input/output capabilities are approximately equal in power.
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6.3.2 Architecture of TC2000

The TC2000 architecture consists of function boards interconnected by a high performance But-
terfly Switch. In addition, the Test and Control System (TCS) monitors the entire machine.

Each function board contains some or all of the following: a processor, cache and memory
management unit, memory, a VMEbus interface, a switch interface, TCS circuitry and power
supplies. The processor is Motorola 88000 chip group comprised of an 88100 CPU chip and
at least two 88200 cache/memory management unit (CMMU) chips. One or two 88200 chip(s)
handle instruction reference, and one other 88200 chip handles data reference. The memory is
dynamic RAM, with parity, addressable as byte, halfword ( 2 bytes ) or word ( 4 bytes ), aligned
on boundaries of the size being addressed.

6.3.3 nX Operating System

It is the operating system base on UNIX that runs on the TC2000 to support parallel multiprocess
applications.

There is a big difference between nX operating system and the classical one like SunOS. nX, just
as you can imagine, is supposed to be an n-processors X-Window operating system, so-called nX.
The user needs to specify how many processors ( called nodes in BBN jargon ) are allotted to a
certain application.

6.3.4 Uniform System Library

The TC2000 hardware and nX operating system are a foundation on which a variety of software
structures may be built. The Uniform System Library contains subroutines that can be used with
either C or Fortran programs. The approach to memory management used by the Uniform System
Library is based on two principles:

e Use a single address space shared by all processes to simplify programming; and
e Scatter application data across all memories of the machine to reduce memory contention.
The benefit of this strategy is that you can treat all processors as identical workers, each able

to do any application task, since each has access to all application data. This greatly simplifies
programming the machine, a benefit that far outweighs the modest cost in average time.

The TC2000 multiprocessor can work very efficiently with individual tasks a few milleseconds long;
if necessary, it can also work on tasks in the hundred of microseconds range. For shorter tasks,
various overheads begin to severely deteriorate performance.

6.3.5 Xtra Programming Environment

The X Tools for Runtime Analysis, called Xtra, programming environment is a software devel-
opment environment, based on the X-Window System, for debugging, analyzing, and tuning the
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performance of parallel programs. See [BBNXtra] for more information. The Xtra environment in-
cludes (1) the TotalView debugger; (2) the ELOG library for generating user event logs; and (3) the
Gist performance analyzer for analyzing event logs. The Xtra package also includes special macros
and the gisttext tool for generating text event logs. This package is designed to help users develop
parallel programs on the TC2000 system and port serial applications to the parallel environment
of the TC2000 system.

TotalView Debugger

The principal advantage of the TotalView debugger over conventional UNIX debuggers (e.g. dbz)
is that it was designed to debug the multiple processes of parallel programs. Furthermore, since
the TotalView debugger runs under the X Window System, its graphic interface is easy to learn
and ideal for conveying the concepts of parallel programs. I did not use the debugger much because
my test program were simple and because I only had remote access to the machine.

The ELOG library and Gist performance analyzer

I have used the other two components of the Xtra environment — the ELOG library ( for Event
LOG ) and Gist performance analyzer. They are designed to tune the performance of multiprocess
programs. The performance analyzer also has a graphic interface which is based on the X-Window
System.

We need to present this utility in more detail because all the data we gathered about the BBN
TC2000 were produced with it.

6.4 Gist Performance Analyzer

This utility is provided by the manufacturer. We explain how to create the events, obtain data and
analyze them.

6.4.1 Logging Events with the Event Logging Library

An event log is a file containing a record of events for each process in a program. Fach event
recorded for a process contains:

e A time stamp, which is the real-time clock value when the event was recorded. The resolution
is XXX microsecond (usec).

e An event code, which is an integer identifying the event.

o A user-defined 32-bit data item, which is used by the Gist programs to analyze the log file.

In order to create an event log, we need to complete the following steps:
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1. Decide what events should be logged from the program.

2. Understand the library of event logging routines.

3. Instrument the program with the appropriate event logging routines.
4. Compile and link the program with the appropriate compiler switches.

5. Generate the event log by running the program.

We will elaborate them one by one in the following.

Deciding on the Events to be logged

The event logging routines can be used for two purposes: 1) analyzing the performance of a program
and 2) debugging a program. We need to pay attention to several important points here:

¢ Log events for the major components of user program, such as procedures, functions and
subroutines.

o Log events for any parts of user program that use multiprocess programming.

o If the application requires user input, gather it before user start logging.

Understanding the Routines

The event logging library, /usr/lib/libelog.a consists of six routines. These routines initialize an
event log, allocate space for individual processes to record events, specify what to do if a buffer
overflows, define events to be logged, log events, and write the recorded events to the event log file.
You must link your program to the libelog.a library in order to call these routines.

It takes about 6 to 7 microseconds on the TC2000 to log an event. The amount of runtime overhead
incurred by the event log instrumentation depends on how the event logging routines are used. The
instrumentation in this work uses event-logging macros, which are activated if the pseudo-variable
ELOG is defined. If not, program will incur no runtime overhead due to the presence of the
event log instrumentation.

Instrumenting a Program

We created a sample C program, simple.c which generates tasks that simply use up time in the
processes busy waiting. We can specify the number of tasks, the size of each task ( e.g. the number
of iterations of the task), and the number of event log files among other things.
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Compiling and Linking the Program

For C programs, we compile in different ways depending on whether or not we define the symbol
ELOG for expansion of the event logging macros. To compile the program with macros, do as
follows:

cc -DELOG -o simple.c -lus -leleog simple.c

where

1. -DELOG defines the symbol ELOG ( required when the C macros are used)

2. -lus links the prograam to the Uniform Systems library ( required when you use the Uniform
System)

3. -lelog links the program to the event logging library ( required all the time ).

Initializing the Event Log with giststart

giststart is a program that initializes the event log file from the command line. Use this method
when it is difficult or inconvenient to instrument user program with a call to ELOG_INIT.

6.4.2 Output of Event Logs with Gist

If gist does not provide a function that needed to analyze your event log, you can write the event
log in a text file. And then you can analyze the text file with standard operating system utilities,
such as awk, sed, etc. or write your own program to perform the analysis desired. We use this
method for our simple tests.

Two kinds of output formats are available. One is brief format, a relatively simpler format, and
the other is gisttext format. The two formats are simply presented below.

Brief Format
A text file for an event log in brief format contains four columns of information for each event:

1. The process label ( in hexadecimal )

2. The time the event occurred, in microseconds
3. The event codes

4. The datum logged with the event

Figure 6.3 contains an example of the standard output of brief format. But this format is less useful
than the following one, so we did not use it.
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0 01 200
0 750 3 160
c 1663 3 116

Figure 6.3: Brief Format of Gist Output

Gisttext Format

A text file in gisttext format contains the same seven columns as the output produced by the
gisttext program. They are:

1. The line type ( always E, for Event )

2. The processor and process for the process trace

3. The time the event occurred, in microseconds

4. The elapsed time since the previous event, in microseconds
5. The unique integer( event code) identifying the event

6. A text string identifying the type of event

7. The formatted data item for the event

Figure 6.4 is the standard output of gisttext format. We will analyze this format in the following
section.

6.4.3 Analyzing Event Logs with the Gist

This section explains how to analyze event logs that were generated by the event logging library
introduced in the previous section.

Gist can display more information about each event in a process trace. Specifically, Gist can
display (1) the time the event occurred in microseconds, (2) the event code, (3) the event name
and (4) the data that is logged with the event. Now let us look at Figure 6.4, for the Node 0x0, at
the real time 0 microseconds, the work starts and lasts 0, after that there is an interstate ( waiting
time ) 186usec and worker task #0 starts there, at 598 usec worker task #0 finishes, that is after
412psec. Node 0x0 begins the work again, at 625usec for the worker task #1 after 27usec interstate
time and ends at 1031usec. During this time, another Node Oxe starts the worker task #2 and
finishes at 1411usec. Node 0x0 starts at 1049usec for the worker task #3 and ends at 1455usec.
And the same things for other nodes.



6.4. GIST PERFORMANCE ANALYZER 161

E 0x0 0 0 1 Start Generator

E 0x0 186 186 2 Start Worker Task #0
E 0x0 598 412 3 End Worker Task #0

E 0x0 625 27 2 Start Worker Task #1
E Oxe 998 373 2 Start Worker Task #2
E 0x0 1031 33 3 End Worker Task #1

E 0x0 1049 18 2 Start Worker Task #3
E Oxe 1411 362 3 End Worker Task #2

E Oxe 1432 21 2 Start Worker Task #4
E 0x0 1455 23 3 End Worker Task #3

E 0x0 1473 18 2 Start Worker Task #5
E Oxe 1838 365 3 End Worker Task #4

E Oxe 1854 16 2 Start Worker Task #6
E 0x0 1879 25 3 End Worker Task #5

E 0x0 1898 19 2 Start Worker Task #7
E Oxe 2260 362 3 End Worker Task #6

E Oxe 2277 17 2 Start Worker Task #8

Figure 6.4: Gisttext Format of Gist Qutput

So actually, we have every details about execution performed by the node, i.e., for each node, how
many tasks it has executed, its overall start-up time and finish time, even start-up time and finish
time for every task it has executed. We know exactly when a task starts and finishes, and the
interstate between two consecutive tasks.

It is convenient to write a awk script to analyze the output of gisttext. Figure 6.5 shows the awk
script which is used in the next section to analyze the traces produced with gist.

6.4.4 Summary of the Analyzer

Up to now, we have every information necessary to analyze the trace.

Figure 6.6 is the complete procedure for trace analysis. We have got two sorts of outputs after a bbn-
ized program is run: (1) standard result of the program on issue, but it is out of our consideration,
we simply ignore this output, and (2) tracing side effects of the program. While the standard result
is produced, logging file with events is formed too. As we have mentioned earlier, all information
about each node is available in that file.
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BEGIN { maxnu = 0 }
# $2 is the processor number
{ ¢c=0 # convert proc number from hex to decimal
for (i=3;i<=length($2);i++)
{
a=substr($2,1,1)
if (a=="a") a=10
if (a=="b") a=11
if (a=="c") a=12
if (a=="q4") a=13
if (a=="e") a=14
if (a=="f") a=15
a=axl
c=16*c+a
}
# $3 is the time stamp
# event #b=start of task, event #7=end of task, ¢ = proc number
# each time a processor finishes a task, compute it is duration
if ($56==2) { debut[c]=$3 }
if ($5==3)
{
line += 1 # finished number of the task
dureel[c]=$3-debut[c] # dural time of the task
proc = ¢
if ( length(begin[proc]) == 0 ) begin[proc] = line
if ( end[proc] < line ) end[proc] = line
total[proc] = totallproc] + dureelc]
count [proc] += 1
if ( maxnu < proc ) maxnu = proc
}
}
END { printf("\t Proc \t Ntask \t First \t Last \t Average Time Per Task\n")
for ( i=0;i<= maxnu;i++)
printf("\t %d \t %d \t %d \t %d \t %f\n",\
i,count[i],begin[i],end[i],totall[i]/count[i])
for ( i=0;i<= maxnu;i++) {
sum_count += count[i]
sum_squa += count[i]*count[i]
}
av_count = sum_count/(maxnu+1);
sigma = sqrt(sum_squa/(maxnu+l) - av_count*av_count)
printf("For Task Distribution: %d tasks per processor\n'",av_count)
printf("The absolute standard deviation is %f\n\
The relative standard deviation is %f %\n",\
sigma, (sigma*100/av_count) );

Figure 6.5: Awk script to analyze the gisttext output
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Original BBN-ize BBN-type Compile Executable Run
Fortran or C Program BBN-type
Program + Logging with Events + Options Program on BBN
Standard Result of
BBN-type
Result Program
Side Logging Gist Gist Awk Data Needed
File Standard to Build
Effect with Events Analyzer Output Script a Model

Figure 6.6: The Complete Procedure of Analysis
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Proc Ntask StartTime FinishTime AverageTimePerTask AverageInterval
0 1006 4370 4104378 4059.95 15.62

1 995 49942 4105011 4059.36 16.10

2 1000 25758 4101243 4059.93 15.57

3 996 44032 4103198 4059.88 15.61

4 999 31689 4103061 4059.84 15.62

5 1005 11605 4102828 4060.00 10.88

6 1002 19427 4102786 4059.37 15.86

7 997 37893 4101113 4059.60 15.86

Figure 6.7: Data of Test Program on 8 nodes

6.5 Experimentations

In this section, we present the experiments we have on the BBN TC2000 machine. First we explain
the sample program, then introduce the startup time and finish time.

6.5.1 Explanation of Test Program

We implemented the simple.c program to obtain the data for each processor. Recall that this
program generates tasks simply use up a certain amount of processing time. We can specify the
number of tasks, the size of each task ( e.g. the number of iterations of the task), and the number
of the event log files among other things.

To save space, we do not need to present all data obtained from the experiments. We only present
the three representative ones, when number of processors is 8, 16 and 24 respectively.

In Figure 6.7, Figure 6.8 and Figure 6.9, note that the first processor is numbered 0 instead of 1.

6.5.2 Startup Time

From the data shown in Figure 6.7, Figure 6.8 and Figure 6.9, we can display all start-up times in
a graph, shown in Figure 6.10. From the picture, we see that start-up times are a linear function
of processor number.

We give the definition of that line:

Definition 6.10 Start-up line: The line formed by start-up points of all processors.

Because we can suppose that start-up makes a straight line which starts from the origin, in order
to facilitate the stating, we introduce the following definition:

Definition 6.11 Start-up angle a: The angle formed by start-up line and processor-axis.

In Figure 6.12, we show the angle . So tga has the physical meaning, the time to start another
processor, so it introduces another definition:
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Proc Ntask

0 1014
1 998
2 997
3 1008
4 1002
5 1013
6 994
7 989
8 9088
9 1004
10 992
11 1000
12 1010
13 990
14 1006
15 995

Proc Ntask

0 1021
1 990
2 982
3 1010
4 985
5 1020
6 995
7 1008
8 1002
9 086
10 981
11 1000
12 9088
13 999
14 983
15 991
16 1012
17 1017
18 1016
19 1004
20 1006
21 993
22 1014
23 997

StartTime

4672
66113
72894
29133
51676
12436
86167

104488
110525
44618
92379
58835
21324
98309
37256
79539

Figure 6.8: Data of Test Program on 16 nodes

StartTime

4305
135410
167444

51743
155121
13455
114219
59747
83067
148870
170496
90978
141954
98534
161295
128607
44208
21664
29221
75595
67424
121806
36647
106553

Figure 6.9: Data of Test Program on 24 nodes

FinishTime

4137212
4136782
4136147
4137078
4135487
4136878
4136968
4135148
4137049
4136409
4135544
4134372
4137709
4133768
4137738
4135101

FinishTime

4166433
4170263
4169620
4168428
4169089
4166355
4169168
4167856
4166893
4167895
4168890
4166817
4168847
4170290
4167995
4167651
4168585
4166695
4169859
4167422
4167617
4168712
4169501
4170137

4059.
4063.
4059.
4059.
4059.
4060.
4059.
4059.

4059

4059.
4059.
4060.
4059.
4060.
4060.
4060.

61
78
96
09
24
80
70
90
93
04
83
05
13
11
74
65
95
92
64
80
83
55
80
96

AverageTimePerTask

70
27
62
50
82
34
50
86

.48

53
72
05
75
38
02
20

AverageTimePerTask
4059.
4059.
4059.
4060.
4059.
4060.
4059.
4059.
4059.
4060.
4059.
4060.
4060.
4060.
4059.
4059.
4059.
4059.
4059.
4059.
4059.
4059.
4059.
4059.

15.
15.
15.
15.
15.
11.
15.
15.
15.
15.
16.
15.
15.
15.
16.
15.

AverageInterval

80
58
87
85
85
18
77
65
97
97
07
50
89
86
02
75

AverageInterval
16.
15.
15.
15.
15.
10.
15.
15.
15.
16.
16.
15.
15.
15.
16.
16.
15.
15.
15.
15.
15.
15.
16.
15.

93
84
59
85
87
68
64
62
76
06
02
81
69
74
27
09
54
83
81
74
92
90
01
87
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i Node Number
123 .

| 22 .
121 .
1 20 .
119 .

118 .

117 .

116 .

L15 * .

14 *x e

113 *x e

112 * o

111 * ®

* Startup Time for 8 Nodes

* & * Startup Time for 16 Nodes

H—~ ot (@ -~ oo Nel
*
»

* & e Startup Time for 24 Nodes

Time
| Qe 1000 msec

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Figure 6.10: Startup Time for 8, 16 & 24 Nodes
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Node Number

Time
NE | 1000 msec

0 10 20 30 40 50 60 70 380 390 400 410 420 430

Figure 6.11: Startup Time and Finishing Time for 8 Nodes

Definition 6.12 Start-up Slope Ta: The time needed to start up the processor.

Here, from the data presented, we can conclude that a start-up slope of 7300 msec/processor is a
good approximation of the BBN TC2000 behavior. We see in Figure 6.10 that the maximal error
is less than 10%.

6.5.3 Finish Time

Now let us turn our attention to the finishing times of processors. We reuse the data for 8 nodes.

From Figure 6.11, which represents the whole execution trace with the stationary behavior we can
observe that there is no idle processor ( node ) as long as there is a task in the waiting queue.
i.e., the time between the node which finishes the job the first and the one which does the last
is equal or smaller than average task time. So from the observation, we can simply assume that
difference between the processor which finishes the work first and the one which does the last is
exactly one task time T¢. Meanwhile, because we are only concerned with the surface surrounded
by the start-up line and finish time, so we could sort the finish time in ascending order and we can
also assume that finish time forms a line and difference between the processor which finishes the
work first and the one which does the last is exactly one task time Tt. Figure 6.12 is a theoretical
model for the parallelism profile.

We introduce another definition:

Definition 6.13 Finish line: The theoretical line which simulates the curve formed by finishing
points according to ascending order. The difference the processor which finishes the work first and
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'Node Number

Startup Time Finishing Time

\ Interstate Time on a Certain Node /

SN

Task Duration on a Certain Node

Time

Figure 6.12: Startup Time and Finishing Time of Theoretical Model

the one which does the last is exactly one task time Tt.

The total execution time shown in Figure 6.11 is such that the surface delimited by stars and bars
is proportional to the amount of work to execute. This display can be simplified by forgetting the
relationship between starting and finishing times and by sorting finishing time in ascending order as
shown in Figure 6.12. The reader can easily check that this shuffling does not modify the enclosed
surface, i.e., the amount of work performed. However, the new display makes it easy to derive a
symbolic formula linking the amount of work to the observed execution time.

6.6 Algorithm for Parallel Machines

Before we introduce our algorithms for the parallel machines, we summarize the assumptions we
have made earlier.

1. Start-up is a straight line from the origin.

2. Start-up slope is a constant for a fixed BBN TC2000 machine.

3. Finish time form a line.

4. The difference between the processor which finishes the work first and the one which does the
last is exactly one task time T7t.

5. All tasks are identical.

Under all these assumptions, we introduce the symbols used in our model of parallel loop execution
time.
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Np Number of processors available

Ne Effective Number of processors which participate
Nt Number of tasks

Tt Time for a task

T'¢ Time of interstate or waiting time.

Ta Start-up slope tg(a)

Depending on the amount of work available, NexTt, with respect to the number of processors Np,
two different cases must be considered:

1. There is enough work to use efficiently all processors.

2. There is not enough work.

So they will produce different shapes.

Algorithm for Trapezoid Form

First we consider a general case. We assume that all processors effectively participate the work,
i.e. the number of tasks is greatly larger than the number of processors — Nt > Np; so all nodes
participate i.e. Np = Ne. We assume that amount of time spent on a task and amount of waiting
time be identical. So the parallelism profile takes the shape of trapezoid.

Under the above assumptions, for a node j, it has Nj tasks to execute, it has (Nj — 1) interstates,
one less than the number of tasks, the timeis Tj= Nj-Tt+ (Nj—1)-Ti=Nj-(T't+Ti)—Ti.

Now consider that the trapezoid as a whole, we can imagine that Z;V:pl Nj= Ntand Z;V:pl 1= Np.

So the sum of execution times for all the processors is:

ZP:T]' = Zp:(Nj-Tt—l—(Nj—l)-Ti)
= Zp:(Nj-(Tt—l—Ti)—Ti)

ji=1
Np Np
= O_Nj)-(Tt+Ti)— (D 1)-Ti
ji=1 ji=1
= Nt-(Tt+Ti)— Np-Ti
It means that there are Nt tasks and because of there are Np processors, so there are Nt — Np
interstates, Np is largely less than the number of overall tasks, i.e., Np < Nt. Because the height

for each Node is a unit, so the total height is the number of Nodes. From this point of view, we
think the surface of the trapezoid is:
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S1 = Nt-(Tt+Ti)— Np-Ti (6.2)

The standard formula to get the surface is Sur face = Height - (Upper Length + Lower Length)/2.
For the this trapezoid , we have Height = N p, which is the number of processors allotted ( of course,
Nt > Np); Lower Length = T, which is overall finishing time; and Upper Length =T -Tt—Np-Ta

Here we have

52

Height - (Upper Length + Lower Length)/2
— Np-(T—Tt—Np-Ta)+T)/2 (6.3)

Both 51 in Equation (6.2) and $2 in Equation (6.3) denote the same amount of trapezoid surface
from two different points of view, so they are equal: 51 = 52. Hence we have:

Nt-(Tt+Ti)— Np-Ti=Np-(T =Tt Np-Ta)+1T)/2 (6.4)

And this equation can be simplified to:

Np-Ta Nt Tt
T==L 0 T Th - Tit — (6.5)
2 Np 2
——’ ~
partl part2 part3

This equation has an intuitive meaning shown in Figure 6.13. Part 1 in Equation (6.5) is half of
start-up line projected on the time-axis. Part 2 is the average length of upper length and lower
length. And Part 3 is half of finish line projected on time-axis. Obviously, this equation is intuitively
proven.

Algorithm for Triangle Form

Now we consider the critical case, i.e., when not enough work is available for the processors. First
we set up our session to 12 processors, which is introduced in Section 6.2, and then we gradually
increase the number of tasks while keeping the task size same as shown in Figure 6.14. Finally the
parallelism profile takes the shape of triangle.

Here we need to introduce another definition:

Definition 6.14 Critical Finish Time Te: The finish time when parallelism profile takes the shape
of triangle and all processors allotted are effective. It is a function of the number of processors.

It means that if we increase a little bit amount of work, parallelism profile will become a trapezoid,
and if we decrease a little bit amount of work, not all processors are effective.
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Figure 6.13: Startup Time and Finishing Time
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Figure 6.14: Triangle Form
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We use two different ways to compute the surface of the triangle. Using the standard formula, the
surface of critical triangle S3 is:

Te- N
§3 =2 2F (6.6)
2
and from the point of view of execution, the surface of critical triangle S4 is:
S4=Nt-(Tt+Ti)— Ne-Tt (6.7)
Certainly, 53 = 54 because both represent the same surface. We have:
Te- N
62 C = Nt-(Tt+Ti)— Ne-Ti (6.8)
with
Te—-1Tt
Ta = 6.9
« = 5 (6.9)
After substitution, we have:
T?+(2-Ti—Tt) - Te—2-Nt-(Tt+Ti)-Ta—2-Ti-Tt=0 (6.10)

Because, the total finishing time cannot be negative, so the negative solution does not make any
sense. Finally, we have a unique solution:

—2-Ti—-Tt)+ J(2-Ti =TI +8-Nt- (Tt +T7) - Ta+8-Tt-Ti
2

Te= (6.11)

Besides the final finishing time, we can also compute the number of processors which minimize the
computation, as following;:

(Te—(Ti+Tt))
Ta

Nd = (6.12)

This is the desired number for the computation, so d is used as subscript of Vd.

6.7 Verification of Formulas

In order to check the adequacy of our model with respect to the real world, we use the data shown
in Section 6.5.
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Np | Experiment | Formula | Difference
8 4105011 4106084 0.03%
16 4137738 4135614 0.05%
24 4170290 4164614 0.14%

Table 6.1: Trapezoid Formulas Verification

Ne | Experiment | Formula | Difference
3 24190 22836 5.93%

4 27716 26430 4.87%
5 34605 34003 1.74%

6 42669 41258 3.42%

7 50867 49382 3.01%

8 53975 51719 4.36%

9 65658 62359 5.29%
10 73287 73045 0.33%

Table 6.2: Triangle Formulas Verification — Extracted

Verification for Trapezoid Formulae (General Case)

We only choose three cases when Npis 8, 16 and 24 for simplification.

In Table 6.1, we see that the difference between prediction quality is too satisfactory to believe. In
effect, it is because task size is too small, so for a larger task size, bigger difference is expected.

Verification for Triangle Form

Now let us consider the triangle case. In Figure 6.15, we gradually increment the total tasks number,
40*p means the total task number is 40 times the number of processors allotted, ( in the example,
Np =12 ). MeasuredFT stands for Measured finishing time, EffectP for the effective number of
processor, FormalP for the formal number of processor, FTFormulal for finishing time when using
formula 1, which is T'¢ is Equation (6.11), FTFormula2 for finishing time of formula2, which is T
in Equation (6.5), DesiredP for desired number of processor, which is Nd in Equation (6.12).

Maybe the Figure 6.15 is a little bit misleading, let us just extract some data from that figure and
compare these data in Table 6.2.

6.8 Discussion

During the experimentation, we have observed something that we cannot explain.
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TotalTask MeasuredFT EffectP FormalP FTFormulal FTFormula2 DesiredP InterTime TaskTime

40+*p 14538 2 4 13596.48  44861.88 1.86 16.62 9.80
50%p 18051 2 7 16430.20  45348.77 2.25 20.99 9.88
60*p 18781 3 3 17861.556  45629.07 2.44 20.61 9.79
TO0*p 26292 3 9 24038.95 47112.18 3.29 37.49 9.76
80%p 24156 2 10 20097.85 46113.62 2.75 19.25 9.61
90%*p 24190 3 9 22836.00 46786.21 3.12 23.24 9.89
100*p 28127 3 9 24610.48  47267.56 3.37 24 .66 9.96
110*p 27247 3 9 24928.46  47356.88 3.41 22.34 9.95
120*p 27716 4 8 26430.93  47797.92 3.62 23.31 9.96
180*p 34605 5 7 34003.53 50412.94 4.65 26.41 10.30
190*p 35368 5 7 34663.08 50671.40 4.74 26.12 10.02
200#*p 38801 4 8 33858.11 50355.09 4.63 22.90 9.85
210#*p 39325 5 7 36478.14 51408.86 4.99 25.98 10.23
220%*p 42143 4 8 35797 .46 51126.756 4.90 23.51 9.77
230#*p 39076 4 8 36471.70 51404.83 4.99 22.59 10.45
240+*p 40526 5 7 38637.38 52334.78 5.29 24.95 10.59
250#*p 43103 5 7 38797 .55 52405.13 5.31 23.96 10.44
260%*p 42669 6 6 41258.31 53531.47 5.65 26.86 10.55
270%p 46249 5 7 40884 .16 53355.00 5.60 24.79 10.58
280#*p 50867 7 5 49381.67 57743.07 6.76 39.24 10.54
290#*p 48599 6 6 43308.60 54521.31 5.93 26.06 10.89
300#*p 49289 6 6 46043.14 55918.41 6.30 29.64 10.73
310#*p 46818 6 6 44695.75 55218.43 6.12 26.24 10.58
320%*p 48375 7 5 49060.71 57558.68 6.71 32.09 10.88
330#*p 53975 8 4 51719.31 59090.78 7.08 35.49 10.83
340+*p 51953 7 5 50070.46 58129.85 6.85 31.26 10.87
350#*p 53042 5 7 48394 .65 57185.44 6.62 27.60 10.63
360#*p 56590 7 5 53865.54 60384.62 7.37 34.83 11.22
370*p 94815 4 8 43990.61 54857 .99 6.02 19.93 9.95
380#*p 61136 8 4 58249.23 63194 .87 7.97 40.31 10.72
390#*p 55396 8 4 56179.14 61838.79 7.69 35.19 11.05
400*p 59231 7 5 53208.79 59979.76 7.28 29.55 10.88
410*p 59816 5 7 51022.77 58676.29 6.98 25.62 10.65
420*p 65658 9 3 62359.30 66027.05b 8.54 41.84 11.07
430*p 67213 6 6 57051.22 62401.07 7.81 32.85 10.39
440*p 63268 8 4 57691.89 62820.62 7.90 32.37 10.85
450*p 73360 11 1 72766.81 74069.86 9.96 55.66 11.59
460*p 73287 10 2 73045.55 74301.15 10.00 54.63 11.66
470*p 69647 9 3 65186.14 68085.26 8.92 40.64 11.02
480*p 75210 11 1 74671.37 75673.21 10.22 55.09 11.30
490*p 74598 10 2 68117.77 70318.88 9.32 43.02 11.08
500#*p 78052 11 1 74955 .26 75913.97 10.26 52.94 11.27
510#*p 76573 11 1 76685.03 77413.55 10.50 54.63 11.27
520#*p 77898 11 1 74682.08 75678.12 10.22 50.15 11.15
530#*p 86900 12 0 86509.37 86584.54 11.84 69.18 11.53
550#*p 102887 12 0 99080.03 99935.51 13.56 91.88 10.18

Figure 6.15: Triangle Formulas Verification
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6.8.1 Processor

There is always at least one processor which needs less waiting time considerably and in the mean-
time does more job than the rest. As you can see from Figure 6.7 and Figure 6.8, the 5th ( logical
number ) processor in both experiments. We have asked the machine owner in Toulouse, they
replied that all processors are identical. We once tried to locate physical number of the fastest
processor in one suite, and tried the same experimentation again without that processor. It turned
out that another processor emerged as the fastest one. This effect is probably due to the operating
system or to the runtime library ( including the logging system).

6.8.2 Intertask Time of Triangle Form

We cannot explain why waiting time of triangle is going up steadily while incrementing the number
of tasks.

We are guessing that more communication cost is needed when more tasks are involved.

6.9 Summary
From the experiments we have done, we can see that, if:

1. Time for each task is identical on each processor.

2. Waiting time between the consecutive two tasks is identical on each processor. i.e., the
interstate between the adjacent two tasks is same.

3. Starting times for nodes can be approximated by a line.

4. There are no idle processors as long as there is a task in the waiting queue. The time between
the mode which finishes the job the first and the one which does the last is equal or smaller
than the average task time.

These let us build a model of DOALL execution on the BBN TC2000. The formulae derived from
the model could be used by an automatic static estimator to predict execution times on such a
machine.

As we have stated several times, this experimentation is only the first step towards parallel ma-
chine modelization. Therefore all these observations support the idea that performance on parallel
machines can be predicted and assure that the experience we got from the sequential machines can
be expanded to parallel ones. Static analysis looks very promising.
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Chapter 7

Conclusion

We started this dissertation by introducing our goal and explaining how we related an approach
to performance evaluation in Chapter 1. In Chapter 2, we described the sequential algorithms
we have developed to compute statically the execution time of program on a sequential machines.
Then in Chapter 3 we introduced a machine model and the way to represent it. We presented the
implementation of our complexity in Chapter 4. Experimental results with sequential machines
are presented in Chapter 5. They showed a good agreement between prediction measurement on a
SUN SPARCstation 2. Finally, we showed how parallel loop execution times can be modeled for a
BBN TC2000 in Chapter 6. Formulae are derived from the model. They could be used in a static
estimator for parallel machines.

In this chapter, first we summerize our contributions to static execution time estimation. Then
we survey related work in the field of performance evaluation. Finally we suggest some future
developments.

7.1 PIPS Complexity Estimator

We start with an ideal real-world model which describes exactly the way applications are executed
on a specific machine. This information can only be obtained by running the application for a given
input. In order to approximate the real-world model, we have introduced two models. The first one
is a dynamic model, through which we abstract the application running on a simplified machine.
The second one is a static model, which is used to describe the application from a static point of
view, regradless of any specific input.

The goal in this thesis is two folds: (1) to develop a methodology for predicting the execution time
of an application on a supercomputer, with presumably very expensive CPU-hour; (2) to compare
the execution times between two versions of the same application with different transformations.
A very important point is that we do not need exact execution time of a program, which can only
be obtained by really executing the application on the specific supercomputer.

This thesis presents a new performance prediction approach, which was implemented and called
“complexity” in the PIPS programming environment. The complexity is composed of a library of
polynomial models of program performance and dynamically-derived program statistics, to present
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running time predictions of Fortran programs.

Besides the above three steps, as we have noticed along with our experimentation, major part
of calculations of real Fortran programs are in loop, it is said that it accounts for more than
90% of execution time. Therefore, for large scientific programs, while assuming branch statement
probabilities are fifty-fifty and keeping unknown variables as they are, we successfully estimated a
suite of real programs. Particularly, EFLUX from Perfect Club, the difference between estimated
and measured is within 5%.

Finally, our ultimate purpose is to make our estimator run on the parallel machines. In order
to expand this performance estimator from successful sequential program evaluation to parallel
program evaluation, we have experimented several sample tests on shared-memory multi-processor
MIMD machine — BBN TC2000. We have found that the experience obtained from sequential
machines can be easily expanded to parallel machine with minor modification of the algorithm. At
the same time, several empirical algorithms have been extracted from the test results and proven
to be correct by the experimentation.

7.2 Related Work

In this section, we survey the most common techniques applied in performance prediction tools.
Then we classify the existing techniques and we compare them with our own contribution.

7.2.1 Performance Evaluation Methods

We distinguish four approaches: manual evaluation, simulation, analytical and measurement.

Manual Method

The most essential and primitive method is to analyze the real program manually.

N. Emad [Emad91] detected all parallelism for a test suite from ONERA ( A French Space Research
Center ), particularly, TMINES program. Meanwhile, she obtained the manual complexity results.
So we used these results to check the results produced by our estimator. The comparison showed
that human being can fail on some coeflicients and that an automatic approach was very accurate
most of the time, but could also dramatically fail. Information about the estimation reliability is
fortunately provided.

Simulation Method

While CPU of supercomputers are too expensive to use, people can always find ways to get around
that problem by using simulation. In order to evaluate a program’s performance, simulation tech-
niques [FSZ79] such as emulation, Monte Carlo or discrete event simulation are widely used.

J. Bruner et al. [BCVY91] presented an approach which aims at employing the Perfect Club
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benchmarks to evaluate machine performance. The tool called MaxPar determines the maximum
available parallelism in a program by instrumenting each program.

Simulation requires a lot of efforts from the users. The program has to be modeled. In some way,
this is exactly what we do automatically at the instruction level.

Analytical Method

The analytical method analyzes the program behavior and underlying architecture by a set of
mathematical equations and/or formulas.

There are several people who are active in this field.

P. Flajolet et al. [F'SZ88] presented an automatic analyzer. This analyzer conducts a middle-cost
analysis on the operating algorithms on top of the decomposable database. The dynamic phase is
assured by an algebraic analyzer while compiling the algorithm specifications on generic functions.
The static phase — analytic analyzer extracts the asymptotical information on the generic series
coeflicients, i.e., on the ascending time rate. The information computed is much richer than ours,
but very few program can be analyzed. Procedure calls are not supported.

V. Dornic [Dornic92] presented in his thesis three systems that use the notion of effect systems
to estimate complexity. Introduced for the X language, his framework is general and flexible. It
allows additional information to be associated with program expressions (e.g. side effects in FX and
time in our thesis). Their systems are conceptually new. The programming language analyzed is
powerful and the systems are proved correct. However the expression power of the output language
is paid for by returning very limited execution time information. Programs have either a constant
execution time or an undefined execution time. Our estimator does compute symbolic polynomials
based on input parameters to provide some prediction capability.

B. Stramm and F. Berman [SB92] proposed a model called Retargetable Program-Sensitive Model
(RPS Model) which predicts the performance of static, data-independent parallel program mapped
to message-passing multicomputers. The behavior of multiprocessor systems at the application
level is analyzed using an analytical model. They show that their RPS model accurately ( within
10% ) predicts the performance of programs by comparing predicted and actual execution times.

J-Y. Berthou and P. Klein [BK92] showed that the discrepancy generated by the target machine has
a non-negligible influence on the sequential as well as parallel execution times. They investigated
the effects on efficiency, which depends on these execution times. They presented a set of criteria
for estimating the effective performance of parallelization, while studying the machines generated
drop in efficiency.

A. Yurik [Yurik93] presents micro-analysis approach to analyze program performance. Its goal is to
construct, with the help of a computer, a symbolic formula, so-called time-formula which expresses
a program’s execution time as a function of time variable. Once a time-formula for a program is
determined, actual time can be computed by replacing the time variable by the specific values. He
claim that his approach can determine the execution time of a program without explicitly running.
We believe that PIPS uses the same technique as his at the very beginning, i.e., to construct a
formula to represent the execution time. But what he called time variable means the execution
time of the basic operations, such as addition, memory access. While in PIPS, we use cost table
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to present the basic cost. He does not deal with the constructs like test, loop at all. He shows his
approach on sort algorithms while supposing the worst cases.

Measurement Method — Profiling

This class of methods is linked to benchmarking. Benchmarking is generally used to test machines.
A bundle of programs from various fields can form a Benchmark test suite, such that Perfect
Benchmark Club [Cybenko91]. It has become a new and very good performance prediction approach
to support the program optimization effort. The corresponding performance measurements are not
only used to show the machine performance, but also reflect the performance behavior of real
programs.

V. Sarkar [Sarkar89A, Sarkar89B] presented a general framework for the determining average pro-
gram execution and their variance, based on the program’s interval structure and control depen-
dence graph. Average execution times and variance values are computed using frequency informa-
tion from an optimized counter-based execution profile of the program.

C. Kesselman [Kessel91] in his thesis investigated methods for understanding and improving the
performance of parallel programs. There were two main aspects in his work: measurement and
presentation. His approach was to base performance measurement on extending execution profiling
to parallel programs. He developed a set of low overhead techniques into a parallel programming
system, called PCN. They also developed a performance visualization tool called Gauge.

A. D. Malony [Malony90] has discussed several methods for performance measurement, concen-
trating specifically on mechanisms for timing and tracing. He shows how minor hardware and
software modifications can enable better measurement tools to be built and describe results from
a prototype hardware-based software monitor developed for the Intel iPSC/2 multiprocessor. He
develops two models of performance perturbation to understand the effects of instrumentation in-
trusion: time-based and event-based. The time-based models use only measured time overheads
of instrumentation to approximate actual execution time performance. He shows that the model
can give accurate approximate for sequential execution and for parallel execution with independent
execution ordering. He uses event-based model to quantify the perturbation effects of instrumen-
tations of parallel executions with ordering dependencies. His results show that the model can be
applied in practice to achieve accurate approximations. He also discusses the limitations of the
time-based and event-based models and gives several examples where performance visualization
techniques have been effectively applied. In general, these techniques are basically different from
ours since they provide one measurement point for one input. However, they are useful to validate
our symbolic prediction.

7.2.2 Machine Modelization

We all know that development of parallel applications is seriously hampered by insufficient knowl-
edge of the influence of the machine architecture on parallel program performance. In order to
improve application development time, there is a growing need for performance model. We have
mentioned in Section 3.1 that our model uses a set of cost tables for sequential machines. We also
mentioned how to deal with parallel DO loops in Chapter 6. Now we present some other ideas
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about this topic.

H. Jonkers [Jonkers92] proposes a performance modeling technique. That technique seeks to in-
corporate both parallel processing and machine concurrency into one modeling paradigm with
an emphasis on the derivation of reusable machine models, called generic machine model in the
ProcMod subproject of parTool project. These generic models, together with the model counterpart
of the specific parallel program, are input to the performance evaluation. They started with data
model of parallel architecture. The data model is divided into static and dynamic. Typical example
of static data are the scalar speed of a processor, the number of processors and memories and the
topology of an interconnection network. Typical examples of dynamic data are the duration of a
vector operation, etc. We can believe that it resembles more or less our cost table in PIPS. They
only investigated the static model.

7.2.3 Classification of Performance Estimators

We classify the existing performance estimators according to the nature of the target machines:
single processor machine, general multiprocessor machine ( can be both shared or distributed ),
shared memory multiprocessor machine and distributed memory multiprocessor machine.

Single Processor Machine

K. Kennedy et al. [KMM92] developed a pure static performance estimation tool in the ParaScope
programming environment. It is similar to our tool in terms of static part. But when no information
is available to the estimator, wild guessing is used. For example, 50 is default loop iteration range.
We do better in our estimator because preconditions are used.

C.Y. Park [Park92] addressed the problem of analyzing the timing behavior of a real-time system by
predicting the deterministic execution times of the program comprising a system. Their approach
is to predict a time interval, covering all execution cases, with an analytic method at the source
program level. For tighter prediction they analyzed the dynamic behavior of a program using
information provided by the user. They introduced a formal path model where both a program
and user information are represented by a set of program paths described by an extended regular
expression. Infeasible paths are eliminated by intersecting two path sets. In PIPS, we use the same
technique to predict the execution time of the program, but we do not give the range, we give only
one expression, probably the worst case. And we deal with the symbolic estimation, but he did
not.

N. Tawbi [Tawbi90] studied the generation of efficient parallel programs in her thesis while pre-
serving the same semantics of the initial sequential program. She requested that the parallelism in
the sequential program be detected in a preliminary step. She used a list scheduling algorithm, for
this, she experimented execution time tests by summing the statement execution times together
while paying attention to loop iteration number.

T. Ball [BL94] present a program-based branch predictor that performs well for a large and di-
verse set of programs written in C and Fortran. In addition to using natural loop analysis to
predict branches that control the iteration of loops, they focus on heuristics for predicting non-loop
branches, which dominate the dynamic branch count of many programs. Although accuracy is
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major problem, it reaches a level of usefulness.

T.A. Wagner et al. [WMGH94] present a static estimator for program optimization. They use
quantitative metrics to compare estimates from static analysis to those derived from profiles, which
bear resemblance with PIPS cost table. They combine function-level information with a Markov
model of control flow over the call graph to produce arc and basic block frequency estimates for
the entire program. They succeed in determining 76% of the most frequently executed call sites for
SPEC92 Benchmark Suite.

A. Krall [Krall94] presents code replication technique that improves the accuracy of semi-static
branch prediction to a level comparable to dynamic branch prediction schemes. His technique
uses profiling to collect information about the correlation among different branches, and among
the subsequent outcomes of a single branch. We can think that it resembles the idea in PIPS
half-dynamic and half-static strategy so as to better estimate branches.

N.B. MacDonald [MacDo093] uses a micro-analysis technique to deriving estimates of the sequential
execution time of code fragments written in a subset of Fortran 77. He considers the execution
of each code fragment to involve the certain number of various basic operations, and predicts the
execution time of the fragment using expected execution times for the basic operation, which can
be derived automatically. We think that we use the same idea in PIPS to build our cost tables for
different machines.

General Multiprocessor Machine

Because there are no many tools in this category, we only present one tool from E. Gabber et al.
of Tel-Aviv University.

E. Gabber et al. [GAY93] developed P?>C, a fully automatic, portable parallelizing Pascal compiler
for scientific code, which is characterized by loops operating on regular data structures. P3C can
compile same source code to all target machines without modification, yet it can generate parallel
programs for MIMD machines. P3C' is separated into two parts: (1) parallelizer, which performs
the machines-independent task of extracting parallelism and data distribution, and (2)VMMP for
Virtual Machine for MultiProcessors, which hides the specific implementation details of the target
machine. PIPS uses the same technique but targets the Fortran language instead of Pascal of P>C.

P3C can also give an accurate estimate about whether the parallel code will actually reduce exe-
cution time over serial code, taking into account the associated overhead. It derives the estimate
by statically analyzing the program at compile time, referring to a table of the target machine’s
parameters. We believe that this table must resembles the cost table of PIPS. They have imple-
mented P3C' on two shared-memory multiprocessors, as well as on a distributed-memory network
of 8 transputers.

Shared Memory Multiprocessor Machine

W. Abu-Sufah and A.Y. Kwok [AKS85] present a set of machine-specific performance prediction tools
which are developed for the Cedar multiprocessor computer. It includes analytical and simulation
techniques incorporating guessing for program unknows. Their approach lacks portability because
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it is base on the Cedar compiler assembly code.

V. Sarkar [Sarkar89B, Sarkar89A] derives estimated runtime information for shared memory ma-
chines. He presents a general framework for determining average program execution times and
their variance, based on the program’s interval structure and control dependence graph. Average
execution times and variance values are computed using frequency information from an optimized
counter-based execution profile of the program. He uses guesses for loop ranges and tests.

K. Gallivan [GIMWS89] present some techniques which involve a combination of empirical observa-
tions, architectural models and analytical techniques. They used Lawrence Livermore Loops as a
test case to verify their approach.

A. Goldberg and J. Hennessy [GHR9] present the MTOOL, a method to isolate memory bottlenecks
in shared memory multiprocessor programs. First, they estimate the execution time using the same
method as PIPS does, that is, supposing the memory access performs ideally. Then they time the
difference with the real run. They observe where actual measured execution time differs from
the time predicted given a perfect memory system, and then inexpensively detect the memory
bottlenecks so as to isolate them.

T. E. Anderson and E. D. Lazowskaet [AL90] presented the Quartz, a tool for tuning parallel
program performance on shared-memory multiprocessors. The philosophy underlying Quartz was
inspired by that of the sequential UNIX tool gprof. The principal metric of Quartz is normalized
processor time: the total processor time spent in each section of code divided by the number of
other processors that are concurrently busy when that section of code is being executed. Of course,
Quartz is dynamically tuning the performance. Apparently, Quartz cannot deal with symbolic
variables because everything depends on runtime measurement.

D. Atapattu and D. Gannon [AG89] present an interactive tool designed for performance predic-
tion of parallel programs. Their prediction system built as a sub-system of a larger interactive
environment uses a parser, dependence analyzer, database and an X-window based front end in
analyzing programs. They propose a simple analytical model as an attempt to predict performance
degradation due to data references in hierarchical memory systems. The authors obtain estimated
runtimes for parallel Fortran programs in order to support the application of program transfor-
mations. When there are unknowns involved, such as loop bounds, the output is an algebraic
expression in terms of these variables.

M. Haghighat and C. Polychronopoulos [HP92] propose a program flow analysis framework for
parallelizing compilers. Within their framework, they use symbolic analysis as an abstract inter-
pretation technique to solve many of the flow analysis problems in a unified way. Some of these flow
analysis problems are constant propagation, global forward substitution, detection of loop invari-
ant computations and induction variable substitution. They also present a systematic method for
generalized strength reduction. We believe that their symbolic analysis is like PIPS’ precondition.
They use their analysis to optimize the compiler while we use the precondition to do the same job,
e.g., our complexity estimation is a good example.

K. Wang [Wang93, Wang94] proposes a framework to predict the static performance for superscalar
processors. This performance prediction framework combines several innovative approaches. (1)
The framework employs a detailed, architecture specific, but portable, cost model that can be used
to estimate the cost of instruction sequence. The cost model looks like the cost table in PIPS, but
contains two steps. The first one is like a machine independent assembly language. The second
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one models the sequenced execution. (2) Aggregated cost of loops and conditional statements are
computed and manipulated symbolically as in PIPS. (3) enable selective incremental performance
update.

Distributed Memory Multiprocessor Machine

V. Balasundaram et al. [BFKK91, BFKK92] described a performance estimator to select a data
distribution strategy based on estimated runtime information. The estimator statically evaluates
the relative efficiency of different data partitioning schemes for any any given program on any given
distributed memory multiprocessor. It is limited to programs utilizing the loosely synchronous
communication model.

T. Fahringer [Fahringer93] presents in his thesis a performance prediction approach which has
two major components: profiling and performance parameters. He incorporates a profile run to
derive program unknown data for loop iteration counts, frequency information and true ratios.
Then he develops a tool called P?>T [FBZ92, FZ93], Parameter based Performance Prediction Tool,
which is a part of Vienna Fortran Compilation System ( VFCS ), a compiler that automatically
translates Fortran programs into message-passing programs for massively parallel architectures.
P37 statically computes a set of optional parameters that characterize the behavior of the parallel
program, including work distribution, the number of transfers, the amount of data transferred,
transfer times, etc. These parameters can be selectively determined for statements, basic blocks,
loops, subroutines and the whole program. But he only takes the message-passing machines into
account.

B. Corwin and R. Braddock [CB92] present a strategy for using operational performance metrics to
characterize and monitor distributed systems. They can capture the performance metrics during
system modeling.

J. Yang et al. [YAGY3] present a framework to address the issue of execution time estimation on
heterogeneous supercomputer architectures. They propose the techniques to characterize applica-
tions and architectures of the machine. Based on code profiling and analytical benchmarking, these
techniques provide a detailed architecture-independent application characterization.

7.3 Future Work

Although impressive results have already been obtained, many improvements are still possible,
especially with regards to the current implementation. First of all, we showed that the pitfall
observed on tmines in Chapter 5 was due to the use of guessed probabilities instead of unknown
probabilities introduced in Chapter 2 to prove the correctness of the second approximation step.
These symbolic probabilities should be introduced in the implementation by default and numerical
default probabilities should only be used on user request. Unstructured and while loops could be
handled with a symbolic calculus tool like Maple or Mathematica, since they have the capability
to inverse matrices.

Unknown probabilities could also be guessed for efficiency if error cases were detected. For instance,
it should be safe to assume that control paths leading to an exit outside of the main module are error
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handling paths and that they are taken with probability 0 since users usually are not interested in
failures.

For programming environments, another kind of complexity could be computed. Users are primarily
interested in the relative weight of each statement with respect to the total execution time. This
information is not carried by the complexity presently computed since it only estimates the time
to execute a piece of code once by a bottom-up evaluation. The combination of a second top-down
phase is necessary to estimate how many times each piece of code is executed and to multiply the
elementary complexity by this number of times. All data structures are available, as well as the
top-down interprocedural extension. A minimal programming effort would be required to add this
functionality to PIPS.

Finally, lots of additional experiments are required to see better what the shortcomings of our
present scheme are. In particular, we would like to see how the simple but successful model of the
SPARCstation 2 could be extended to handle superscalar and superpipelined RISC architectures
which are now used in every new computer.
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Appendix A

Intermediate Representation in PIPS

-- External domains
external Psysteme ;
external Pvecteur ;

-- Domains

action = read:unit + write:unit ;

approximation = may:unit + must:unit ;

area = size:int x layout:entity* ;

basic = int:int + float:int + logical:int + overloaded:unit + complex:int + string:value ;
call = function:entity x arguments:expression¥ ;

callees = callees:string# ;

code = declarations:entity* x decls_text:string ;

constant = int + litteral:unit ;

control = statement x predecessors:control* x successors:controlx* ;

dimension = lower:expression x upper:expression ;

effect = persistant reference x action x approximation x context:transformer ;
effects = effects:effect* ;

execution = sequential:unit + parallel:unit ;

expression = syntax x normalized ;

formal = function:entity x offset:int ;

functional = parameters:parameter* x result:type ;

instruction = block:statement* + test + loop + goto:statement + call + unstructured ;
loop = index:entity x range x body:statement x label:entity x execution x locals:entity* ;
mode = value:unit + reference:unit ;

normalized = linear:Pvecteur + complex:unit ;

parameter = type x mode ;

predicate = system:Psysteme ;

ram = function:entity x section:entity x offset:int x shared:entity* ;

range = lower:expression X upper:expression x increment:expression ;

reference = variable:entity x indices:expression* ;

statement = label:entity x number:int x ordering:int x comments:string x instruction ;
storage = return:entity + ram + formal + rom:unit ;

symbolic = expression x constant ;

syntax = reference + range + call ;

tabulated entity = name:string x type x storage x initial:value ;

test = condition:expression x true:statement x false:statement ;

transformer = arguments:entity* x relation:predicate ;

type = statement:unit + area + variable + functional + unknown:unit + void:unit ;
unstructured = control x exit:control ;

value = code + symbolic + constant + intrinsic:unit + unknown:unit ;

variable = basic x dimensions:dimension* ;
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Appendix B

Elementary C Costs on SUN
SPARCstation 2

Operation Clicks for each trial Mics/N
Null Loop (n=1000000)
{3 26 26 26 25 27 0.43
Int Operations (n=1000000)
i2 26 26 26 26 26 0.00
i1++ 36 37 37 36 37 0.18
i1 += 1 37 36 36 37 36 0.17
i1 =it + 1 37 36 37 37 37 0.18
i1 = i2 33 34 33 34 33 0.12
i1 =1 32 32 33 32 32 0.10
i1 = i2 + 1 37 36 37 37 36 0.18
i1 = i2 + i3 39 40 40 40 39 0.23
il = i2 + i3 + 1 41 41 42 41 41 0.25
il = i2 + i3 + i4 45 46 46 45 46 0.33
i1 = i2 + i3 + i4 + 1 47 47 47 47 46 0.35
i1 = i2 + i3 + i4 + ib b2 b2 b1 b2 b2 0.43
il = i2 + i3 + i4 + i5 + i6 58 59 58 58 58 0.54
il = i2 + i3 + i4 + ib + i6+i7 64 65 65 64 65 0.64
i1 = i2 - i3 39 40 40 39 40 0.23
i1 = i2 * i3 73 73 73 73 74 0.79
il = i2 / i3 116 116 116 115 116 1.50
il = i2 % i3 117 115 116 115 117 1.50
Float Operations (n=1000000)
f1 = £2 33 33 33 34 33 0.12
f1 = £2 + £3 60 59 60 59 60 0.56
f1i = f2 + £3 + f4 71 72 71 73 71 0.76
f1 = £2 + £3 + f4 + £5 84 84 84 83 84 0.96
f1i = f2 + £3 + f4 + £f5 + £6 96 96 96 96 96 1.17
f1 = £2 - £3 59 60 60 60 59 0.56
f1 = £2 * £3 62 62 63 62 63 0.61
f1 = £2 / £3 93 93 92 93 93 1.11
Numeric Operations (n=1000000)
i1 = f1 41 41 40 41 41 0.25
f1 = il 49 49 49 49 438 0.38
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Integer Vector Operations (n=1000000)

v[i] = 1 b2 53 53 53 b2 0.44
viv[il] = 1 59 59 60 59 58 0.55
vlvlv[ill]l = i 71 69 70 398 70 1.83
Control Structure (n=1000000)
if (1 ==5) ii++ 35 35 34 35 36 0.15
if (i '=5 ) ii++ 45 46 46 46 47 0.33
while ( 1 < 0 ) il++ 35 35 35 35 34 0.15
il = sumi(il) 59 b7 58 59 b7 0.53
il = sum2(i2, i3) 71 72 72 78 75 0.79
il = sum3(i2, i3, i4) 90 90 93 88 89 1.07
Input/Output (n=10000)
fputs(s, fp) 3 6 5 5 5 7.577
fgets(s, 9, fp) 4 4 4 3 3 5.57
fprintf(fp,sdn, i) 18 20 17 19 18 30.23
fscanf(fp, sd, &il) 26 27 26 26 24 42.57
Malloc (n=10000)
free(malloc(8)) 8 7 7 8 8 12.23
push(i) 4 4 5.90
i1 = pop() 2 1 1 2 1 1.907
String Functions (n=100000)
strcpy(s, s0123456789) 17 17 17 16 17 2.37
il = strcmp(s, s) 16 18 17 17 17 2.40
il = strcmp(s, sal23456789) 10 11 11 10 11 1.33
String/Number Conversion (n=10000)
il = atoi(s12345) 3 2 2 2 1 2.90
sscanf(s12345, sd, &il) 27 26 27 28 27 44 .57
sprintf(s, sd, 1) 16 18 18 17 16 27.90
f1 = atof(s123_45) 159 157 157 157 157 261.90
sscanf(s123_45, sf, &f1) 141 141 142 142 142 235.57
sprintf(s, sf62, 123.45) 143 142 141 140 141 235.23
Math Functions (n=10000)
il = rand() 4 2 3 2 3 4.23
f1 = log(£2) 2 3 3 3 3 4.23
1 = exp(£2) 3 3 3 4 3 4.90
f1 = sin(£f2) 5 4 5 4 5 7.23
f1 = sqrt(£2) 4 5 5 5 5 7.57

The first line shows that each execution of the null loop required 25 to 27 clicks, or slightly less than
half a second; the average cost of a single iteration of the null loop was 0.43 microseconds. That
time is subtracted from all subsequent times. The program prints a question mark after the mean
if the range of values is greater than some fixed multiple of the mean value. The listing contains
several question marks next to dubious values, i.e., fputs and pop, while in others there are too few
clicks for statistical accuracy. The question mark points out spurious values, but be sure to study
the raw clicks before placing too much faith in the summary values.



Appendix C

Calcg of Tmines

C.1

21

30

Original CALCG Subroutine

subroutine calcg(im,jm,km,phi,q,r,t,b,a)
dimension phi(*),t(*),q(*),r(*),b(*),a(*)

common/calcgx/eps,nmax,resnl
common/resulx/imp,niter,numtot

rtn=1.

ro=0.

num=0

npmax=im* jm*km

do 5 1=1,im*jm*km
£(1)=0.

q(1)=0.

do 1 nitl=1,nmax

num=num+1
numtot=numtot+1

do 21 1=1,im*jm*km
r(1)=r(1l)-ro*t(1l)
t(1)=r(1)

call des(im,jm,km,t,a)
call rep(im,jm,km,t,a)

rt=0.

do 30 1=1,im*jm*km
rt=rt+r(1)*t(1)
rtd=rtn
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rtn=rt
dg=rtn/rtd
if(num.ne.1) go to 3
rtO=rt*eps*eps
if(resnl.lt.sqrt(rt/float(npmax))) go to 3
resnl=-1.
return
3 rts=sqrt(rt/npmax)
write(6,1000) num,rts
1000 format(i6,el2.4)

c
do 50 1=1,im*jm*km
q(1)=t(1)+dq*q(1)

50 t(1)=0.

c
call prod(im,jm,km,q,t,b)

c

qt=0.

do 41 1=1,im*jm*km
41 qt=qt+q(1)*t(1)

ro=rt/qt

do 51 1=1,im*jm*km
51 phi(1)=phi(1)-ro*q(1)

if(rt.1t.rt0) return
1 continue

return
end
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C.2 Complexity CALCG Subroutine with Statement Ordering

C 63.38*IM.JM.KM - 22.15%IM.KM - 16.62*%JM.KM + 3.38 (SUMMARY)

SUBROUTINE CALCG(IM,JM,KM,PHI,Q,R,T,B,A)
C

DIMENSION PHI(*),T(*),Q(*),R(*),B(*),A(*)
C

COMMON/CALCGX/EPS, NMAX , RESNL

COMMON/RESULX/IMP,NITER,NUMTOT
C
C
C
¢ (0,1)
C 0 (STMT)
¢ (1,2)

RTN = 1. 0001
C 0 (STMT)
¢ (1,3)

RO = 0. 0002
C 0 (STMT)
c (1,4)

NUM = 0 0003
C 0 (STMT)
¢ (1,5)

NPMAX = IM*JM*KM 0004
C 0 (DO)
¢ (1,6)

DO 5 L = 1, IM*JM*KM 00086
C 0 (STMT)
¢ (1,8)

T(L) = 0. 0007

C 0 (STMT)
¢ (1,9)
5 QL) = 0. 0008
C 0 (STMT)
¢ (1,10)

NITL = 1
99997 CONTINUE
C 0 (TEST)
¢ (2,1)

IF (NITL.LE.NMAX) THEN

ELSE

GOTO 99995

ENDIF
C 0 (STMT)
C
¢ (3,2)

NUM = NUM+1 0011
C 0 (STMT)
¢ (3,3)

NUMTOT = NUMTOT+1 0012
C 2+«IM.JM.KM (DO)
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¢ (3,4)

DO 21 L = 1, IM*JM*KM 0014
c 2 (STMT)
¢ (3,6)

R(L) = R(L)-RO*T(L) 0015

c 0 (STMT)
c (3,7)
21 T(L) = R(L) 0016
c 27+IM.JM.KM - 18*IM.KM (STMT)
c
¢ (3,8)

CALL DES(IM, JM, KM, T, A) 0017
c 27+IM.JM.KM - 18*IM.KM (STMT)
¢ (3,9)

CALL REP(IM, JM, KM, T, A) 0018
c 0 (STMT)
c
¢ (3,10)

RT = 0. 0019
c 2*IM.JM.KM (DO)
¢ (3,11)

DO 30 L = 1, IM*JM*KM 0021
c 2 (STMT)
¢ (3,12)
30 RT = RT+R(L)*T(L) 0022
c 0 (STMT)
¢ (3,13)

RTD = RTN 0023
c 0 (STMT)
¢ (3,14)

RTN = RT 0024
c 1 (STMT)
¢ (3,15)

DQ = RTN/RTD 0025
c 0 (TEST)
¢ (4,1)

IF (NUM.NE.1) THEN 0031

ELSE

GOTO 99992

ENDIF
c 0 (STMT)
¢ (5,1)
99991 CONTINUE
c 0 (STMT)
¢ (8,2)
c 2 (STMT)
¢ (8,3)
3 RTS = SQRT(RT/NPMAX) 0026
c 0 (STMT)
¢ (8,4)

WRITE (FMT=1000,UNIT=6) NUM,RTS 0041
c 0 (STMT)
¢ (8,5)
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1000 FORMAT(I6,E12.4)

C
C
¢ (6,6)

DO 50 L = 1, IM*xJM*KM
C
¢ (6,8)

Q(L) = T(L)+DQ*Q(L)

C
¢ (6,9)
50 T(L) = 0.
C
C
¢ (6,10)

CALL PROD(IM, JM, KM, Q, T, B)
C
C
¢ (6,11)

QT = 0.
C
¢ (6,12)

DO 41 L = 1, IM*xJM*KM
C
¢ (6,13)
41 QT = QT+Q(L)*T(L)
C
¢ (6,14)

RO = RT/QT
C
C
¢ (6,15)

DO 51 L = 1, IM*xJM*KM
C
¢ (6,186)
51 PHI(L) = PHI(L)-RO*Q(L)
C
C
c (7,1)

IF (RT.LT.RTO) THEN

ELSE

GOTO 99988

ENDIF
C
¢ (8,1)

GOTO 99987
99988 CONTINUE
C
Cc (24,1)
99986 CONTINUE
C
¢ (25,1)
C

¢ (26,2)

2*IM.JM.KM

54*IM.JM.KM - 36*JM.KM

2*IM.JM.KM

2*IM.JM.KM

0042
(D0)

0044

(STMT)

0045
(STMT)

0046
(STMT)

0047
(STMT)

0048

(DO)

0050
(STMT)

0051
(STMT)

0052

(D0)
0054

(STHT)
0055

(TEST)

0060

(STMT)

(STMT)

(STMT)

(STMT)
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c 0 (STMT)
¢ (26,3)
1 CONTINUE 0061
c 0 (STMT)
¢ (27,1)
c 0 (STMT)
¢ (28,1)

NITL = NITL+1

GOTO 99997
99992 CONTINUE
c 0 (STMT)
¢ (19,1)
99982 CONTINUE
c 0 (STMT)
¢ (18,1)
c 0 (STMT)
¢ (17,2)
c 2 (STMT)
¢ (17,3)

RTO = RT*EPS*EPS 0032
c 0.62 (TEST)
¢ (15,1)

IF (RESNL.LT.SQRT(RT/FLOAT(NPMAX))) THEN 0037

ELSE

GOTO 99978

ENDIF
c 0 (STMT)
¢ (16,1)

GOTO 99991
99978 CONTINUE
c 0 (STMT)
c (14,1)
99977 CONTINUE
c 0 (STMT)
¢ (13,1)
c 0 (STMT)
¢ (12,2)
c 1 (STMT)
¢ (12,3)

RESNL = -1. 0038
c 0 (STMT)
¢ (12,4)

GOTO 99987
99995 CONTINUE
c 0 (STMT)
¢ (11,2)
c 0 (STMT)
c
¢ (11,3)

GOTO 99987
99987 CONTINUE
c 0 (STMT)

c (9,2)
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c 0 (STMT)
¢ (9,3)
END

Note that (X,Y) where X,Y are integers means: X is statement ordering number and Y is ordering
inside a statement. We can think that X is a block number while Y is the relative statement number
inside that block.

We also note that there are 24 control nodes ( blocks ) while the largest block number is 28. That
means there are some holes in the block number list. That is because we assign the number when
we initially begin analyzing, but later we find they are useless and try to delete them. We can
delete some of them so as to reduce the number of nodes.
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C.3 Probability Matrix of CALCG Subroutine

average_probability_matrix: P =
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