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Introduction

Dans de nombreuses disciplines scientifiques, comme en informatique, et tout spécialement dans le domaine
des langages de programmation, il est communément acquis d’associer aux études théoriques, sur les modéles
de calcul, des travaux de nature plus pratique de mise en oeuvre, ou d’'implémentation.

Pour cela, il est souhaitable que les techniques de mise en ceuvre des langages reposent sur des méthodes
formelles qui permettent d’en assurer la correction. Ce souci de rigueur ne s’oppose pas aux impératifs
de confort d’utilisation et d’efficacité des outils de programmation. Bien au contraire, rigueur et preuve
de correction sont autant de gages quant & l'universalité de 1’outil de programmation et la sécurité de son
emplol par rapport a ses spécifications. Toutes deux sont bénéfiques a sa bonne maitrise par 'utilisateur,
pour aboutir finalement & une productivité et une qualité de développement améliorées.

L'usage de méthodes formelles appropriées permet d’enrichir notablement le pouvoir d’expression d’un
langage de programmation. Ainsi, 'analyse sémantique, dont 'objet est de déterminer des propriétés
formelles de programmes, procure une aide notable a la vérification, la documentation et l'optimisation
de programmes.

Typage Statique

Parmi ces méthodes formelles, le typage statique est sans doute la forme la plus populaire. Le typage statique
consiste a4 détecter au moment de la compilation une source fréquente d’erreurs d’exécution de programmes:
I’'usage incohérent d’une valeur par rapport a la structure de cette valeur (comme par exemple ajouter 1 a
la valeur booléenne true). La vérification statique de typage s’effectue en associant un type a chacune des
valeurs manipulées par un programme et en vérifiant que |'utilisation des valeurs est conforme aux types
affectés a celles-ci.

Dés lors que le typage statique d’un programme est vérifié, aucune erreur d’accés aux données ne peut se
produire pendant son exécution. Mais parce que les régles décrivant le typage statique des programmes se
doivent d’étre simples pour étre comprises par les utilisateurs, et parce que les programmes peuvent pourtant
étre complexes, la faiblesse inhérente a tout systéme de typage statique est de ne pouvoir accepter qu'une
partie des programmes dont le sens est correct et de devoir rejeter certains d’entre eux.

Dans la recherche d'un meilleur compromis entre simplicité et performance, 'introduction de la notion
de polymorphisme a été a l'origine de progrés notables, en permettant le typage statique des fonctions
génériques. Les fonctions génériques, comme par exemple la fonction identité, peuvent opérer sur des données
de structures différentes. L’intérét pour les fonctions génériques tient au fait que celles-ci peuvent étre codées
et compilées une fois pour toutes puis étre utilisées dans de nombreuses situations sans aucune modification.

Sans la notion de polymorphisme, le typage statique ne permet pas l'utilisation des fonctions génériques.
C’est le cas en Pascal, ou en Fortran. Pour contourner cette interdiction, le programmeur a parfois recours
a certaines astuces, en dupliquant le code d’une fonction pour autant de types différents que de contextes
d’utilisation. Dans d’autres langages de programmation, comme Ada, cela peut étre fait de maniére plus
rigoureuse: l'utilisateur peut définir explicitement des fonctions génériques que le compilateur se chargera,
de dupliquer avant de compiler.

A l'instar des systémes de typage tels que ceux de Pascal, de Fortran ou de Ada, le typage polymorphe
supporte naturellement la notion de fonctions génériques et permet leur réutilisation. C’est un avantage
notable car, en pratique, les fonctions génériques sont trés utiles dés lors qu’il est besoin, dans un programme,
de manipuler des listes, des arbres ou des graphes.
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L’intérét pour le typage statique a motivé I’élaboration des techniques qui ont permis d’automatiser ce
procédé. Tout d’abord, [Morris, 1968] mit en évidence la relation entre la structure d’un programme et son
typage au moyen d’équations linéaires récursives. Ensuite, [Hindley, 1969] développa une technique pour
déterminer le type de lambda termes par une méthode de résolution utilisant un algorithme d’unification
[Robinson, 1965]. Fort de ces résultats, [Milner, 1978] introduisit 'inférence de type polymorphe, combinant
les techniques d’inférence de type avec une notion de polymorphisme. Ce fut la un progres notable qui a,
depuis, été le sujet de nombreux travaux et extensions.

Dans [Milner, 1978], ou ’auteur introduit le langage ML, le polymorphisme s’exprime au niveau de la
construction syntaxique de liaison lexicale: le 1et. La maniére la plus simple de considérer la forme let
de ML est de la considérer comme une abréviation: l'expression (let (x e) e’) a le méme sens que la
substitution de x par e dans €', notée e’'[e/x]. Il en va de méme pour le type de cette expression: lorsque
I’on type Pexpression e'[e/x], chaque occurrence de e peut avoir un type différent des autres. Dans la
discipline de typage de Milner, cela s’exprime en associant un schéma de type 4 x. Le schéma de type de x
permet de représenter 1’ensemble des types possibles de 'expression e pour chaque occurence de x dans e’.

Langages Impératifs et Disciplines de Typage

Le typage polymorphe est, on le voit, parfaitement approprié pour les langages fonctionnels. Qu’en est-il pour
les langages dit impératifs 7 Ceux-ci sont, habituellement, définis en opposition aux langages fonctionnels,
tels que ML, parce qu'ils supportent d’autres opérations, permettant notamment l’affectation, ¢’est-a-dire la
modification en place d’une structure de donnée (comme la valeur d’un pointeur, par exemple).

Mais l'ajout de traits de programmation impérative & un langage, pour permettre par exemple la manip-
ulation de pointeurs, s’accompagne de la nécessité d’introduire une notion d’état pour comprendre le sens
des programmes. Cela rend tout de suite invalide notre précédente définition de ’expression let comme
abbréviation: l'expression (let (x e) e’) n’a plus le méme sens que e’[e/x] et I'extension de la notion de
polymorphisme & la ML aux opérations sur les pointeurs apparait d’ores et déja suspecte.

Pour typer les opérations sur les pointeurs en ML, on peut penser a définir le type ref(7) pour représenter
I’ensemble des pointeurs référencant une valeur de type 7. Alors, opération d’initialisation de pointeurs
new, qui accepte toute valeur de type T et retourne un pointeur vers celle-ci, devrait avoir le type 7 — ref{r).

Pourtant, une fois initialisé, un pointeur doit toujours étre associé au méme type. Autrement, d’aucuns
pourraient lui associer une valeur d’un type donné, int par exemple, puis lire cette valeur et prétendre qu’elle
ai un type différent, pourquoi pas bool Or, ajouter 1 & true est justement une situation que l'on cherche
& éviter a l'aide du typage statique. On le voit trés vite, il semble apparaitre une incompatibilité flagrante
entre des opérations de style impératif et le typage polymorphe.

Comme nous le voyons, I’ajout de traits impératifs & un langage tel que ML modifie le sens de la con-
struction let. Donc, la maniére de typer cette expressions doit également changer. Il convient de définir
une discipline de typage tenant compte des traits impératifs du langage: une discipline de typage impéra-
tive. Il ressort de notre précédente discussion que le type d'un pointeur ne peut pas étre généralisé par un
schéma de type comme I'était toute autre valeur. Tout systéme de typage polymorphe supportant le typage
d’opérations impératives doit donc, & un niveau ou un autre, prendre en compte, de maniére approximative,
la tranformation d’état provoquée par de telles opérations.

La technique la plus classique pour typer correctement les traits impératifs en ML est la discipline de
typage impérative [Tofte, 1987, Tofte, 1990] et son extension basée sur les “types faibles”, aujourd’hui utilisée
dans les différentes mises en oeuvre du langage Standard ML [Milner & al., 1990, Appel & Mac Queen, 1990].
Une autre approche, suggérée par [Leroy, 1990], consiste & marquer le type des fonctions avec I’ensemble des
types associés aux variables libres de ces fonctions: c’est le “typage des fermetures”. L’idée maitresse est ici
d’interdire ensuite la généralisation de types “dangereux”: le type des pointeurs apparaissant dans le type
des fonctions.

Toutes ces approches sont bien évidemment approximatives quant a réellement représenter la transforma-
tion d’état que provoque une opération impérative. En pratique, la plupart d’entre elles ne permettent pas
le typage correct de fonctions d’ordre supérieur en présence de traits impératifs. D’autres sont méme parfois
incapables de typer certaines expressions qui ne mettent pourtant en ceuvre aucune opération impérative.
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Systéemes d’Effet et Disciplines de Typage

A linstar de ces tentatives, les systémes d’effets en général, et le langage de programmation FX en par-
ticulier, permettent d’intégrer le typage polymorphe et la programmation impérative. Indépendamment,
d’autres d’investigations ont également ceuvré a l'intégration d’une notion de transformation d’état au ty-
page polymorphe d’opérations impératives [Damas, 1985, O'Toole, 1990, Wright, 1992].

Le langage FX est fortement inspiré de Scheme [Rees & al., 1988] et de ML. Il supporte les fonctions
d’ordre supérieur, des constructions impératives, I’allocation dynamique et la récupération automatique des
structures de donnée, mais surtout un systéme de compilation séparée [Sheldon & Gifford, 1990] et un typage
statique polymorphe.

Plus encore, il utilise un systéme d’effets. De méme qu’un type représente ce qu'un programme calcule,
un effet décrit comment ce programme calcule. Types et effets sont annotés par des régions. Les régions
décrivent des relations de partage entre les zones mémoire ou résident les structures de données. Doté d’une
telle richesse d’expression, ce langage permet 4 son utilisateur de s’exprimer tout aussi naturellement dans un
style de programmation fonctionnel que dans un style impératif, forgé a I'usage de langages plus traditionnels
comme Pascal ou Fortran.

Dans [Gifford & al., 1987], les auteurs présentent la sémantique statique du langage FX par un systéme
pour la vérification de déclarations de types et d’effets polymorphes. Le besoin de spécifier type, région et
effet de chaque fonction d’un programme est un travail assez ennuyeux. Pour remédier & ce probléme, les
auteurs présentent dans [Jouvelot & Gifford, 1991] le premier systéme permettant d’inférer automatiquement
des effets sur le principe dit de “reconstruction algébrique”: ils y définissent le probléme de I'inférence d’effet
par analogie directe avec le principe d’inférence de type par résolution de contraintes de [Morris, 1968].

Contribution

Nous présentons ici un systéme de typage statique qui est basé sur les notions de systéme d’effet et d’inférence
de type polymorphe, et qui, a I'instar de la reconstruction algébrique, détermine statiquement le type et Deffet
principal des programmes. Comme l'explique le chapitre 2, cela est possible par ’adjonction & ’ensemble des
regles de typage statique d’une régle explicitant une relation d’ordre entre les effets des expressions. Cette
relation d’ordre est analogue & la notion de relation de sous-typage, mais elle porte sur les effets.

L'inférence de type et d’effet est ici étendue a 'inférence de régions. Les régions apparaissent dans les
types. Par exemple, ref,(7) est un pointeur de type 7 dans la région p. Elles apparaissent dans les effets.
init(p) est effet d’initialiser un pointeur dans la région p. Les régions décrivent statiquement les relations
de partages entre les données que manipule un programme. Incideminent, elle permettent de localiser
précisement la localité des données et de déterminer celles d’entre elles sur lesquelles portent les effets de
bords.

Cela a, nous le verrons, des conséquences tant pratiques que théoriques et nous nous attachons a les
développer formellement. Sur le plan pratique, le fait d’avoir statiquement une idée de la localité d’une
donnée permet d’en optimiser la gestion: ’allocation et la récupération.

Sur un plan plus général, et afin d’intégrer des traits de programmation impérative dans un langage
fonctionnel, mais avant tout de montrer combien il est aisé et naturel de le faire en utilisant un systéme
d’effet, nous définissons une discipline de typage impérative qui est basée sur U'inférence d’effet. L’'idée
essentielle de ce systéme est d’utiliser P'inférence d’effet afin d’estimer au mieux la transition d’état mémoire
qui est provoquée par les effets de bords d’un programme.

Pour typer les pointeurs, nous utilisons des effets de la forme init(p, 7), read(p, 7) et write(p,7) qui
informent du type 7 des données pouvant étre référencées par les pointeurs appartenant a la région p. Ces
effets sont utilisés pour controler la généralisation du type des pointeurs. Pour typer une expression de la
forme (let (x e) e'), il est suffisant de connaitre les effets d’initialisation de 'expression e afin de savoir
comment généraliser son type.

Pour ne rapporter que les effets d’initialisation afférant & des régions auxquelles appartiennent des poin-
teurs effectivement accessibles par le programme, nous définissons un critére d’observation. Les effets ob-
servables d’une expression sont exactement ceux qui portent sur une région p accessible, c’est a dire libre
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dans environnement de typage de I’expression ou bien dans le type de sa valeur. Tous les autres effets sont
associés & des régions ayant été allouées pour un usage temporaire et local et ne sont done pas observables.

La notion d’effet observable est cruciale pour distinguer les fonctions qui utilisent des pointeurs localement
et temporairement. Parmi de telles fonctions, on rencontre nombre qui ne sont que les versions impératives
des fonctions usuellement définies dans un style de programmation purement fonctionnel. En utilisant
I'inférence d’effet et muni du eritére d’observation, notre systéme de typage est capable de déterminer trés
précisément la portée des effets de bord, nous assurant d’'une généralisation de type plus efficace et plus
uniforme qu’avec d’autres méthodes.

Motivations

L’intérét porté aux langages de programmation fonctionnels tels que ML ne se limite pas au seul prob-
leme du typage polymorphe. 1l est trés certainement lié a la relation étroite de ces langages avec le
lambda-calcul de [Barendregt, 1984] et la facilité de les définir au moyen de méthodes de sémantique
formelle [Plotkin, 1981, Stoy, 1977]. Ce lien étroit entre les langages fonctionnels et le lambda-caleul fa-
cilite également 1'utilisation de systémes de preuve, comme [Coquand & Huet, 1988] et [Huet, 1989] ou bien
[Harper & al., 1987], basés sur les logiques et lambda-calcul d’ordre supérieur [Girard, 1972, Girard, 1986],
afin de démontrer la correction de techniques de compilation [Hannan, 1990, Hannan & Pfenning, 1992] et
d’optimisation [Wand, 1991, Wand, 1992].

Ce critére de correction pourrait & moyen terme étre source d’intéréts des milieux industriels pour les
langages fonctionnels. Pour préparer ces outils a cet élargissement de 'audience des langages fonctionnels, il
est nécessaire de proposer des langages plus siirs, plus expressifs, aux performances encore plus importantes.
Les fondements des langages fonctionnels, basés sur le lambda-calcul, permettent d’envisager cette perspec-
tive avec sérénité, puisqu’ils forment un excellent support pour formaliser et mettre en ceuvre les techniques
d’analyse, de compilation et d’optimisation & venir.

Un autre intérét, du typage polymorphe cette fois, est de procurer des informations qui se révélent utiles
aussl bien pour le programmeur, qui peut par ce moyen décrire la spécification de ses applications, que
pour le compilateur qui peut utiliser les informations de type pour produire un code plus efficace et une
représentation de données moins couteuse [Goldberg, 1991, Goldberg, 1992, Leroy, 1990].

L’inférence d’effets permet de déterminer les effets de bords et les relations de partage entre structures de
données dans un programme. Ces informations peuvent également étre utilisées par le compilateur, afin de
déterminer la classe d’allocation des structures de données manipulées dans le programme: registre, pile ou
tas [Tofte & Talpin, 1993, Talpin & Jouvelot, 1993, Tang & Jouvelot, 1992], ou bien encore pour effectuer
des transformations pouvant, pourquoi pas, changer l'ordre d’évaluation des expressions du programme
[Talpin & Jouvelot, 1993].

Implémentation

Lorsque 'on vient & parler de perforimances, il vient tout naturellement & 'esprit de penser & doter un langage
fonctionnel de moyens en permettant 'exécution paralléle [Talpin & Jouvelot, 1993]. En FX, un parallélisme
de données implicite peut étre exprimé par l'utilisation d’un type de donnée abstrait: le vecteur, et d'un
ensemble d’opérations globales associées, fortement inspirées de APL. Ici, I'inférence de type et d’effet s’avere
étre une méthode adéquate pour la mise en ceuvre de ce langage de haut niveau, intégrant des paradigmes
de programmation fonctionnelle et de programmation impérative, sur un calculateur massivement paralléle.

Dans I'implémentation d'un langage de programmation comme FX, qui intégre aussi bien des traits de
programmation impérative que les concepts de programmation fonctionnelle, le concepteur doit apporter un
soin tout particulier a la réalisation des techniques d’optimisation. En présence d’effets de bord, nombreuses
sont en effet les propriétés formelles des programmes fonctionnels qui ne sont plus vérifiables, et nombreuses
sont alors optimisations et transformations de programmes qui ne sont plus possibles ou deviennent non
triviales.

L’analyse sémantique s’avere étre un moyen efficace de remédier & cette carence. Mais cette technique
devient d’une complexité significative dés lors qu’il s’agit de paralléliser des programmes, c’est & dire de
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les optimiser de fagon & produire un code exécutable sur des calculateurs massivement paralléles. En effet,
la concomitance de constructions paralléles et impératives dans un programme conduit facilement au non-
déterminisme. En pratique, le non-déterminisme est une propriété peu souhaitable dans la sémantique d'un
langage de programmation [Steele, 1990]. II rend plus difficile son utilisation en réduisant fortement la
lisibilité des programmes. Il rend également la mise au point des programmes problématique; un résultat,
et & fortiorl une erreur, n’étant pas nécessairement reproductible. Au contraire, I'usage d’un parallélisme
restreint & une forme déterministe dans un langage de programmation procure & son utilisateur une lecture
aisée, car séquentielle, du texte des programmes, mais facilite surtout la spécification comme l'utilisation
d’outils de développement comme de mise au point.

Nous étayons ces conjectures en présentant un ensemble de techniques de compilation mises en ceuvre pour
la compilation du langage FX sur un calculateur massivement paralléle, la CM-2. Notre compilateur utilise
les effets afin de mettre en oeuvre correctement les opérations sur les vecteurs par un parallélisme de donnée:
I’absence d’effets de bords, pour une opération distribuée sur les éléments d'un vecteur, garantit l'absence
d’interférences lors de son exécution parallele. Les autres opérations sont exécutées séquentiellement sur
le frontal du calculateur. Notons qu’ici, et & P'instar d’autre compilateurs, cette optimisation est mise en
oeuvre efficacement sans que la présence de traits impératifs ou de fonctions d’ordre supérieures ne pose de
problémes particuliers. Notre compilateur utilise les régions associées aux vecteurs afin de décider si la durée
de vie des données que manipule un programme s’accommode avec 'organisation mémoire de la CM-2, dont
Parchitecture encourage fortement l'allocation de vecteurs paralléles en pile.

Structure de cette These

L’étude développée dans cette thése porte sur la spécification et la preuve d’une méthode d’analyse statique
de programmes basée sur le principe de l'inférence de type, pour un langage de programmation inspiré de
FX. Cette technique permet de déterminer les relations de partage entre les données manipulées par les
programmes. Elle permet aussi de calculer les effets de bords provoqués par les constructions impératives
du langage: celles qui modifient 'état d’exécution du programme.

Dans le chapitre 2, nous définissons tout d’abord le langage sur lequel notre étude sera basée, pour spécifier
ensuite une méthode d’analyse des effets basée sur le principe de U'inférence de type. Nous définissons un
algorithme permettant de calculer le type principal et I'effet minimal des expressions, affectant une région
aux valeurs manipulées par le programme. Nous prouvons la conformité de cet algorithme & sa spéeification,
la sémantique statique.

Nous présentons ensuite une extension de ce systéme & d’autres traits impératifs, comme les canaux de
communications. Nous spécifions I'extension de notre sémantique statique dont nous montrons la correction
vis & vis de la sémantique dynamique propre & cette extension.

Dans le chapitre 3, nous définissons une discipline de typage polymorphe basée sur l'inférence d’effets qui
prend en compte la localité des régions, introduisant une notion d’observabilité des effets.

Enfin, dans le chapitre 4, nous présentons l'inférence de type et d’effet comme un moyen correct et
efficace de mettre en ceuvre le langage FX, intégrant des paradigmes de programmation fonctionnelle et de
programmation impérative, sur un calculateur massivement paralléle, la CM-2. Nous montrons comment
utiliser le type et les effets des expressions d’un programme, afin d’en exploiter le parallélisme de données
implicite, comme par exemple lors d’opérations portant sur des vecteurs.
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Chapter 1

Introduction

In many scientific disciplines as well as in computer science, but perhaps more specifically in the area of
programming languages, it is a widely established fact that theoretical research must be connected and
validated with practical investigations and implementation techniques. To achieve this goal, it is very
important to base the development of implementation techniques for programming languages on methods
that allow them to be formalized simply and prove them correct. This care for guiding the development of
programming tools using strictly formal techniques is not opposed to the effectiveness or to the ease of use
of their design.

On the contrary, a strict formalization and a proof of correctness are the guarantees for the universality
and the security of using a system consistently with its specification. This is thus profitable to the reliance of
the user in programming tool and yields to a better productivity and quality of program development. Ap-
propriate formal methods permit significant enrichment the expressive power of programming languages and
systems by statically collecting a lot of information about user programs for their verification, documentation
or optimization.

Static Typing

Among program analysis methods, static typing is undoubtly the most popular technique. Static typing
detects the most common cause of execution errors in a program: the inconsistent use of a data structure
(e.g. when the use of a datum is inconsistent with respect to the structure of that datum, like adding 1 to
the boolean value true). Static type checking is achieved by approximating using a type the structure of
every value manipulated in a program and by verifying that the use of every value conforms to its type.

The strength of static typing is that the successful type checking of a program guarantees the absence
of type errors. Because typing rules must be simple and programs can be complex, type systems have an
inherent weakness. They often reject programs that are otherwise correct, though they cannot be recognized
as such. This tradeoff, between a suitable simplicity of the type system and its effectiveness, has motivated a
lot of work. The introduction of polymorphism resulted in a notable progress in this direction. Polymorphism
allows the static typing of generic functions.

Generic functions, such as the identity, can operate on data of different structures. They are interesting
for a programmer because they can be reused in many programs without modification. For example, many list
processing functions, such as reverse, for reversing the elements of a list, or map, for mapping a function on
the elements of a list, are essentially generic. This holds for other data structures as well, such as hash tables,
trees or graphs. Without the notion of polymorphism, static typing prohibits this reuse and necessitates
duplication of functions as in Pascal, or the explicit definition and instantiation of generic functions as in
Ada. Polymorphic typing supports the reuse of generic functions implicitly and without duplication of code.

Earlier work provides the basis for the automatic computation of types. In [Morris, 1968], the author
showed that the successful static typing of a program consists of solving recursive linear equations related to
the syntactic structure of the program. Then, [Hindley, 1969] developed a method for computing the type
of expressions of the lambda-calculus by using a unification procedure [Robinson, 1965].

11



12 CHAPTER 1. INTRODUCTION

Finally, [Milner, 1978] introduced polymorphic type inference in the functional language ML, providing
the first type discipline that permitted the polymorphic typing of functions and supported their automatic
computation. Combining type polymorphism and automated type computation was a significant advance
in programming language research and has been the subject of much theoretical investigation and practical
developments.

Milner’s type system expresses polymorphism in let syntactic constructs. Understanding the let as
an abbreviation offers a simple explanation of polymorphism. Semantically, the expression (let (x e) e')
has the same meaning as e’ [x/e], the substitution of e for the free occurrences of x in ¢’. In typing the
substituted expression e’[x/e], each occurrence of the bound expression e may have a different type. In
Milner’s typoing discipline. this is expressed by a type scheme which is associated with x and represents the
possible types of e.

Imperative Languages and Typing Disciplines

Polymorphic typing is appropriate for functional programming languages. But the imperative style of pro-
gramming is usually defined as opposed to functional programming by the use of operations that, for example,
permit in-place modification of mutable data structures, such as pointers. When adding imperative features
to a language, it becomes necessary to introduce a notion of state to understand the meaning of programs.
This suffices to invalidate our previous explanation of let-expressions as abbreviations: the expression (let
(x e) €&') no longer has the same meaning as e’ [x/e].

To type pointers in ML, one can think of introducing the type ref{7) to represent pointers referencing
a value of type 7. Then, one can type the pointer initialization procedure new by = — ref(), because it
returns a pointer initialized to the given argument, which can have any type . However, once initialized,
that pointer must always be associated with the same type. Otherwise, one could initialize it with an int
value, then read it and claim it has type bool.

Just as references change the semantics of let expressions, they also necessitate a change in the way let
expressions are typed. The types that must not be generalized are those that appear in the types of references
allocated by let-bound expressions. Unfortunately, those types cannot be precisely determined. Thus, any
static type system attempting to integrate the typing of references must use a conservative approximation
of them.

Short of the ad-hoc techniques used in the first type inference systems, the imperative type discipline
[Tofte, 1987, Tofte, 1990, Milner & al., 1990] is the classical way to deal with the problem of type gener-
alization for polymorphic functional languages in the presence of non-referentially transparent constructs.
Its extension, based on weak type variables [Appel & Mac Queen, 1990], is used in the implementation of
Standard ML. A different approach [Leroy, 1990], consists of labeling the type of each function with the set
of the types of the value identifiers that occur in its body, and then tracking the dangerous type variables
on which side-effecting operations are performed.

All these approaches build conservative approximations of value types that may be accessible from the
global store and turn out to be restrictive in practice by prohibiting generic functions that create temporary
mutable structures or by being non-conservative over ML.

Effect Systems and Typing Disciplines

In the quest for integrating imperative constructs to polymorphic functional languages, inferring the type
of stored values has been the subject of many investigations [Damas, 1985, O’Toole, 1990, Wright, 1992].
Effects systems, implemented by the FX language [Lucassen, 1987, Gifford & al., 1987], allow this integra-
tion. Sightly inspired by Scheme [Rees & al., 1988] and ML [Milner & al., 1990], the FX language supports
higher-order functions, dynamic allocation and automatic deallocation of data, imperative constructs. FX
also supports a system of first-class modules [Sheldon & Gifford, 1990].

But first of all, FX is an effect system. Just as types describe the structure of what expressions compute,
effects describe how expressions compute. Types and effects are decorated with regions. A region describe
an uniform sharing relation between data structures and thus helps to figure out how storage resources are
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used and distributed in a program. With such an expressive power, the language FX allows programmers to
express themselves very naturally in a purely functional style, as in ML, or in a more imperative style, as in
more traditional programming languages, such as C or Fortran.

In [Gifford & al., 1987], the static semantics of FX is defined as the static checking of polymorphic type
and effect declarations in FX programs. However, the need to specify types, regions and effects is burdensome
in real-life programs. In [Jouvelot & Gifford, 1991], the first system for statically inferring effects is presented
by introducing the notion of algebraic reconstruction.

1.1 Contribution

We introduce a new type system which, build upon both the ideas of effects systems [Gifford & al., 1987]
and polymorphic type inference [Milner, 1978], and unlike algebraic reconstruction, reconstructs the principal
type and the minimal effect of programs. As is explained in chapter 2, the addition of of a rule based on the
relation of inclusion between effects to the static semantics, introduces a tantamount notion to subtyping
in the domain of effects: subeffecting. Subeffecting enables to reconstruct the principal type and effect of
expressions.

In this dissertation, type and effect inference is extended to the inference of regions. Regions appear in
types. For example, ref,(7) is a pointer to a value of type  in the region p. Regions appear in effects. init(p)
is the effect of initializing a pointer in the region p. Regions statically describe sharing relations between the
values manipulated in a program. Incidentally, they permit to precisely delimit the scope-locality of data
and allows to determine those which are subject to side-effects.

This observation has both practical and theoretical consequences that will be formally developed in this
dissertation. On the practical side, a static information about the scope-locality of data permits to implement
compile-time techniques for optimizing the management of their allocation and collection.

To demonstrate how effect systems allow the integration of imperative programming features in poly-
morphic functional languages, we introduce an imperative typing discipline that uses effect inference for
determining the principal type of expressions: the type and effect discipline. The essential idea behind this
new type system is to use effect inference for approximating the state transformation that is performed by
side-effects, such as the allocation of a reference, a communication channel, a continuation.

Typing references is done by inferring allocation effects which tells the data type pointed at by regions of
initialized references. Effects are used to control type generalization in the presence of imperative constructs.
To type a let construct, the allocation effect of the bound expression provides all needed information to
determine which type variables must not be generalized.

By using an observation criterion, our typing discipline limits the report of effects to those that affect
accessible regions. The observable effects of an expression range over the regions that are free in its type
environment and its type. Effects related to local data structures can be discarded during type reconstruction.
The type of an expression can be generalized with respect to the variables that are not free in the type
environment or in the observable effect.

The notion of observable effects is crucial to distinguishing the functions which only use references locally
and implement their purely functional counterpart with a more imperative style. By using effect information
together with an observation criterion, our type system is able to precisely delimit the scope of side-effecting
operations, thus allowing type generalization to be performed in let expressions in a more eflicient and
uniform way than previous type systems.

1.2 Motivation

The academic interest in functional programming, such as ML [Milner & al., 1990], does not limit itself to
the topics of polymorphic type inference. 1t is certainly due to the relationship between functional languages,
the lambda calculus [Barendregt, 1984], and the ease of formalizing them using formal semantics methods
[Plotkin, 1981, Stoy, 1977].

The strong relation between functional languages and lambda-calculi also encourages one to use proofs
systems [Coquand & Huet, 1988, Huet, 1989, Harper & al., 1987], based on higher-order logics and lambda
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calculi [Girard, 1972, Girard, 1986], for proving the correctness of compilation techniques [Hannan, 1990,
Hannan & Pfenning, 1992] and program optimization [Wand, 1992] and for defining intermediate function
representation [Wand, 1991].

Going from the dynamic semantics of functional language to their static semantics, polymorphic typ-
ing provides useful information for both the programmer, who can describe the intended specification of
its programs, and the compiler, which can use types to generate more efficient code by avoiding type
tags [Goldberg, 1991], to represent data structures unboxed [Leroy, 1990] or to help in garbage collection
[Goldberg, 1992].

In a similar manner, effect inference permits uniform sharing relations between data structures and the
side effects of programs to be determined. Asis advocated in [Tofte & Talpin, 1993, Talpin & Jouvelot, 1993,
Tang & Jouvelot, 1992], this information can be used to determine the allocation class of data structures:
register, stack or heap. They can also be used to perform program transformations that can imply a change
in the evaluation order of expressions in the program [Talpin & Jouvelot, 1993].

1.3 Implementation

To improve the performance of a programming language, one can also think of adding parallel execution
capabilities to its implementation. For example in FX, implicit data parallelism can be expressed by using
the vector module, consisting of an abstract data type and a set of functions for manipulating them, inspired
by APL and [Fortran90].

Implementors of programming languages that integrates both functional and imperative paradigms must
exert care when designing code optimizers since side effects inhibit most of the nice properties of pure
functional languages, properties which are put at work in code transformations.

Going from sequential to parallel programs causes the issues to get significantly more complicated, both at
the programming and the implementation levels. Concomitant use of side effects and parallelism leads to non-
determinism, which makes program understanding and debugging difficult because of the non-reproductibility
of results. Restricting parallel programs to be deterministic, as advocated in [Steele, 1990], is a way of making
parallel program design in higher-order imperative languages a more manageable task.

Based on the concept of an effect system, we present new compile-time techniques that enforces such
deterministic constraints and prove its effectiveness by describing a prototype compiler that targets the FX
programming language [Gifford & al., 1987] to the Connection Machine CM-2.

Our compiler uses effects to determine when operations on vectors are amenable to data parallelism in
the presence of both side effects and higher-order functions. The absence of side-effects, for an operation
mapped on every element of a vector, guarantees that its execution in parallel will not cause interferences.
Such operations are run in parallel while others are conservatorily limited to sequential execution on the
CM-2 front end.

Our compiler uses regions to discover when the lifetime of locally allocated data structures is compatible
with the memory model of the CM-2, which encourages the allocation of parallel vectors in the stack.

An implementation of these compile-time techniques has been integrated to the FX system, together
with a CM-2 compiler back-end that generates *Lisp code. Test programs have been run on both a *Lisp
simulator [*Lisp, 1987] and a CM-2 to evaluate the performance of our approach.

1.4 Structure of this Thesis

The contributions developed in this thesis aim at the specification and the proof of static analysis techniques,
based on the principle of polymorphic type inference. The rest of the document is organized as follows.

In chapter 2, we present the language and its semantics. Then, we specify the static semantics for
inferring types, regions, and effects and prove its consistency. We define the algorithm that computes the
principal type and the minimal effect of expressions in the language. We prove its correctness with respect
to the static semantics.

Then, we present some extensions of our system to capture other imperative features of programming
under the concept of effect system. such as communications and concurrency. We specify suitable exten-
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sions of our static semantics for incorporating them and prove their consistency with respect to a dynamic
semantics.

In chapter 3, we show how to restrict us to the effects that affect their environment: the ohservable
effects, and we present an application of effect inference, which leads to the definition of the type and effect
discipline, an imperative typing discipline based on effect inference. This type discipline shows how to use
effect information to control polymorphic type generalization in the presence of imperative language features.

Finally, in chapter 4, we present type and effect inference as a correct and effective medium for efficient
implementation of the FX language on the CM-2. We show how to use type and effect information to exploit
the implicit data-parallelism of FX vector operations and present a working compiler for FX on the CM-2.
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Chapter 2

Type, Region and Effect Inference

2.1 Introduction

Static typing is the most widely used technique of static analysis in programming languages. It detects at
compile-time a frequent cause of error during the execution of a program: the inconsistent use of a datum
with respect to that datum’s structure. The compiler uses types to statically describe the structure of data.
Static typing associates every identifier and every expression of a program with a type according to certain
rules. The process of type checking consists of verifying that the type of data, as they are used in the
program, matches the type of their definition in the program. The successful type checking of a program
guarantees that no type-error can ever occur during its execution.

However, an ill-typed program is not necessarily incorrect. This consideration has motivated the search
for more expressive type checking systems, capable of rejecting less correct programs. The introduction of
type polymorphism [Milner, 1978] has permitted such progress by allowing the typing of generic functions,
Consequently, it has been the subject of much theoretical investigation and practical developments to inte-
grate imperative language constructs [Damas, 1985, Tofte, 1987, Leroy, 1992, Talpin & Jouvelot, June 1992]
and module systems [Appel & Mac Queen, 1990, Sheldon & Gifford, 1990, Tofte, 1992].

Effect systems [Lucassen & Gifford, 1988, Lucassen, 1987] are another example of such an extension.
Similar to types, which describe what an expression computes, effects describe how an expression com-
putes. Effect systems adapt type checking techniques to statically determine the type and side-effect of
programs. In [Gifford & al., 1987], the authors define the FX programming language and propose a static
semantics to check polymorphic type and effect declarations in FX programs. To spare user’s from writing
types, [Jouvelot & Gifford, 1991] presents a system for statically inferring types and effects. Introducing
the notion of algebraic reconstruction, they formulate the problem of type and effect inference in terms of
constraint satisfaction in the vein of [Morris, 1968].

The problem of constraint satisfaction is inherent to type inference. It consists of solving the relationships
between types, specified by the static semantics, which are more often than not equations. The resolution
of type equations is usually performed by using a unification procedure. When an equation has a solution,
a unification procedure serves to compute the solutions of the equation. In the case of type equations, this
solution is usually unique and represented by a substitution, which relates the variables of the equation to
the terms that satisfy it.

Because unification is a central problem in type inference, the unicity of the solution to type equations is
a very important formal property. But in general, it is far from being inherent to every unification problem.
As is reviewed in [Siekmann, 1989], it essentially depends on the axiomatic properties of the algebra in which
the equations are defined. ACUTI-unification, studied by [Lincoln & Christian, 1989] and others, is a typical
example of non-unitary unification problem. Some other equational problems, higher-order unification for
instance, are even undecidable [Siekmann, 1989].

In an effect system, the side-effect of a function, its latent effect, is statically represented by a set
assoclated with that function’s type. As a consequence, the constraint satisfaction problem related to type
and effect inference requires the resolution of equations on sets. Since the most general unifiers of a set
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equation isn’t, in general, reduced to a singleton, this implies that the principal type of an expression with
respect to substitution is not always unique. Another problem of using algebraic reconstruction is that some
programs, type-safe in Milner’s type discipline, become ill-typed by the introduction of effect to the function
types: effect mismatches cause type clashes.

In this chapter, our main contribution is to present a type system which building upon both the ideas
of effects systems and polymorphic type inference, reconstructs the principal type and the minimal effect of
such programs by the addition of subeffecting. Subeffecting is tantamount to subtyping in the domain of
effects. It is required here to coerce the latent effect of matching functional types to a common upper bound.
The algorithm presented in section 2.6 computes the minimum of these upper bounds.

Plan

The structure of this chapter is as follows. We first describe the static semantics of the language in sec-
tion 2.3. In section 2.5, we prove that the static semantics of the language are consistent with the static
semantics defined in 2.2. Section 2.6 presents our type, region and eflect reconstruction algorithm. Its
correctness 1s proved in section 2.8. In section 2.10, we present an extension of type and effect inference
to capture other imperative features of programming under the concept of effect system, such as commu-
nications and concurrency. We specify suitable extensions of our static semantics for incorporating them
and prove their consistency with respect to a dynamic semantics. Section 2.11 presents the related work.
Before concluding in section 2.12, we show how our algorithm works on a few examples (section 2.9) and

discuss potential applications. The technical results presented in this chapter are mainly inspired from
[Talpin & Jouvelot, 1992].

2.2 A Core Language and its Semantics

Reasoning on the complete definition of the language FX or ML would have been complex and tedious. In
order to simplify the presentation and to ease the formal reasoning, this chapter introduces a core language.
It integrates, like ML or FX, the principal features of functional and imperative programming, but it is much
simpler. This section introduces its syntax and its dynamic semantics together with a series of conventions
and notations that are used in this thesis.

2.2.1 Syntax

The expressions of the language, written e possibly with a prime or a subscript, are the elements of the term

algebra Frp generated by the grammar described below. It uses enclosing parentheses in the reminiscence
of Scheme [Rees & al., 1988].

en= x| value identifier
(op e) | operation
(e &) | application
(lambda (x) e) | abstraction
(rec (£ x) e) |  recursive function definition
(let (x e) &) lexical value binding
Syntax

In this grammar, x and £ range over a countable set of identifiers. The form (e ') stands for the
application of a function to an argument e’. The form (op e) applies the primitive operation op to the
argument e. The expression (lambda (x) e) is the so-called lambda-abstraction that defines the first-class
function whose parameter is x and whose result is the value of e. Similarly, the expression (rec (f x) e)
defines a recursive function whose name is £ inside e.
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In the literature, the lambda construct is usually preferred to the rec construct, because it is easier to
reason about functions with it and because it is simpler to handle in proofs. However, one can observe that
it 1s hard to write interesting programs without recursion. Moreover, the addition of recursive functions to
a language sometimes requires a complete revision of its specification and its proofs [Milner, 1991]. In the
ML language, recursion is usually presented as an extension of the let construct. Here, the let construct
1s used to lexically bind a value identifier x to the value of an expression e during the evaluation of a body
expression e.

2.2.2 Store operations

The arithmetic operations over integers: +, — and <=, the boolean operations: and, or and not, or even
the construct if are typically represented by operators op, because their meaning cannot be explained by
abstractions and applications.

Store operations can also be defined by operators. They operate on reference values, which are indirection
cells that can be dynamically allocated, read and written in place.

¢ = unit value of commands
op *= new | initialization
get | dereference

set assignment

Store Operations

The operation (new e) initializes a fresh reference to the value of the expression e. The operation (get
e) gets the value referenced by the pointer returned by e. The operation ((set e) e') modifies the content
of the reference returned by e and sets it to the value of e’. We use the convention that set returns the unit
value u which is represented by the constant unit in the syntax of the language.

2.2.3 Free Value Identifiers

The set of free value identifiers fife] of an expression e is defined by induction on the syntax of expressions.

file] =0
filx] = x
filCop e)] = fie]
filCe €] = fi[e] U fi[e']
fil(1ambda (x) e)] = fi[e] \{x}
fil(xrec (£ x) e)] = fi[e] \{£,x}
fil(let (x e) )] = fi[e] U (fi[e'] \{x})
Free Identifiers

2.2.4 Formulation of the Dynamic Semantics

In this section, we define the dynamic semantics of our language. The dynamic semantics specifies the
meaning of the expressions of the language. It is defined by an evaluation mechanism that relates expressions
to values. To express this relation, we use the formalism of relational semantics [Plotkin, 1981, Kahn, 1988].
It consists of a predicate between expressions and values defined by a set of axioms and inference rules: the
evaluation judgement. This evaluation judgment tells whether an expression evaluates to a given result.

Another framework for expressing the meaning of a language’s expressions is denotational semantics
[Stoy, 1977], but it requires the formal definition of semantics domains for values which are not needed here.
Reduction semantics [Felleisen & Friedman, 1989, Wright & Felleisen, 1992] is another simple approach to
express the semantics of programming languages, via rewriting rules that use a notion of context.
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2.2.5 Semantic Objects

We present the semantics objects on which the predicate of evaluation is defined. This semantic objects
consist of values, environments, stores and traces.

v € Value ={u}+Ref+ Closure values
e € Closure =Idx Fzpx Env closures
I € Ref locations
E € FEnv =Id @3 Value environments
s € Store :Refji?»1 Value stores
f € Trace =P (inil( Ref)+read( Ref)+write( Ref))  traces

Values, Stores and Traces

Values are either the command value u, reference values { or closures ¢. A closure (x, e, E) is composed
of a value identifier x, its formal parameter, an expression e, its body, and the environment E where it is
defined.

An environment E is represented by a finite map from identifiers to values. In an environment E, we
assume that all identifiers are distinct. The empty mapping is written {}. The domain of the mapping F is
written Dom(E) and its range Im(E). If x belongs to Dom(E), we write E(x) for the value associated with
x in E. Finally, we write Ex for the exclusion of x from F and the extension of £ to the mapping of x to v
by Ex + {x — v}.

The presence of references requires the introduction of a notion of state in the dynamic semantics: the
store. The store changes during the evaluation of a program and it tells the current contents of all initialized
references. We assume that we are given a countable set Ref of locations {. Then, a store s is represented by
a finite map from references, or locations in Ref to values. Thus, we use for stores the same notations than
for environments.

Additionally, we need to define traces in order to record side-effects that occur during evaluation. A trace
[ is represented by a set of tagged references init({), read(!) and write(!) that indicate initialized, read and
written locations. A trace 1s intended to describe the dynamic counterpart of a static effect presented in
section 2.3.

2.2.6 Formulation of Axioms and Rules
The definition of the dynamic semantics is presented by a set of axioms and inference rules. Axioms and rules

are made of propositions . Propositions P in axioms and rules can contain variables that are implicitly
universally quantified. An axiom, presented as:

or sometlmes as P

P

allows to conclude that proposition P holds for any instance of its free variables, i.e. for any substitution of
its free variables with appropriate ground terms. Similarly, an inference rule:

P Py .. P,
P

allows one to conclude that P holds when the premises P;...P, have been proved.
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2.2.7 Axioms and Rules of the Dynamic Semantics

We present, in the vein of [Tofte, 1987, Milner, 1991], the set of rules that inductively defines the predicate
of evaluation s, E + e — v, f, s’ on the structure of expressions. Given a store s and an environment E, the
predicate s, F F e — v, f, s’ assoclates each expression e with a value v, a trace of side-effects f and a new
store s'.

s, Etx— E(x),0,s (var)

s, EF (lambda (x) e) — (x,e, Fx),0,s (abs)
c=(x,e, Etx + {f—c})

s.EF (rec (f x) e) — e, 0,5 (ree)

s,EFe—uv,f s s,Ex+{x—uvite —o f s

s, EF (let (x e) &) =/, FUSf "
S,El‘e—-»"(x,e”,E’),f,S’ S',El_e’_P’UI.‘f’)S” S”,E’-l-{IH'U’}i"e”—*’U”,f”,S”I
s.EF(e &)= v, fJULUS",s" (app)

(let)

Dynamic Semantics

The axiom (var) states that an identifier x evaluates to the value E(x) bound to it in the environment
E, provided that this identifier x belongs to the domain of E. Otherwise, the expression x has no meaning.
By the axiom (abs), a function definition evaluates to a closure.

The rule (rec) is more involved. A similar representation can be found in [Milner, 1991]. The equation
¢c=(x,e,Es y + {f — c}), that defines the closure ¢ representing the function f, is recursive. To support
this feature, ‘we need to define non well-founded semantics objects ¢ in Closure. Following [Aczel, 1988], it
is possible to define the domains Closure, Value and Fnv that satisfy the recursive set equations that define
them and, also, in such a way that there exists a unique ¢ satisfying the equation ¢ = (x, e, F y + {£ — ¢})
for any x, £, e and F.

As stated by the rule (let), a let binding evaluates the first argument e to a value v, binds it to the
identifier x, and then evaluates its second argument e’ in the environment E extended with {x — v}. The
result v’ is the result of the let expression. In the case that the evaluation of the first argument does not
succeed, the evaluation of the let expression is not defined.

The rule of application (app) is more complex. First, the expression e must evaluate to a closure
(x,e", E'). Then, the argument e’ must evaluate to a value v’. Finally, the function body e” must evaluate
to a value v with the environment E’, captured in the closure, extended with the formal parameter x bound
to v'. In the case of a recursive function, defined with the rule (rec), the internal function name £ is still
bound to the closure (x,e”, E'), thus allowing recursive calls.

In the rules (let) and (app), the traces of the side effects f, f’ and f”, oceurring in during the evaluation
of subexpressions e, e’ and e”, are collected and combined together by the set union operator U.

2.2.8 Dynamic Semantics of Store Operations

Now, we can give the relational semantics for the operations on references. The semantics describe how
the store is modified by the evaluation of expressions. Additionally, it gives a precise definition of side-
effects which are collected by evaluation traces f and consist of initializations init(l), dereferences read(l)
or assignments write(!) of locations I.
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s,Ete—u,fs 1 ¢ Dom(s'")

5, EF (new &) — 1, FU (init(D}, & + U — v} (new)
S,EFS—)LJ’,S" lEDom(s’) "
s,EF (get e) — &(1),f U{read()}, & (get)

s, EFe—1f ¢ s,Ere —u f, 8" (set)
s,EF ((set e) &) —u, U U{write(l)},s] + {{— v}

Dynamic Semantics of Store Operations

The rule (new) of reference initialization first evaluates the initial value v of the reference and then picks
a fresh location {. This very step might seem non-deterministic but all choices of { are equivalent modulo
a renaming of the locations in s’. The second step is then to extend the store with the binding of { to v
and to return { as the value of the expression. The rule (get) evaluates its argument e to a location /, then
returns the value v stored at this location in the store s. Finally, by the rule (set), the assignment operator
evaluates its first argument e to a location [ and its second argument e’ to a value v. Then, it updates the
store at the location [, substituting the previous value by v. Note that, by definition of the rule (new), {
must be in § when e evaluates to (.

s,Ete—|{f & ( t)
s, B (set e) — (set’ [)Jfﬂg" sely
S,E[‘e—>(set,l),f!3’ S’;El_ e"_*'vu.flysﬂ t

5, EF (s &) —u,JUF Ufurite(D), o + ([ e} )

Another Dynamic Semantics of Assignment

The particular syntax of the assignment operator in the rule (set) is here to avoid complicating the static
semantics, presented in section 2.3, by introducing functions with multiple arguments. Alternatively, we
could present it by considering new, get and set as identifiers as well as introducing the partial applications
(set, ) of the set operator to locations [.

Example Before moving to the technical developments of this thesis, let us demonstrate how to use the
dynamic semantics by considering the derivation of the small program below.

{},{} F (Lambda (x) (get (new x))) — (x, (get (new x)),{}),{},{}

{LitF1-1,{},{}
{M{x— 1} Fx—1,{},{} { is fresh
{},{x— 1} F (new x) — I {inat())}, {l — 1}
{L{x— 1} F (get (new x)) — 1,{init(l),read(l)}, {l — 1}

{},{} F ((lambda (x) (get (new x))) 1) — 1, {inil(l), read(])}, {I — 1}

Our program executes in the empty store and the empty environment (both written {}). It is an appli-
cation expression. The left-hand side evaluates to a closure (x, (get (new x)),{}) and the right-hand side
to an integer constant, 1. Then, the closure (x, e, {}) is applied to its argument 1 and performs two pointer
operations. First, it allocates a fresh pointer ! and sets it to 1 by the operation new. It then reads and

returns it. The program terminates, yielding the value 1. Also note that the location I, in which the value
1 was stored, cannot be accessed any longer B
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2.3 Static Semantics

In this section, we present the static semantics of our language. We are first going to equip the language
with a type system. Then we will give the inference rules of the static semantics. The rules of the static
semantics associate the expressions of the language with their type and effect, in the same way as the rules
of the dynamic semantics associate expressions with values.

2.3.1 Semantic Objects

We begin by defining the term algebra for the three basic kinds of semantic objects: regions, effects and
types.

p =70 regions
o ==0]¢|oUc|init(p) | read(p) | write(p) eflects
T u=unil| | ref,(7) | T LT types

Static Semantics Objects

The domain Region of regions p is the disjoint union of a countable set of constants r and variables
¢. Every location corresponds to a given region in the static semantics. A region abstracts the memory
locations that will be initialized at a given program point at runtime.

Basic effects o can either be the constant @ that represents the absence of effects, effect variables ¢, or
store effects init(p), read(p) or write(p) that approximate memory side-effects on their region argument
p. init(p) denotes the allocation and initialization of a mutable reference value in the region p. The effect
read(p) describes accesses to references in the region p, while write(p) represents assignments of values to
references in the region p.

Effects can be gathered together with the infix operator U that denotes the union of effects; effects define
a set algebra. The equality on effects is thus defined modulo associativity, commutativity and idempotence
with ) as the neutral element. We define the set-inclusive relation D of subsumption on effects: ¢ 2 o' if
and only if there exists an effect ¢ such that ¢ = o' Ug".

The domain Type of types r is composed of the constant unit, which describes the type of commands,
type variables «, reference types ref,(7) in region p to values of type 7, function types r Z ' from 7 to
7' with a latent effect 0. The latent effect of a function encapsulates the side-effects of its body and is the
effect incurred when the function is applied.

2.3.2 Free Variables and Substitutions

We have defined three kinds of variables: type variables, region variables and effect variables. When it is
not necessary to specify if a variable represents a type, a region or an effect, we note it v generically. Also,
we adopt to represent sequences of terms, such as sequences of variables v, using the notation .

We write fu(7) for the set of free type, region and effect variables in 7. This definition extends pointwise
to regions and effects.

fu(umi) =0 Fo(0) = 0
fad] = ia) finit(p)) = fp)
Flrefy(r)) = fle) U ) filread(p)) = flp)
fo(r = ') = fo (r)va( YU fulo) fu(write(p)) = fulp)

fu(r) = 01 fi (o) = {e} fleUd’) = f'f)(o') U f(o')

Free Variables
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The function fr computes the set of region constants and variables free in type and effect terms. Similarly,
we write ftv, frv and fev for free type variables, region variables and effect variables of terms respectively.

fr(unit) =@ (0) =0
fr(a) = {a} filinit(p)) = {p}
fi(refy()) = {p} U fr(7) fr{read(p)) = {p}
fr(r 5 1) = fr(r) U f(7') U fr(er) fr(write(p)) = {p}
fr(p) = {r} fle V') = frlo) U fr(o’)

Free Regions

Substitutions # map type variables o to types 7, region variables g to regions p and effect variables ¢ to
effects o. We write # o 8’ for the composition of the substitution ¢ and ', so that 8 o #'(v) = 0(6'(v)). The
identity is written Id.

2.3.3 Rules of the Static Semantics

We formulate type and effect inference by a deductive proof system that assigns a type and an effect to
every expression of the language. The context in which an expressions is associated with a type and an
effect is represented by a type environment £ which maps value identifiers to types. Deductions produce
conclusions of the form £ - e : 7, ¢ which are called typing judgment and reads “in the type environment £
the expression e has type 7 and effect o”.

x € Dom(&)

m (var)
Ex+{x—r1}lFe:7 o b
£+ (lambda (x) e): 7> 7,0 (abs)

£f+{fl—>r}|—(lambda (x) e):7.0 ( )

EF (rec (£ 1) &) 70 e
Si—e:rﬂ‘."",ﬂ' 8}_&':7,0"

EF(ee): T ol Ug" (2pp)
E e =1
gl—:;:,gf == (doee)

Static Semantics

The typing rule (var), for value identifiers, states that an identifier x has a type 7 as soon as it is bound
to it in the type environment £. The rule (abs), for abstraction, tells that a function definition has type
T < ' as soon as its body can be given type 7' and effect ¢ under the assumption its formal parameter is
of type 7. In the case of (rec), the internal value identifier of the function must also have that type. Note
that non-expansive expressions, such as value identifiers, rule (var) and abstractions, rules (abs) and (rec),
have no effects.

In the rule (app), we see that a function application is well-typed as soon as the type of the argument
corresponds to the type of the function parameter. The type of the application is the type given for the result
of the function. The effect of the function is propagated together with the effects of both subexpressions.

The rule (does) is precisely needed because of the rule (app). The rules (app) imposes that the types of
the formal parameter and of its argument match. Type-matching may occasion effect-matching which can
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be avoided by a tantamount notion to subtyping in the domain of effects: subeffecting. Subeflecting, via the
(does) rule, allows the extension of effects.

The communication of the effects from a function definition to a function application is best viewed in
the rules of abstraction (abs) and application (app), which show the interesting interplay between types and
effects. Via the abstraction rule, the effect of a lambda abstraction body is put inside the function type
while, with the application rule, this embedded effect is extracted from the function type to be exercised at
the point of call; effects flow from the points where functions are defined to the points where they are used.

2.3.4 Static Semantics of Store Operations

The store operations new, get and set have been defined by appropriate rules in the dynamic semantics. In
the static semantics, they are best defined by using axioms.

Ernew:r AARI) refp(‘r‘),@
£k get : ref, (1) G 7,0

Erset:ref(r) DT otz selel unit, 0

Static Semantics for Imperative Operations

These three axioms specify the types that can be assigned to the identifiers new, get and set that
implement store operations. For instance, the axiom for the identifier new reads: for any environment £,
type 7, region p and effect o, the type of new is a function from objects of type 7 to references ref,(7) that
has at least the effect inil(p) of initializing a reference in the region p.

2.3.5 Static Semantics of let-binding Expressions

The notion of type polymorphismis the most distinguished feature of Milner’s discipline of typing, introduced
in [Milner, 1978]. It is expressed in let constructs. It reflects the property that an expression can have
several different types. Generic types are associated with the value identifiers that are bound to referentially
transparent expressions in let constructs.

One way to statically enforce such expressions be “referentially transparent” would be to require their
effects to be ). We did not adopt this policy here since it would have required a non-deterministic backtrack-
based inference algorithm. This would have departed too much from existing syntax-directed type recon-
struction algorithms. Nonetheless, as shown in [Wright, 1992] and [Talpin & Jouvelot, June 1992], effects
can be used to control the generalization of types.

The treatment of type polymorphism by effect inference is the subject of chapter 4. The present chapter
introduces a much simpler policy for the introduction of type polymorphism, based on the notion of expan-
siveness of expressions [Tofte, 1987]. Informally, value identifiers and lambda-abstractions are non-expansive

expressions. By extension, a let expression is non-expansive if and only if both its binding expression and
its body are non-expansive.

exple] = case e of
x | (Lambda (x) e) | (rec (£ x) e) = false
(e e') | (op &) = true
(let (x e) e') = caxple] V exple’]

Expansive Expressions
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Non-expansive (let (x e) e’) expressions can be handled by the syntactic substitution e’ [e/x] of e for
x in &', avoiding capture of bound variables. This simple technique provides an equivalent way of expressing
the property that non-expansive expressions may admit multiple types without adding the complications of
introducing type schemes in the static semantics.

—ezpe] EFe:T,0 Ere'le/x]: 7 a
EF (let (x e) &) : 7 ¢

(let)

exp[e] EF ((lambda (x) €') e) : 7,0
EF (let (x e) &) :7,0

(ilet)

Static Semantics of 1et Expressions

By the rules (let) and (ilet) above, the typing of let expressions reduces to simpler expression by using
the simple rewriting rules of syntactic substitution e’[e/x] and a syntactic expansiveness criterion.

Example We have now completely presented the dynamic and static semantics of our langnage. To exercise
us at manipulating type and effect of expressions, let us consider the derivation of the type and the effect of
the following small program, that computes the factorial of 5.

(let (x (new 1))
((rec (loop y) (if (= y 1) (get x)
(begin ((set x) (* y (get x)))
(loop (- ¥y 1)))))
5))

In this example, we introduce two additional language constructs. The form (begin e e’) performs the
sequential evaluation of e and e’. The form (if e e’ e') chooses to evaluate either e’ or e” depending on
the boolean value of e.

Our program consist of an expansive let construct. Typing the bound expression (new 1) is no problem,
it 1s an application of a store operation to an integer constant.

{} F new: int tajt(e) ref,(int), | {}F1:nt,0
{} F (new 1) : ref, (int), init(p)

To type the identifier new, we choose the type int in order to match the type of the constant 1 and verify
the rule (app). There is no constraint in the choice of the region p and the effect init(p) of new.

Having typed the bound expression, we must then, according to the rule (ilet), build a type environment
& = {x — ref,(int)} and type the body of the expression. This body expression is an application which
consists of a recursive function and another integer constant. Typing this constant is easy, we have £+ 5 :
int, . This is not the case for the recursive function.

According to the rule (rec), an hypothesis must be made about the type of the recursive function. The
definition of the function must then fulfill this hypothesis.

read(p)Uwrite(p)
—_—

E' = £+ {loop — int int, y — int}

2 ; di i @ ¢ i
We choose the type of the function loop to be int read(p)lyrite(e) iut and build the new type environment

&' that will be used during the derivation of the type and the effect of the function definition.

y € Dom(&")
Eb=iintxintHboold EFy:&F.0 EF1:inth
E'F(=y 1) : bool, D
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We first type the predicate expression in the if construct, which is quite simple to do. The identifier =
stands here for an equality predicate between integer values. In the static semantics, it can be associated
with an axiom in the same vein than store operations.

&'+ get : ref,(int) ) i) £k x: E'(x),0
E'F (get x) : int, read(p)

Then, we type the left arm of the if construct and finally, the right arm, which is decomposed in a
sequence of two operations. The first is an accumulation of the intermediate result using the pointer x.

£'F (set x) : int 75 unit,§ &'k (x y (get x)) : int,read(p)
E'F ((set x) (* y (get x))) : unit, read(p) U wrile(p)

The second is the recursive call of the function loop.

&'+ loop: &' (loop), B &'+ (-y 1) :int,0
E'F (Loop (- y 1)) : int, read(p) U write(p)

This gives the type of the begin construct and, finally, of the if construct.

E'F (=3 1):bool,® E'F (get x):int,read(p) &' F (begin ...) :int, read(p) U write(p)
E'F (if (= y 1) (get x) (begin ...)) : int, read(p) Uwrite(p)

The type of the definition of loop agrees with the type that was assigned to the identifier Loop. Thus,
the rule (rec) is verified. In the rest of our program, the recursive function loop is applied to its argument,
b, and thus yields a result of type int with the effects of initializing, reading and writing a pointer in the
region p A

2.4 Formal Properties of the Static Semantics
The static semantics presented in the previous section has a number of formal properties that are used in

the formal proofs of consistency, with respect to the dynamic semantics (section 2.2), and of correctness,
with respect to algorithm (section 2.6).

2.4.1 Substitution Lemma

An important formal property of the static semantics is the lemma of substitution. It is used both in the
proof of consistency and in the proofs of correctness for the reconstruction algorithm.

Lemma 2.1 (Substitution) If £ e: 7,0 then 0+ e: 07,00 for any substitution 0

Proof The proof is by induction on the proof derivation.

Case of (var) By hypothesis, we have £ F x : 7,0. By definition of the rule (var), 7 = £(x). Thus,
0 = 6(£(x)) and by definition of the rule (var), 6€ + x : 67, 0.

Case of (abs) By hypothesis, we have £  (lambda (x) e) : 7 = 7/,0. By definition of the rule (abs),
Ex + {x+— 1} Fe: 7' 0. By induction hypothesis on e, 8(£x + {x — 7}) F e : 87/, 00 for any substitution
8. By definition of the rule (abs), 6 F (lambda (x) e) : 8(7 = '), 0.

Case of (rec) By hypothesis, we have £ - (rec (£ x) e) : 7,0). By definition of the rule (rec), £¢ +
{f — 7} F (lambda (x) e) : 7,f. By induction hypothesis on (lambda (x) e), 0(¢ + {f — 7}) F
(lambda (x) e) : 07,0 for any 6. By definition of the rule (rec), 0€ F (rec (f x) e) : 67, 0.
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Case of (app) By hypothesis, £ (e e') : 7/,cUd’Ua". By definition of the rule (app), EFe: 7> 7', 0

and £ F ¢ : 7,0’. By induction hypothesis on e and &/, 0£ - e : 8(7 2, 7'),0c and 0 &' : 07 0’ for any
substitution §. By the definition of the rule (app), we conclude that € - (e e’) : 87/, 0(c Uo’ U ¢”) for any
substitution .

Case of (does) By hypothesis, £ F e : 7, ¢. By definition of the rule (does), this requires that there exists
o' C o such that £F e : 7,¢'. By induction hypothesis, € I e : 1,0’ for any substitution #. By definition
of the rule (does), we conclude that 6 I e : 67, 8 since 6o’ C 6o O

2.4.2 Deterministic Deduction

The typing rules presented here are derived from Damas & Milner’s type discipline for ML. However, the
system of [Damas & Milner, 1982] assigns type schemes to expressions and features two separate rules for
generalization and instantiation. 'The use of these two rules is not constrained by the syntax, whereas
in [Clément & al., 1985, Tofte, 1987, instantiation is performed for value identifiers and generalization is
performed in let expressions. Every rule is associated with a syntactic category.

This is not the case in our system, because the rule (does), can be used any time during the deduction,
and thus introduces non-determinism in the assignment of type and effect. This rule is necessary to coerce,
to a common upper bound, the latent effect of two functions that must have matching types. However, by
combining the rule (does) with the rule (abs) as above, we obtain a syntax-directed deduction system:

Ex+ {xrr)bae im0
aUa’ d +(ab
£ty (lambda (x) e) :7 "= 7.0 (does)+(abs)

Proposition 2.1 (Deterministic deduction) If £ Fge : 7o then EF e : 70. IfEF e 7,0 then
Elge: 7,0 for somed’ Co.

Proof We show by induction that every derivation in k4 corresponds to a derivation in . Derivations
using the rules (var), (app), (let) and (ilet) are equivalent. Derivations using the rule (abs) (respectively
(rec)) can be translated by using the rules (does) and (abs) (respectively (rec)) as in the following case
analysis.

clo

Case of (abs) By hypothesis £ k4 (lambda (x) e) : T oy 7/,0. By the rule (abs), this requires that
Ex+{x— 1} e : 7' 0. By induction on e, we have £x + {x— 7} F e : 7/, ¢. By the rule (does), we get
Ex+ {x—r}Fe:7' 0cUc' By the rule (abs), we conclude

oUo’

EF (lambda (x) e):7 = .0

Now suppose that £ - (lambda (x) e) : 7 kg 7/,(. By the rule (abs), this requires that £x+{x — 7} F
e :7/,0. By induction on e, we have £x + {x + 7} kye : 7/, ¢’ for some ¢’ C 0. By the rule (does)+(abs),
we conclude

£k (lambda (x) e):7°% 0 O

2.5 Consistency of Dynamic and Static Semantics

We use the proof techniques introduced in [Tofte, 1987, Milner, 1991] to show that the static semantics and
the dynamic semantics are consistent with respect to a structural relation between values and types.
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2.5.1 Consistency Relations

Such a structural relation is defined in [Tofte, 1987], written s,8 = v : 7, for “ v has type 7 with the store
s and the model §”. It is defined hy the maximal fixed point of a monotonic property, observing that the
property itself does not suffice to define the relation, because it is not well-founded by induction on values.
A value v cannot always be inductively proved to have a type 7, since there might be cycles in the store s.
A similar observation is made in [Milner, 1991] regarding recursive functions.

In [Leroy, 1992], the author presents a well-founded yet stronger relation. It is presented by the con-
junction of & |= v : 7, which says that “v has type 7 with the model §” and | s : §, which says that
“the store s has model §”. This representation elegantly separates the predicates of value typing and store
typing. However, it is based on a very simplified representation of recursive functions which does not permit
to represent mutually recursive functions.

In the following, we adopt an alternate predicate, which is inspired from [Leroy, 1992], for describing
store typings, and from [Milner, 1991], for describing the typing of recursive functions.

Definition 2.1 (Store Model) A store model S, defined on StoreModel:Ref@ Regionx Type, is a finite
mapping from locations | to pairs (p,T) of regions p and types . We say that 8’ eztends 8, writlen ST &',
if and only if Dom(8) C Dom(8") and for every [ € Dom(S), S(I) = S'(1).

The notion of store model 1s used to describe the relation between the objects of the dynamic and the
static semantics.

Definition 2.2 (Consistent values and types) A wvalue v is consistent with the type T for the model S,
written 8 v o 7, if and only of v and 7 verify one of the following propertics:

SEu:unit

Skl ref(r) & 8(1) =(p,7)
SI:(meE) ro3E SEE:E A EF (lambda () e): 7,0

We write S |E FE : £ if and only if Dom(E) = Dom(€) and S |E E(z) : £(=) for any z € Dom(E).

It is shown in [Milner, 1991] that this structural property, between values and types, does not uniquely
define a relation. Because functions can be recursively defined, it must be regarded as a fixed point equation.

Example As an example, consider the recursive function loop defined in the example of the section 2.3
(page 28). In the dynamic semantics, its value is represented by the object ¢loop defined by the recursive
equation below.

Cloop = (x,(if ...),Es +{f — Cloop})

. oy
One cannot check that cj40p has type int write(e)gread(e) ot for the store model 8 before to check

that there exists a type environment &£ to type Fg + {f — cloop}- This cannot be done by induction on
the structure of values. Thus, one must define the fixed points of the recursive property defined in the
definition 2.2 and define our relation as this greatest fixed point W

We define a function F whose fixed points are the relations on R that verify the property defined above.

Definition 2.3 (F) The function F is defined on P(R) — P(R) where R is the domain R = StoreModel x
Value x Type.

F(Q)={(S8,v,7) | if v = u then 7 = unif
ifv="10then S(I) = (p,7') and 7 = ref,(7')
if v=1(z,e E) then there ezxists £ such that £+ (lambda (z) e): 1,0,
and that (8, E(=z),E(z)) € Q for every ¢ € Dom(E) = Dom(£E)}

In order to guarantee the existence of fixed points for F, it is sufficient to show that F is monotonic,
according to [Tarsky, 1955].

Lemma 2.2 (Monotony of F) If Q C Q' then F(Q) C F(Q").
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Proof Let Q and Q' be two subsets of R such that @ C Q'. Let ¢ be (8,v,7) in F(Q). We prove that
g € F(Q).

o If v = u, then 7 = unit so that ¢ € F(Q').
e If v =1, then 8(I) = (p,7') and 7 = ref,(7') so ¢ € F(Q').

e If v = (x, e, E) then there exists £ such that £ F (lambda (x) e) : 7,0 and that (8, E(x),E(x)) € Q
for every x € Dom(E). Thus, ¢ € F(Q') O

Among the fixed points of F, the greatest fixed point gfp(F) = U{Q C R | @ C F(Q)} defines our
relation. A set @ such that @ C F(Q) is called F-consistent and the relation between types and values is
defined by:

Skv:it & (Sv,7)€ gfpo(F)
Lemma 2.3 (Values and Models Extension) If SC S and Skv:7 then 8 v : 7.

Proof This property is an immediate consequence of the definition 2.2. To prove it, we use the technique
of co-induction, proposed in [Tofte, 1987]. It consist to prove that the set @ = {(8',v,7) | S v : 7}, where
8’ extends 8, is F-consistent. To do this, it is sufficient to show that Q@ C F(Q). Let ¢ = (§',v,7) € Q, we
show that ¢ € F(Q) by case analysis on the structure of values.

e If v = u then, by definition of |=, T = unil so that ¢ € F(Q).

o If v = [ then, by definition of |5, 7 = ref (7) and 8(I) = (p, 7). Since § C &', one has §'(l) = (p, ')
so that g € F(Q).

o If v = (x, e, E) then, by definition of |, there exists & such that £ F (lambda (x) e) : 7,0 and that
8 k& E(x):£(x) for every x € Dom(E). By definition of @, (8, E(x),&(x)) € Q. Thus, ¢ € F(Q) O

Lemma 2.4 (Values and Semantics Substitution) If S E v : 7 then 08 E v : 87 for any 6.

Proof The proof is by co-induction. Let us consider the set Q@ = {(08,v,07) | § E v : r}. To prove that
Q is F-consistent, it is sufficient to show that @ C F(Q). Let ¢ = (6S,v,07) € Q, we show that ¢ € 7(Q)
by case analysis on the structure of values.

e If v = u then, by definition of |=, 7 = unit so that ¢ € F(Q).

o If v = [ then 7 = ref,(7') and S(I) = (p,7’). Thus 08(l) = (0p.07') and 81 = refy,(67') so that
g € F(Q).

e If v = (x,e, F) then, by definition of |=, there exists £ such that £ F (lambda (x) e) : 7,0 and
S | E(x) : £(x) for every x € Dom(E). By definition of Q, (68, E(x),0£(x)) € Q. By the lemma 2.1,
6€ - (lambda (x) e) :0r,0. Thus, ¢ € F(Q)O

In the same manner than between values and types, we define a consistency relation between traces and
effects.

Definition 2.4 (Consistent trace and effect) A dynamic trace [ is consistenl with the static effect o
for the store model §, wrilten S = f: 0.

Y init(l) € f, )
SI:f:J@{Vread(l)€f, S()
Y write(l) € f, S(I)

(p,7) A init(p) €
(p, ) A read(p) € o
(p,7) N write(p) €

Lemma 2.5 (Traces and Models Extension) If S C & and S = f : o then 8’ | f : 0. Also iof
SEf:othenSEf:ocUd.
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Proof These properties are immediate consequences of the definition 2.4. By hypothesis, § C &’ and
S E f i 0. For every init(l) (respectively read(l) and write(l)) in f, we have S(I) = (p,7) and init(p)
(respectively read(p) and write(p)) in o. Since 8’ extends & and by definition, S'(I) = (p, 7). We conclude
that 8’ |= f : 0. Similarly, init(p) (respectively read(p) and write(p)) are in U ¢’ and thus S| f: o U o’
a

Lemma 2.6 (Traces and Semantics Substitution) If S = f : o then 05 = f : 0o for any 6.

Proof This property is an immediate consequence of the definition 2.4. By hypothesis, S = f : . By
definition, S({) = (p, ) and init(p) (respectively read(p) and write(p)) is in o for every ! such that init(l)
(respectively read(l) and write(l)) isin f. For any substitution #, we conclude that S |= f : flo by definition
|

Now, we define the relation between the dynamic stores s and the semantics models &, in the same way
than in [Leroy, 1992].

Definition 2.5 (Consistent store) A store s is consistent with the model 8, written = s: 8, if and only
if Dom(8) = Dom(s) and for every ! € Dom(s), S(I) = (p,7) and § E s({) : 7.

Lemma 2.7 (Stores and Semantics Substitution) If |= s : 8 then |=5:08 for any 0.

Proof This property is an immediate consequences of the definition 2.5. By hypothesis, = s : §. By
definition, Dom(8) = Dom(s), S(I) = (p,7) and & | s({) : 7 for every [ € Dom(s). By the lemma 2.4, we
have 88 = s({) : 07 where 05(I) = (0p,07). By definition, we conclude that =5 : 68 O

2.5.2 Consistency Theorem

We are now going to state the theorem of consistency between the dynamic and the static semantics. It
states that the value v and the type 7 of an expression e are consistent. It does not state that there always
exists a value v to which e evaluates, since a well typed program may fail to terminate. However, the aim

of a type system for a programming language is not to ensure termination, but to guarantee the structural
conformity of data.

Theorem 2.1 (Consistency of dynamic and static semantics) If S =FE: €, EFe: 1.0 and 5, E +
e — v, f,s then there exists a store model 8 extending § such that 8'f=v:r, SEf:cands 8.

Proof The proof is by induction on the derivation in the dynamic semantics.

Case of (var) By hypothesis S| E: €, £Fe:&(x),0and 5, E F x — E(x),0,s. By definition of the
rule (var), this requires that x € Dom(E) and x € Dom(£). Since § | F : € and taking & = &8, we conclude
that S'Ev:r, S'E0:0and | s : 8 (where s’ = s).

Case of (abs) By hypothesis S = E : £, £F (lambda (x) e) : 7,0 and 5, £ F (lambda (x) e) —
(x,e, Ex),0,s. Taking & = &, we conclude that 8’ |= (x,e,Ex):7, &' E0:0and s : & (where s/ = ).

Case of (rec) By hypothesis, SEEE: €, £F (rec (£f x) e) : 7,0 and s, F (rec (f x) &) —¢,0,s
where ¢ = (x,e, Ex ¢ + {f — c}). Let us write £& = £ + {f — 7}. By definition of the rule (rec), the
hypothesis requires that £ (Lambda (x) e) : 7, 0.

Take B/ = Es + {f — ¢}, 8’ = S and s’ = s. To prove §' |= ¢ : 7, it is sufficient to show that
(S,¢,7) € gfp(F). To this end, we define Q@ = gfp(F) U {(S, ¢, 7)} and show that Q is F-consistent.

Consider any ¢ € Q. If ¢ € gfp(F) then, since gfp(F) C Q and F is monotonic, ¢ € F(Q). Otherwise,
g =(8,¢,7). Since £' F (lambda (x) e) : 7,0, and (S, E(y), &(y)) € Q for every y € Dom(E), g € Q. We
get that (S, E'(y),£'(y)) € Q for every y € Dom(€). This proves that @ is F-consistent.

We conclude that S =c: 7.
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Case of (app) By hypothesis S EFE : &, £F (e &) : 7', cUd’'Uc” and s, EF (e &) — o', fUFUS", §.

By the definition of rule {app), we have that £+ e : 7 ¥ 7', 0 and that £ F ¢’ : 7,¢'. By definition of the
rule (app) in the dynamic semantics, we have that

s,Ete— (xse”:E’):f:sl s;, EFe —w, f 55 and s, B+ {x—0v} ke’ —o f' 4

By induction on e, there exists a store model &1 extending § such that

Slkz(x,e",E’):Tﬂr’ SiEfio and Es 8

Since 8; extends § and & | E : £, then by the lemma 2.3, §; | E : £. By induction on €', there exists
a store model S5 extending & such that

SoEv:T SoEf:o’ and [Es2: 8
Since 8 extends &, since &1 E E: € and §; E (x,e",E'): 7 ! and by the lemma 2.3, we have that
SoEE:E and S E(x,e" F'): r &

By definition of the relation |=, there exists a type environment £ such that Sy = E' : £. Since
82 E v : 7 and by definition 8» | E'+ {x — v} : £’ + {x — 7}. By induction hypothesis on e”, there exists
a model 8 extending &, such that

8= o §:8Ev:r and &8
This allows us to conclude that &' extends & and verifies
g:8 kv SEfUuffuf':cud'Uoc” and k&8
Case of (new) By hypothesis S | E: £, & F (new e) : ref,(7),0 Uinit(p) and s,E F (new e) —
I, fu{init()},s' + {l — v} where | € Dom(s'). By definition of the static semantics, this requires that

£+ e: 7,0. By definition of the dynamic semantics, this requires that s, £+ e — v, f, 5. By induction on
e, there exists a store model & extending & such that

SiEvir SiEf:c and E§:8

Let us define & by 81 + {l — (p,7)}. Since | € Dom(s'), we have that |= s’ + {{ — v} : & and that
8" fu{init(l)} : o Uinit(p). We conclude that there exists 8 extending S such that

SEv:r Sk fulinit(l)}:oUinit(p) and Es+{l—v}:8

Case of (get) By hypothesis S = F : £, £F (get e) : 7,0 Uread(p) and s, E F (get e) — s({),fU
{read(l)},s’. This requires that s, F-e — [, f, s’ and £ e : ref,(7), 0. By induction hypothesis on e, there
exists 8§’ extending & such that

S' =1 ref,(7) SkEf:0c and Es:&

Since 8 }= 1 : ref,(7) and by definition of |, 8(I) = (p, 7). Thus, and since S’ |= f : &, we have that
S | fU{read(])} : c Uread(p). Since s'({) = v and 8({) = (p, 7), we conclude that & extends & and that

SEv:t 8 Efu{read()}:cUread(p) and s :8
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Case of (set) By hypothesis § £ E : £, £ | ((set e) e') : unit,oc Uo’ U write(p) and s, F
((set e) &) — u, fU f' U{write(l)},s’. In the dynamic semantics, this requires that s, E - e — [, f,s;
and s;, EtF e — v, f' 55 and s’ = sy + {{ — v}. In the static semantics, we must have £ - e : ref,(7),0
and £+ e’ : 7,¢’. By induction hypothesis on e, there exists a model §; extending & such that

SiEfic SiEl:ref(r) and s : 8

Since 8 extends § and S £ E : € then §; = E : £. By induction hypothesis on e’, there exists &'
extending &1 such that

Skev:r SEfio and s

Since 81 =1 : ref,(7) and by definition of |=, 8;(I) = (p, 7). Since §' extends 81, s’ = so; + {l — v},
SiEf:oand 8 E f': o', we conclude

S'Eu:unit 8§ EfUf U{write(l)} :cUd' Uuwrite(p) and s :8 0O

2.6 Reconstruction Algorithm

In this section, we present the algorithm 7 for reconstructing the type and effect of expressions. We discuss
the central ideas of our approach, describe the unification process, give the reconstruction algorithm and
discuss its properties.

2.6.1 Presentation

(3iven a type environment and an expression, the algorithm 7 reconstructs the principal type and effect of an
expression which can be inferred using the axioms and rules defined in section 2.3. The algorithm 7 resembles
to Damas & Milner’s algorithm W [Damas, 1985]. However, if the idea of Milner’s algorithm W had been
applied naively, designing the unification algorithm so as to perform the matching of effects occurring on
the arrow of function types would have been problematic. The rule (does) of the static semantics and the
algorithm are designed so to overcome this problem.

Just as for algorithm W, the reconstruction of the type and effect of expressions is a constraint satis-
faction problem. In accordance with the static semantics, the algorithm computes equations between types,
equations between regions, and inequations between effects. Just like for the Damas & Milner algorithm W,
the main invariant of the algorithm is that an expression admits a type and an effect in the static semanticsif,
and only if, the system of equations and inequations, collected by the algorithm 7, has at least one solution.

Our algorithm Z has however a particular invariant. It represents the function types 7 = 7/ of the static
semantics by a type 7 = 7 and a constraint ¢ O ¢, where < is an effect variable. This makes the problem
of solving equations on types amenable to first-order term unification [Robinson, 1965]. As in Damas &
Milner’s algorithm W, a call U(7, ') to the unification algorithm either fails or returns a most general
substitution # unifying 7 and 7'.

2.6.2 Constraint Sets

Formally, a constraint ¢ 2 o is a pair consisting of an effect variable ¢ and an effect o. Constraints are
collected into constraint sets which are written k. An inequation ¢ 2 ¢ in & enforces to assign a lower bound
of value & to the inferred effect variable ¢ in order to be consistent with the static semantics.

Constraints are introduced by the algorithm 7 when it processes lambda and rec expressions which is the
place where effects are introduced into types. We prove below that, by construction, these constraint sets

always admit at least one solution. The notion of solution, or model of constraint sets is formally defined as
follows: :

Definition 2.6 (Model of Constraints) A substitution 8 models a constraint set k, written 0 = &, if and
only if ¢ D B¢ for every constraint ¢ O o in k. The principal model B of k is inductively defined by:

B =1Idand kU{c D o'} = {c— o'} oK where ¢’ = R(cU o)
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2.6.3 The Reconstruction Algorithm

(Given a type environment £ and an expression e, the reconstruction algorithm 7 computes a substitution
f ranging over the free type, effect and region variables of the type environment £, a type 7, an effect o
and a constraint set k containing all the inequations that need to be satisfied by effect variables in order to
preserve the static semantics.

I(E,e) =case e of )
set = let o, g, ¢, ¢ fresh in (1d, ref, (@) = a S unit, 0, {<' D write(g)})
get = let @, g, ¢ fresh in (1d, ref, () = a,0,{cD read(o)})
new = let «, o, ¢ fresh in (/d, o = ref,(a), 8, {s 2 init(e)})
x = if x € Dom(&) then let (7, k) = Inst(£(x)) in (Id, 7,0, &) else fail
(Lambda (x) e) = let &, ¢ new and (0,7,0,6) =T (Ex + {x— a},e)
in (0,0c 5 r,0,kU{c20c})
(rec (f x) e) = let o, (0,7,0,8) =Z(E5 + {f— a}, (lambda (x) e)) and 8 = U(fa, 7)
in(0/c0,07,0,0'x)
(e &) = let (6,7,0,k) =T(E,e), (#,7, 0", x") =T(8E, '), &, s new and 8" = U (', 7' 5 @)
in (0"t 0,8"a,8"(0"cU o’ Ug),0"(6's Ukr")

Reconstruction Algorithm 7

The algorithm 7 is defined by a recursive function which works by case analysis on the syntax of the
expression e supplied to it. In the case of an operator op, the type and constraint set of that operator,
instantiated with the procedure Inst, are returned. In the case of an identifier x, 1t is first checked that
the identifier is defined. Then, the constrained type scheme associated with it in the type environment is
instantiated and returned.

In the case of a lambda-abstraction (lambda (x) e), the body e is checked with the assumption that x
has type «. When this is done, the substitution ¢ holds the appropriate type to substitute to e. A function
type 0o = 7 is then built with a fresh ¢. In the constraint set which is returned, ¢ is associated with the
lower bound of the effect of the lambda-abstraction, o, which was computed when its body e was checked.

In the case analysis for the application expression, the subexpressions e and e’ are first checked and then,
it is checked, using the unification algorithm, that the type of the argument e’, supplied to the function e,
corresponds to the type of the formal parameter of the function. The type of the result of the function is

returned, together with the sum of substitutions, effects and constraint sets computed for the subexpressions
of the application.

2.6.4 The Unification Algorithm

Equations between types, between effect variables and between regions are solved by a Robinson-like unifi-
cation algorithm f. The algorithm 7 always calls & with two terms of a free algebra.

U(r, ") case (r,7') of
(unit, unit) Id
(re) = {ama}
(@, 7)|(7 @) if « € fu(7) then fail else {a +— 7}

(Ti = Tfst" £ T})

(ref,(T), refyp ("))

otherwise

let § = {s ¢} and 0 = U(07;, 07]) in U(0'(07;),0'(67})) 0 0" 0 0
let 8 = {o— o'} in U(O7,07") 0 0
fail

L A R |

Unification Algorithm
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A call U(r, 7') to the unification algorithm I{ either fails or returns a most general unifying substitution
@ of 7 and 7' defined on the free variables of 7 and #'. A substitution # is an unifier of two types 7 and 7/
if 7 = 7'. Two types are said unifiable if there exists a unifier for them. A unifier @ for 7 and 7' is most
general if all unifiers #’ for 7 and 7’ are such that ¢/ = 6" o @ for some substitution ¢”.

The algorithm I proceeds by case analysis on the structure of the type terms supplied to it, and is
recursively called on every non terminal subterms. The case of matching basic data types is trivial. In the
case of two variables @ and o', one is substituted for the other. The case of unifying a variable o with a type
7 is less simple. The solution § = {o — 7} must satisfy the equation §a = 7. This cannot be the case if
the variable « is free in 7. In this case, the solution of « is recursively defined. It is an infinite term. This is
why it is here first checked that « & fo(7). The case of unifying data structures and functions reduces to the
composing the substitutions obtained by checking the subterms of the type supplied using recursive calls to
the unification procedure.

The formal properties of our unification algorithm are stated by the following theorem. Unification with
U is sound in that, if 4(, ') returns a substitution ¢, then ¢ unifies 7 and 7'. Unification with I/ is complete
in that it always returns the most general unifier of two terms.

Lemma 2.8 (Correctness of i) Let 7 and 7/ be two type terms in the domain of U. IfU(T,7') =0, then
O = 07’ and, whenever &'t = 0’1/, there exists ¢ subsiitution 0" such that ' = 0" o 6.

Proof The proof is by induction on terms as in [Robinson, 1965] O

2.7 Formal Properties of Constraint Sets

The formal properties of the principal model % of a constraint set x can be stated by the two following
lemmas, which tell that every constraint set x admits the principal model ¥ as a solution and that every
solution & of a constraint set « can be expressed with the principal model .

Lemma 2.9 (Principal Model) For all k, the substitution & solves k.

Proof The proofis by induction on the number of constraints in . If K = 0, then ® = Id solves . Consider
k=k'U{cD 0'} where k' = k\ {s D ¢}. By definition, we have that % = {s K'(sUc)} ok and by induction
hypothes1s on &', we have that &’ solves &’. For every constraint ¢’ D ¢’ in &', ®(¢') = {s — ' (cUa)}(K(¢))
and Ko’ = {s — K.’(c U o) }(&(a").

e If ¢ € &/(¢') then ®(s') = (K'(s") \ ) UK/ (sU o). Smce s € k'(s) we have (<) = k(<) U_F-:,T((UO') By
induction we have x’(¢') 2 ¥’(o"). If ¢ € k’(¢") then %(c ) = ﬁ_ o')\¢)UK'(sUc) so that B(¢') D K(o’).
Otherwise < & x/(¢") so ®(0") = K/(0"); thus ®(¢') = K/(¢') UK'(s U) D ¥/(¢') 2 ¥(c') = R(c")

e Otherwise ¢ & x/(s') and E(s') = x/('). Since ¢ ¢ #'(¢’) and #’(¢') 2 K/(¢’) we have ¢ & ®/(¢), so
%(o') = k'(c’). Since &’ solves &, we have that x(<') D ¥/(¢’) so that ®(¢') D ®(e”).

It follows that ®¢' O ®o’. This holds for every constramt D o' in k', so % solves k. 1t remains
to show that % solves {c 2_o}. By definition ®(s) = {¢ — K(cU 0)}(¥'()). Since ¢ € &/(s), ®(s) =
(k'(6)\s)UK'(sUe) = &'(s)Uk/(c). Also, %(c) ={s — &’(cUo)}( ’(o' ). If ¢ € k(o) then R(0) = K'(c)UK' ()
otherwise (o) = £’(7). In both cases, we have that & solves {¢ D o}. We have thus proved that % solves &
O

Lemma 2.10 (Principal Model) If ¢ solves & then 0 = o %.

Proof By induction on the number of constraints in k. If Kk = 0, then & = Id, so § = § o &. Now let us
consider £ = £’ U {¢ 2 o} where &' = k\ {c 2 ¢} and let # be a solution of x. Note that § solves &', so
by induction, § = 6 o k. Let ¢’ be any effect variable; we wish to show 0(¢') = 8(%(s")). By deﬁmtlon,
R(s') = {s = K'(s U o)} (x'¢’). Then, there are two cases:
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o If ¢ ¢ k'(¢") then 6(K(¢")) = 0(x(¢")) = 0(¢’), by induction.

e Otherwise, ¢ € #/(¢), so that 0(%(¢')) = 0({s— K'(sU U)}_(F;—’(C'))) -
= (K ()\UI(x'(cU0)) ascer(<)
= B(k'(¢'))UB(K'(cU0)) as ¢ € K'(c)
= 0d("YUb(sUo) by induction
= 0(")ub(s) as 0 solves k

Now ¢ € k/(s’) implies that () C 0(x'(s")) = 6(s’). Thus 0(c') U8(s) = 0(¢'). Thus 0(F(s')) = 8(¢’) in
this case as well (O
2.8 Correctness of the Algorithm
The main correctness theorems state the soundness and the completeness of the inference algorithm. The

soundness theoremsstates that the type 7 and the effect o computed by the algorithm Z are provable in the
static semantics modulo the principal model of the inferred constraint set .

Theorem 2.2 (Soundness) IfZ(£,e) = (0,7,0,k) then R(AE) | e: KT, Ko.

Proof We proceed by case analysis on the structure of expression. We thus make the assumption that
expansive and non-expansive expressions are here substituted to the appropriate form. A consequence is
that the type environment £ considered in the theorem only maps lambda-bound value identifiers to types.

Case of (var) By hypothesis, Z(€,x) = (Id,7,0,0). By definition of the algorithm Z, we have £(x) = 7.
By definition of the rule (var), we conclude that €€ F x : 7,0 where k = 0.

Case of (abs) By hypothesis, Z(£, (lambda (x) e)) = (0,0a = 7,0,x'U {sc D ¢}). By definition of 7, &
and ¢ are fresh and Z(Ex + {x — a},e) = (0,7, 0,«’). By induction hypothesis on e,
K(0(Ex+{x—a}))Fe: w1 Ko
Since ¢ is fresh and by the definition of the principal model,

K U{s D o}(s) =r{sr (o Uc)}s)

= (o u )

=c¢Ux'c

By definition of the rule (does), we get that
K(0(Ex+{x—a}))Fe:k'T,cUKc

By definition of the rule (abs), we get that
K(0E) - (lambda (x) e) : ®'(fa) =5 7',
Define k = k' U{s 2 o}. Since s is new, we have that ®(0€) = £/(6€) and ®(fa) = &'(f). We can

conclude that
R(0€) F (lambda (x) e) : K(fa = 7),0
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Case of (rec) By hypothesis, Z(£, (rec (f x) e)) = (¢'c8,6'r,0,8'x). By definition of Z, ¢ = U(fa, 7)
and Z(E¢ + {f — a},e) = (0, 7,0, k) with a fresh . By induction hypothesis on (lambda (x) e),

R(0(E¢ + {f — a})) F (lanbda (x) e) : %70
From 6/ = U(f, 7) and by the lemma 2.8, we get that 6'(6e) = 0'7. Thus, by the substitution lemma2.1,
R(O'(0E¢)+ {f— 0'T}) F (lambda (x) e) : ®(0'7),0
By definition of the rule (rec), we get that

R(0'(0E)) F (rec (£ x) e) :®(0'7),0

Case of (app) By hypothesis, Z(&, (e ¢/))=(0"06'06,8"x,0"(¢'c Uc’ Ug),0"{0'k Ux")). By definition
of Z, this requires that Z(&,e) = (0, 7,0, %), Z(0E,e') = (¢, 7', 0'x') and 0" = U(0', 7' = «) with fresh «
and ¢. By induction hypothesis on e, we get that

R(OE) F e R, Ro

Define k" = §"(0'x U &'). Since " satisfies 6”(6'k), &' o 8" o ' satisfies £, so that the substitution
" =%" 0@ o is such that ®' 0 8" 0 ' = §"" o K. By the lemma 2.1, we get

R(0"(0'(0€))) F e : ®R"(07(8' 7)), ®"(6"(8' 7))
By induction hypothesis on e’ with &, we get that
£(PBE) & & s ilr', Kla!

Since & satisfies 8" «’, B o ' satisfies &/, so that the substitution 0" = %" ¢ 6" verifies ¥ 0 0" = 0" o .
By the lemma 2.1, we get

EH(HH(Q!Q‘S)) '_ en’ :E”(g”’]”)]ﬁ”(g”ﬂ")

By the lemma 2.8, 8”(8'7) = 6”(7" = a). As aconsequence, &'(0"(0'(0€))) b e : (0" (" = ), ®'(¢' ).
By definition of the rule (app), we conclude that

"(0"(0'(0E))) F (e &) : F'(0"a), 7 (0"(0'c U’ Uc))

Case of (new) By hypothesis, 7(£,new) = (Id, = refg(a),@, {¢ D init(p)}) where a, ¢ and ¢ are fresh.

Let & = {¢ 2 init(0)}. By the axiom (new), R(AE) F new : Ko ref,()), 0 where 6 = Id. The case analysis
of the operators get and set are similar [J

The completeness theorem states that the reconstructed type 7/ and effect o’ are maximal, with respect
to any inferred type 7 and effect o, for some substitution " that verifies the computed constraints x'.

Theorem 2.3 {(Completeness) If§"E ¢ e: 7', o', then I(E, e) = (0,7, 7, k) and there exists a substitution
0 satisfying k' such that 0"E = ¢ (0E), 7' =0'r and o' 2 0'o.

Proof The proof is by induction on the derivation.

Case of (var) By hypothesis, 0 F x : 7,0). By definition of the rule (var), this requires that = = £(x).By
definition of the algorithm Z(£,x) = (Id, 7,0, {}).
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Case of {abs) By hypothesis, 7€ F (lambda (x) e) : 7§ L 75, 0. By definition of the rule (abs), this
requires that
"E+{x— T} Fe:Th o

Let o be fresh, this is equivalent to 0" o {& — 7{}{(€x + {x — «}) F e : 7, ¢’. By induction hypothesis
on e, we have (0, 72,0, k) = Z(Ex + {x — a}, e) and there exists a substitution ¢] satisfying x such that

0" o {ax—= T} Ex + {x—a})=0{(0(fx+{x—a)})), m=0rn and ¢ =0

By definition of the algorithm 7, this requires that: Z(£, (lambda (x) e)) = (#,0a = 7,0,kU{s 2 o})
with ¢ fresh. Let us define 0/ = #{{s — o’}. Then ¢ satisfies K U {¢ 2 o} and is such that

07 = 0'0€ and 1| D 1h=0'(0a S 1)

Case of (rec) By hypothesis 0 F (rec (f x) e) : 7, 0. By the rule (rec), this requires that
(¢ + {f— 7} F (lambda (x) e) : 7,0

For a fresh «,
({a — 7}€¢ + {f — a}) F (Lambda (x) e) : 7.0
Let us write £ = £5 + {f — a}. By induction hypothesis on (lambda (x) e), Z(£',e) = (0], 7,0, k')
and there exists a model 6 of &’ such that

(O({a = 7}) = 07(61&") and 7=67'

By the lemma 2.8, since 7 = 07(6{«) = 0{7’, there exists 0% such that ¢}, = U(0]«, 7’). Thus, by the
definition of the algorithm 7, we get:

(€, (rec (£ x) e)) = (0,007,057 0,05

By the lemma 2.8, there exists #” such that 6; = " o 6},. We conclude that 8" is a model of 0}« such
that

6E = 0"(04(0,€)) and T = 6"(0yr)

Case of (app) By hypothesis, £ F (e e') : 7,0’ Ua] Ugh. By definition of the rule (app), this requires
that

’
¢'fre:r 57,0, and 6"EFe :1],0
By induction hypothesis on e, we get that (6;,71,01,%1) = Z(€,e) and that there exists a substitution
¢} satisfying x; such that

’
GE = 01(0,€) nlr=0n and o2&

By induction hypothesis on e’, we get that (62, 79,09, k2) = Z(#1£, €') and that there exists a model ¢!,
of k2 such that

0"E = 05(020,&) 1 =051 and o D 0oy

Let @1, ¢ new. Let V' be the set of free variables in 82(61 &), 72, ¢2 and k2. Let us take fresh o, ¢ and
define 0% as follows:

v, veV

/

T V=
!y = 1 1
931-7— ! o

o, wv=g

#1v, otherwise
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By this definition, 8% satisfies ky and we get:

078 = 04(0:(6,£)), T T 7 = (2 > 1), oy = Oy

Now, for every v in 71, o1 and k1, either v is free in 8, & or v is new, by definition of Z. Then, for every

such v, since 05(02(0:€)) = 04(02(61E)) = 01(01E), we have:
04(02v) = 045(02v) = Ojv
Otherwise, v is fresh and thus dav = v, so that 85(fsv) = 04v = 6]v. We get
o= 04(0am)  Ooy = O4(Gacy) 0
It follows that 6% satisfies fak) U ko. Since 04(0271) = 05(m = a1) and by the correctness of unification,
there exists a substitution 3 such that 03 = U(fam, 7 = a1). Thus,

93(927'1) = 93(7'2 = Cfl)

Since 03 is the most general unifier of #37 and 15 = a4, there exists a substitution ¢ such that 0y = ' ofl3.
Let us write o = #3(f207 U oz U¢) and & = 03(02k1 U k2). By the definition of the algorithm T, we get that
Z(&E,(e e")) =(0,0a01,0,k) and that there exists a model ¢ of x verilying

0"E = 0'(08), 7 =0 (faey) and o' UojUch Do

alinit

Case of (new) By hypothesis, 8"£ Fnew: 7 bty ref,(7),0. By definition of the algorithm, Z(£, new) =
(Id, o = refy(@),0,{s 2 init(g)}) where @, g and ¢ are fresh. Let ¢’ be defined as

T V=@

' S Ps v=2g

rg= ogUinit(p), v=g
0", otherwise

0 satisfies k = {¢ D init(g)}. We have #”E = ¢ and 7 ouUinit(p

) ref,(7) = 0'(a = ref,(«r)). The case
analysis of the operators get and set are similar [

2.9 Examples

In this section, we give some examples that best illustrate the effectiveness of our algorithm for inferring

effects of programs. We demonstrate its use to perform code optimizations. The chapter 4 describes these
issues in more details.

Example Our first example is the gensym function, well-known to every Lisp programmer. Its implemen-
tation consists of combining a reference with a function. This results in so called stateful functions, which
is a notion close to the one of object in object-oriented languages. There is no notion of message in our
example, though. The form (define x e) stands for the toplevel definition of x by e.

(define gensym (let (sym (new 0))
(lambda ()
((set sym) (+ (get sym) 1))
(get sym))))

The expression above allocates an integer reference, noted sym, with the effect init(p) where ref,(int) is
the type of sym. This reference is then captured in a closure that has no argument and returns an integer. Its
latent effect is to read and write the region p, which is precisely the region of the integer reference captured
in the closure.

The algorithm assigns gensym the type unit = int and the constraint set {¢ D read(g) U write(g)}. In
the static semantics, this corresponds to its principal type B
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Example Our second example shows the use of a reference which combined with the 1et construct provides
an updatable identifier (a variable). Our example describe the use of such a variable for iterating a procedure
f over the integer from 1 ton. It can be defined as follows:

(define iterate (lambda (f n)
(let (i (new 0))
(while (< (get i) n)
(begin
(f (get i))
((set 1) (+ (get i) 1)))))))

The construct (while e e’) evaluates ¢’ while e is true. The construct (begin e e’) evaluates e and
then e’. The higher order function iterate takes a procedure f as argument. This procedure has type
int = o in that it accepts integers as arguments and produces a result of no sensible type o with an
undeterminated effect ¢. The function iterate consists of a loop that calls f n times. It allocates an integer
reference i initialized to 0 and then incremented to n. The principal type of this function is thus:

a'UoUinit(g)Uread(g)Uwrite(o) g
— u

iterate : int = «a x int nit

2.10 Extension to Communication Effects

The language that we presented in the section 2.2.1 does not suffice by the sole addition of operations on
pointers to completely integrate all features that may characterize all aspects of “realistic” programming.

In general, “real” programs do not fit into the model that their evaluation does not interfere with the
rest of the “world”. They usually interact with other agents, other servers, in the operating system: the
file system, the windowing system and other resources. We aim here at considering programs as several
expressions that may evaluate concurrently and exchange information with each other.

Such features may be required for algorithms requiring complex interleavings, frequent replications, or
important repetitions of computations. Such features may provide a faster execution of programs with the
availability of multiple processing units. We would therefore like to describe such interactions in our language
by presenting its formalization.

In the present section, we describe this possibility by means of simple primitive operations that introduce
communications and concurrency in our core language. Concurrency is provided by the addition of simple
and general language constructs that permit the interleaving of computation and the non-deterministic choice
of evaluation.

Communication is provided by first-class values: channels, which enable us to represent various protocols
of interaction between independent processes. With communication channels, operations are provided to
allocate and manipulate them.

From the standpoint of the dynamic semantics, this extension requires a reformulation of the evaluation
rules defined in the previous chapter 2, in order to incorporate the notions of interleaving and events. From
the standpoint of typing, it can be straightforwardly integrated in our system.

Section 2.10.1 addresses related work and presents syntactic extensions of our language, and then the
new objects and rules of its dynamic semantics. The extension of the static semantics is given section 2.10.2
and its consistency with the dynamic semantics is stated section 2.10.3. Section 2.10.4 gives some examples
of use.

2.10.1 Dynamic Semantics

Various calculus have been proposed for reasoning about communicating processes: the communicating
sequential processes of [Hoare, 1985], the calculus of communicating systems of [Milner, 1990] and more
recently the pi-calculus [Milner & al., 1992]. The one presented in this section is strongly related to the
proposals of [Leroy, 1992].
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Communications and concurrency are provided by new operators and language constructs. The procedure
channel allocates a communication channel. A value can be sent to by the operation to and received from
by using from. The new language constructs are the form either which non-deterministically evaluates e
or ¢ and, in contrast, the form (cobegin e e’) that evaluates e or e’ concurrently.

op := open | allocation
to | emission
from reception
e = (either e e') | non-deterministic choice

(cobegin e e') parallel evaluation

Extended Syntax

These new operations correspond new semantic objects. Communication channels p are first class objects
involved in communication events, of the form (p?v) and (plv) , which denote a reception request and an
emission event respectively. Sequences of events form message queues m. The symbol ¢ traditionally denotes

a void message queue. Traces f are adapted to register communication events during the evaluation of
programs.

v € Value ={u}+Port+ Closure values
p € Pori=Ref channel
e, (p?v), (plv) € FEvent events
m,e € Message =FEvent” queue
f € Trace =P(open( Port)+in( Port)+oul( Port)) trace of events

Channels, Events and Message Queues

Communication channels p are, just like locations, defined on a countable set of symbolic objects and
are, for convenience, represented on the same semantic domain as locations. As in the previous section, the
evaluation of expression is presented by a “big step” semantics, which relates expressions e to values v in an
environment E. In contrast to the previous section, however, we do not need to describe a store. We collect
communication events m and a trace f.

EFx— E(x),¢,0 (var)
EF (lambda (x) e) — (x,e, Fx),¢,0 (8b3)
Ere—uovm,f Ex+{x—v}be —v m f lat
EF(let (x e) &) —=v, mm' fFUf ey
EFe— (x! e”,E’), m.,f EFe — ,Ut‘mf‘ff E"+{K — 'U"} F e’ — ’b‘”,m”,f”
EF(e &) =v" mm' m" fuf uf’ (app)

Dynamic Semantics

The rules above mainly read like those of the previous section. The rule (either) describes the non-
deterministic choice of evaluating e or e’ by the construct either using two rules. The other rule, (cobegin),
is more involved and introduces parallelism. Its expression using a big-step semantics is adapted from
[Leroy, 1992]. It separates the concurrent evaluation of two subexpressions e and e’ from the resolution of
interleavings between communication events.
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Ele— 'U,m,f ‘
Et (either e e') —v,m, f (either),
Ere —v,m,f '
EF (either e &) — v, m, f (either)s
! / ! } / "
El_e_}vsm:f El"e —}v!m,f m”mbm CObein
g

F'F (cobegin e &) — (v,v'),m", fU [

Dynamic Semantics of Concurrency

Communication events are reduced according to the following rules that express all possible interleavings
which may occur during the concurrent reduction of communication events. The first rule reads as the
termination of communications: the reduction of two message queues leads to the empty message.

The second rule is the commutativity rule of the operator || and allows to choose different reduction
strategies. The third rule tells how the reduction a message queue can be propagated. The last rule tells
how communication events are reduced: (plv) communicates the value v along the channel p to the answer
the request (p7v).

m || m' >m" m || m' > m” m || m' > m”
eleve m' || mem" m|m.e>pme m.(plv) || m'.(p7v) & m"

Dynamic Semanties for “Rendez-Vous”

We shall now show how such message queues are built by giving the dynamic semantics for communication
operations. First, the operation open opens a new communication channel p which the effect open(p) traced.
Second, the operation from requests a value v on the channel p. Finally, the form to sends a value v along
on the communication channel p.

p 1s fresh

E + (open) — p, ¢, {open(p)} iFpsn)
El"e—"P,m,f (j_n)
EF (from e) — v,m.(p7v), f U {in(p)}
Etre—p,m,f ErFe —um,f (out)

EF ((to e) &) — u,m.m’'.(plv), fU f' U {oui(p)}

Dynamic Semantics of Communication

Communication traces are constructed and collected in a similar fashion than in the previous chapter.
Each of the three communication operations open, from and to introduced a different dynamic effect open(p),
in(p) or oul(p) in the trace of communications.

2.10.2 Static Semantics

Adapting the static semantics to incorporate communications and concurrency appears to be dramatically
simple. It only requires the semantic domains of types to be extended to understand the type of pairs and
communication channels, and the domain of effects to understand communication effects open(p) for the
communication channel initialization effect, in(p), for the reception effect and out(p) for the emission effect.
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o u= .. | open(p) | in(p) | out(p) communication effects
T u=..|7x7| chan,(T) pair and channel types

Static Semantics Objects

The static semantics for the new language constructs implementing concurrency is simple. It gathers the
type and effect 7, 7" and &, ¢’ collected in the subexpression e and e’ of the constructs either and cobegin.

EFe:T0o EFe 7o

£ (either e ') : 7,0 U0’
Ete:7,0 EkRe gl
EF (cobegin e &) :7x t,oUd’

(either)

(cobegin)

Static Semantics for Concurrency

The static semantics of communication operations describes, by using axioms and rules, the introduction
of channel types chan,(r) and communication effects, open(p), in(p) and out(p) by the different primitives.

£ F (open) : chan,(7), open(p) (channel)
£+ from: chany(7) el 70 (from)

e c'uoul(p)
—

£t to: chan,(r) — 7 unit, ) (to)

Static Semantics for Communication

2.10.3 Consistency

The consistency of the extension of our language to communications and concurrency is established by
adapting the relations presented in the previous section. This is, fortunately, not of any particular difficulty.

Definition 2.7 (Consistent trace and effect) Let S a model, f a communication trace and o an effect.
V open(p) € f, S(p) = (p,7) A open(p) € o
SEf:oe  YVin(p) € f, S(p)=(p,7) A in(p) Ec
Vout(p) € f, S(p)=(p,7) A oul(p)€c

Lemma 2.11 (Traces and Models Extension) If S C & and S  f : o then 8’ | f : 0. Also if
SEfiocthenSEf:ocUd and 68 |= f : 05 for any 6.

Proof Same as for the lemmas 2.5 and 2.6 [

Definition 2.8 (Consistent Events) A message queue m is consistent with the model S, written |=m : S,
if and only if Dom(S) = Dom(m) and 8 |=v : 7 for every (p?v), (plv) in m and with S(p) = (p, 7).

Lemma 2.12 (Events and Semantic Substitution) If =m : S then |Em : 08 for any 0.
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Proof Same as for the lemma 2.7 J

Theorem 2.4 (Consistency of dynamic and static semantics) f SEE: £, £t e: 1,0 and E +
e — v, m, f then there exists 8’ extending 8 such that ' =v:r, SEf:candEm:S'.

Proof The proof is by induction on derivation. It only differs from the proof of theorem 2.1 by the
concurrency constructs. The case analysis of the communication operations (channel), (in) and (out) are
equivalent to the case analysis of (new), (get) and (set) developed in theorem 2.1 and does not need to be
repeated.

Case of (either) By hypothesis, SE F: £, £F (either e ¢') : 7,0 Uc’ and E I (either e &') —
v, m, f. By definition of the rule (either) in the static semantics, £ - e: 7,0 and £ F e : 7, ¢'. By delinition
of (either) in the dynamic semantics, we have either F e — v,m,f or '+ ¢ — v, m, f. By induction
hypothesis on e, there exists &' extending & such that 8’ Fv:7, &' Ef:0and Em: 8. Same for e’

Case of (cobegin) By hypothesis, £ I (cobegin e &’) : 7 x 7/,0 Uo' and F F (cobegin e &') —
v,m", f U f'. By definition of the rule (cobegin) in the static semantics, £ - e : 7,0 and £ F &' : 7/, ¢’
By definition of (cobegin) in the dynamic semantics, we have EF e — v,m,f, EF e — o', m', f' and
m || m' e m'.

By induction hypothesis on e, there exists §; extending & such that & Ev:7, & E f: ¢ and
= m:81. By the lemma 2.3, §; | E : £. By induction hypothesis on €/, there exists &’ extending &, such
that ' =+ : 7/, &' Ef':¢' and Fm’: 8. By the lemma 2.3, §' = v : 7. By the lemma2.11, 8 = f : 0.
By the lemma 2.12, E m : §'.

From | m : 8" and | m' : &, we wish to show that = m” : & where m || m’ > m’. This is done by
induction on the reduction. First, if m = m’ = € then | m" : 8 by definition of |=.

Second, suppose that my .e || m'emy.e (or m’ || my.e>m{ e, respectively) where m = my.e and m"” = m/ .e.
By definition of ||, this requires that m, || m’ &> m{. By induction hypothesis on the reduction of m; with
m', Em{:8. Since Em:8, kEe:8. Thus, Em": 8"

Finally, suppose that my.(pTv) || m{.(p'v) > m” (or m.(p?v) || m'.(p!lv) > m”, respectively) where m =
my.(pTv) and m’ = m{.(plv). This requires that m; || m{>m”. By induction hypothesis on the reduction of
my and mj, we get that = m" : & and conclude [

2.10.4 Example

Before concluding, we describe a classical programming exercise. The function stamp emits a sequence
of integers over a channel given as argument. This emission is reseted to zero when the process receives
a message on the other channel. Such a function is very useful in practice for serving unique stamps to
different concurrent processes.

(define stamp (lambda (output reset)
((rec (f n)
(either (begin ((to output) n) (f (+ n 1)))
(begin (from reset) (f 0))))
0)))

Our type and effect system will document the function stamp by giving the following information.

a’uout(ﬂuin(p’) S

stamp : chan,(int) x chan, (1)

We have presented an extension of our type and effect system to incorporate the typing of communication

operations and concurrency language constructs. It shows up to be simple to integrate to our static semantics
as well in the dynamic semantics, thanks to its “big-step” formulation.
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2.11 Related Work

In the following, we give a description of the related work on alias and effect analysis. It mainly refers to
[Deutsch, 1992], chapter 4.1, which gives a complete and insightful classification of the very wide literature
on the subject.

It appears that there are a very few alias and effect analysis that address full-fledged functional pro-
gramming languages, without limitations to first order functions or on simple data structures. There are,
surprisingly, even a fewer of such analysis that have been proved correct.

Abstract interpretation [Cousot & Cousot, 1977] is the most popular method for the analysis of alias and
effects in functional languages. The related work often uses complex representations of abstracted locations,
stores and states via graphs [Deutsch, 1990, Harrison, 1989, Larus & Hilfinger, 1988, Neirynck & al., 1989,
Shivers, 1991, Stransky, 1988].

To deal with higher-order functions, analysis of alias usually requires a global (interprocedural) con-
trol flow analysis, that finitely partitions a given program into a set of function invocation contexts and
then to re-analize the functions in every such context of the program [Harrison, 1989, Neirynck & al., 1989,
Shivers, 1991, Stransky, 1988].

Such a mechanism incurs a very heavy computational cost [Rosen, 1979]. However, some of these analysis
are capable of saving part of the properties of the analyzed functions, which are instantiated when re-analized,
thus saving a valuable amount of time [Deutsch, 1990, Larus & Hilfinger, 1988].

On the opposite, type and effect inference is a typical example of an on-line analysis, in that it associates
a simple and polymorphic representation of alias and effect information with every function in a program.

The advantage of an on-line analysis 1s, in general, that it can be used in a programming environment
that support separate compilation mechanisms, while a global analysis cannot.

Another approach used to determine alias in functional programs is linear logic [Girard, 1987]. Analysis
techniques based on linear logic address a simpler problem than determining alias relations, the problem of
single threadedness [Chirimar & al., 1992, Guzman & Hudak, 1990, Odersky, 1992, Wadler, 1991]. It aims
at answering the question “Is this datum aliased to any other?”. By representing uniform alias relations
using regions, type and effect inference certainly provides richer information than this approach does.

Using the framework of abstract interpretation, another approach to alias analysis is the determination of
non-uniform alias relations, either by global or on-line analysis [Hendren, 1990, Deutsch, April 1992]. Unlike
a uniform alias analysis which typically tells that “The cars of list /; are shared with the cars of list [”
(Type and eflect system belongs to this category “The car of list I; and {5 are in the same region”), one may
detect, with a non uniform alias analysis, that “All 2 x n cars of list {; are shared to all 2+ m 4 1 cars of
list 157,

Non uniform aliasing analysis seem interesting for doing program verifications such as the checking of
non-interference in parallel languages or the checking of safe explicit deallocation. They use however very
complex state representations and are for the time being limited to the analysis of first-order functions.

Being more general and less complex, uniform aliasing analysis, such as type and effect inference, seems
on the other hand worthy for the integration into realistic compilers for functional languages and for a simple
formalization of related program optimizations.

2.12 Conclusion

We have presented an inference system which reconstruct the principal type, region and effect of expres-
sions for a polymorphic functional language extended with imperative constructs. This system extends the
principle of polymorphic type inference of [Milner, 1978] to the reconstruction of regions and eflects by the
introduction of a tantamount notion to subtyping in the domain of effects: subeffecting.

We have proved the consistency of our inference system and presented a correct algorithm which computes
the principal type, region and effect of expressions with respect to substitution on variables and the minimal
effect with respect to the rule of subsumption on effects.

A number of standard program optimizations can take advantage of the program properties that type
and effect inference computes. This framework provides the basis for sophisticated program verification and
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transformation techniques in the presence of side-effects and higher-order functions. Sophisticated compiler
optimizations such as stack allocation and parallel code generation have been discussed in this chapter.

Applications are more extensively developed in the chapter 4. The type and effect of expressions, anno-
tated with regions, are of a suitable generality and a sufficient precision to fulfill present needs for analysis
techniques for the efficient implementation of functional languages.

Type and effect inference, as a semantic analysis technique, establishes a very strong relation between
structural information, types, relational information, regions and behavioral information, effects. This rela-
tion eases the specification of optimization techniques based on semantic information; it use proofs techniques
based on the lambda-calculus and offers precise and comprehensible documentation about programs.



Chapter 3

The Type and Effect Discipline

Static typing is the most widely used technique of static analysis in programming languages. The strength
of static typing is that the successful type checking of a program guarantees the ahsence of type errors in
it. However, because typing rules must be simple and because programs can be complex, type systems often
reject programs which are correct but cannot be recognized as such. This tradeoff, between simplicity and
effectiveness, has motivated the introduction. Type polymorphism is powerful because it statically types
generic functions. Generic functions can operate on data of different structures.

Example Consider the following. The higher order function map below is a typical example of generic
function. It takes two arguments: a function £ and a list 1. The function null? first tests if the list 1 is
empty. In this case, it returns the empty list nil. Otherwise, it builds a pair, using cons, made of the result
of the call to £ with the first element of 1, the car of 1, and the result of recursively calling map with £ and
the rest of the list 1, its cdr.

(define map (lambda (£ 1)
(if (null? 1) nil
(cons (f (car 1)) (map £ (ecdr 1))))))

By locking at the definition of map, it is evident that the elements of the list 1 and £’s formal argument
must have matching types (mapping the boolean function not over a list of integers would cause a type
error). Nonetheless, it is clear that the function map is implicitly defined regardless of the type of these
elements W

Generic functions, such as the function map, are interesting in that they can be reused in many programs
without modification. In practice, many other list processing functions can be defined regardless of the
element’s type of the list they manipulate: reversing functions, sorting functions or scanning functions. This
holds for other data structures as well: hash tables, trees and graphs.

Milner’s type system expresses polymorphism in let syntactic constructs. Understanding the let as an
abbreviation offers a simple explanation of polymorphism. Semantically, the expression (let (x e) e') has
the same meaning as e'[e/x], the capture-avoiding substitution of e for the free occurrences of x in e’. In
typing the substituted expression e’[e/x], each occurrence of the bound expression e may have a different
type. In Milner’s typing discipline. This is expressed by a type scheme which is associated with x and
represents the possible types of e.

Example In the following example, x is id and e is (1ambda (x) x).

(let (id (lambda (x) x))
(id 1)
(id true)))

The first occurrence of id must be typed as a function from integers to integers and the other as a function
from booleans to booleans W

47
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To type a let expression, we associate with x all possible types of e. Each occurrence of x in the
body e’ may have any of these types. In the previous example, id is associated with the set of types
{r % 7| 7 € Type, o € Effect} which is represented by the polymorphic type Yos.a = a

Type polymorphic is appropriate for functional programming languages. But the imperative style of
programming is usually defined as opposed to functional programming. It is usually associated with the use
of operations that permit in-place modification of mutable data structures, such as pointers or communication
channels. When adding imperative features to the language, it becomes necessary to introduce a notion of
state to understand the meaning of programs. This addition suffices to invalidate our previous explanation
of let-expressions as abbreviations: the expression (let (x e) e’) no longer has the same meaning as
e'[e/x].

To type pointers in ML, one can think of introducing the type ref{7) to represent pointers referencing a
value of type 7. Then, one can of typing the pointer initialization procedure new by 7 — ref{7), because it
returns a pointer initialized to the given argument, which can have any type 7. However, once initialized,
that pointer must always be associated with the same type. Otherwise, one could initialize it with an #nl
value, then read it and claim it has type bool.

Example The following example illustrates that the naive extension of Milner’s typing discipline to oper-
ations on pointers is unsound in the presence of polymorphism.

(let (rid (new (lambda (x) x)))
(set rid (lambda (y) (+ y 1)))
((get rid) true)})

In ML, the most general type of the expression (new (lambda (x) x)) is refla — «). Generalizing the
free type variable o yields the type scheme Vo.refla — o) of rid. It can be instantiated to ref{int — int) to
type the assignment operation (set rid (lambda (y) (+ y 1))) and then to ref{bool — bool) to type the
dereference operation ((get rid) true). However, trying to evaluate the program above leads to a type
error, by attempting to add 1 to true B

This example shows that static typing must restrict the use of polymorphism over mutable values. Just
as references change the semantics of Let expressions, they also necessitate a change in how let expressions
are typed: an accessible reference, once created, shall always be used with the same type. To implement such
a limitation, several type systems have been proposed that consist of restricting the type generalization of
expressions bound by let constructs [Leroy, 1990, Milner & al., 1990, Tofte, 1987, Wright, 1992]. All these
approaches build conservative approximations of types that may be accessible from the global store and turn
out to be restrictive in practice by prohibiting generic functions that create temporary mutable structures
or by being non-conservative over ML.

In contract to these approach, our typing discipline uses effect inference to approximate the store trans-
formation that is performed when allocating references. It infers initialization eflects, of the form init(p, 7),
which tell the type 7 of data referenced by pointers of the region p. This information is used at let bound-
aries to prohibit type generalization over the type 7 of referenced values. In order to limit the reporting of
such effects to those that affect accessible values, we use an observation criterion which precisely delimit the
lexical scope of operations on pointer regions. This is a crucial aspect, as we want to distinguish the function
which uses temporary references to implement their purely functional counterpart with an imperative style.

Example The following implementation of the function map illustrates this imperative programming style.
It uses two temporary references r and x which point to the list of unprocessed elements and to the inter-
mediate results.

(define map (lambda (f 1)
(let ((r (new nil))(x (new 1)))
(until (null? (get x))
((set 1) (cons (f (car (get x))) (get r)))
((set x) (ecdr (get x))))
(reverse (get r)))))
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When all elements of the list 1 are processed, the list pointed at by r is reversed by reverse, yielding
the result. Because the use of the references r and x is temporary, the function map has the same typing
constraints as its purely functional implementation and is generic over its arguments W

Plan

In this chapter, section 3.1 presents the static semantics of the language. The reconstruction algorithm is
presented in section 3.4. We state that the static and dynamic semantics are consistent section 3.3 and that
our algorithm is correct with respect to the static semantics section 3.6. Before concluding in 3.11, we give a
detailed comparison of our type system with the related work (section 3.8) in section 3.9, showing that our
approach surpasses many aspects of previous techniques. The technical results presented in this chapter are
inspired from [Talpin & Jouvelot, June 1992].

3.1 Static Semantics

The presentation of our static semantics begins with the definition of our new algebra of effects, type schemes
and environments. Then we present the rules of the static semantics and discuss about defining an observation
criterion for effects. Finally we state the most important formal properties of our static semantics.

3.1.1 Semantics Objects

In contrast to the previous chapter, we consider typed store effects. These effects o can either be the
constant 0, that represents the absence of effects, effect variables ¢, or store effects init(p, r), read(p, 7) and
write(p, T), that approximate memory side-effects on the region p of references to values of type 7. The range
of an effect o, written Rng(c), is the set of pairs (p, 7) such that either init(p, 7), read(p, 7) or write(p, 7)
is in 0. We write Regs(o) the set of regions p such that (p, 7) is in the range of o.

o = init(p, 7) | read(p,7) | write(p,7) |0 | s | o Uc effects
Vo.r € TyScheme type schemes
£ € TyEnv type environments

Typed Effects, Type Schemes and Environments

We use type schemes, introduced by [Milner, 1978], to generically represent the different types of an
expression. A type scheme Y%.7 consists of a types 7 which is universally quantified over sequences # of type
variables, region variables and effect variables. A type 7' is an instance of V#.7, written 7/ < Vo7, if the
variables ¥ can be substituted by @ so that 7/ = ér.

In the sequence ¥, the variables are assumed to be distinct and their order of occurrence is not significant.
When that sequence is empty, we do not distinguish 7 from V.7. We identify type schemes that differ only
by a renaming of their quantified variables or that differ by the introduction or elimination of quantified
variables that are not free in the body of the type scheme.

The context in which an expression is associated with a type and an effect is represented by a type
environment £ which maps value identifiers to type schemes. The definitions of free variables and free
regions are extended to type schemes by fu(V7.7) = fo(7) \ ¥ and to environments £ by considering that a
type variable is free in £ if and only if it is free in £(x) for some value identifier x in Dom(€). Substitutions
are also extended to type schemes V#.7 by using alpha-renaming of quantified variables in type schemes to
avoid capture of bound variables.

We extend substitutions to type schemes #(V7.7) = VJ.G”(B’T) modulo renaming of bound variables %
by fresh v’ e.g. the sequence of variables v is not free in Or, ¢ = {¥ — 1?}. 6" is defined by v if v € ¢/ and
fv otherwise. The image #(£) of a type environment by a substitution is also defined straightforwardly by

(0€)(x) = 0(E(x)) for every x in Dom(E). Our extension of substitution on type schemes and environments
supports the following lemma.
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Lemma 3.1 (Substitution and Instantiation) If < 0(V7.7) then there exist Oy and ™ < VO.7 such
that 1y = @a79.

Proof By hypothesis, 7, < #(V#.7). By definition, 0(V7.7) = Vo'.(6"(0'7)) where v/ is not free in fr,
8 = {7 — 17’} and 0" is defined by v if v € v and fv otherwise. By definition of <, there exists 8] defined
on v’ such that 7, = 8;(8"(¢'7)). Let 0}, = {7 — 019} then 7 = @47 < V7.7 and the restriction 6 of 6 on
fu(ma) \ ¥ verifies that 7 = 0am O

3.1.2 Type Generalization

The generalization Gen(€, o)(7) of a type 7 is performed at 1et boundaries on some of the type, region and
effect variables ¥ that occur free in 7. A variable cannot be generalized when it is either free in the type
environment £ or present in the observed effect o.

Gen(€,0)(1) = let 7= fo(r) \ (fo(E) U fe(o)) in VO.7

Type Generalization

The first condition is standard in purely functional languages. As for the second, just as types are bound
to identifiers in the environment, types are bound to regions in the reconstructed allocation effects. Thus,
when these regions are observable from the context i.e. in the type environment £ or the type 7 of the
returned value, those types cannot be generalized.

3.1.3 Rules of the Static Semantics

The next figure summarizes the rules of our new static semantics. The rules (abs) and (app) are the same
as in the previous chapter. The axioms associated with the store operations new, get and set are also the
same.

< £

Ere:r,o  Ex+{x— Gen(o,E)(T)}Fe : 7 0

EF (let (xe) &):7,cUd (let)
Ex+{x—T1lhe: 7o b
£F (lambda (x) €) :7 = 7,0 (abs)
Sl-ezr-ir’,o" Etel:ra"

(app)

EF (e e): T ocUdc Uo"

Static Semantics

Our new static semantics manipulates type schemes by using the type generalization/instantiation mech-
anism specified in the previous section. For type generalization, only side-effects that can affect the context
of an expression are worth reporting. The other effects of ¢ are not observable from the enclosing context.
They do not have to be reported since they are only local.
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3.1.4 Observation Criterion

The effect of a function derives statically from the state transforming operations that the expression it
abstracts performs when it is executed. For example, store operations comprise the initialization, reading
and writing of references and are approximated on regions.

Even if a value expression performs certain operations on the store, one may be able to detect that those
operations cannot interfere with other expressions. This is the case when the regions over which the eflect
ranges are unreferenced in the rest of the program. If this is the case, then we shall mask effects which derive
from those operations.

Example Consider the following derivation. We examine a function that initializes and dereferences a
temporary pointer that successively points to the argument and the result.

Ex+{x—rikx:70

Ex+{x—71}F (new x) : refpfr),im't(p, T)
Ex+ {x— 1} F (get (new x)) : 7,init(p, ) Uread(p, 7)

init(p,7)Uread(p, T
()orend(or)

t

£F (lambda (x) (get (new x))):7

The expression (get (new x)) has an initialization effect init(p,7) and a read effect read(p, 7) on a
certain region p. The derivation does not constrain the choice of the region p. Moreover, this region does
not refer to any other reference in the scope of the expression: it is neither related to £ nor to 7.

. p & ME)UfT) ...
Ex+{x— 1} (get (new x)) : 7,0

We shall thus be able to detect that it is local to the body of the function and avoid the burden of
reporting the initialization and read effects related to it outside of the scope of its body. This could be
performed by the informal derivation above B

In this chapter, we adapt of our type and effect inference system so as to statically determine the lexical
scope of data regions by using an observation criterion. The observation of effects consists of selecting one
of them which ranges over regions that refer to data accessible in the environment of an expression or in its
value. The accessible data is abstracted by the free regions of the type environment and the value type of
the expression.

In the static semantics, only side-effects that can affect the typing context of an expression, 1.e. its type
environment £ and its value type 7, are worth reporting. The other effects of & refer to local references that
are freshly created and not exported from the expression e.

Ere:r,o o' D Observe(E,7)(0)
Elhe:T o

(sub)

Observation and Subsumption Rule

The observation criterion is specified by the rule (sub) which tells that an expression e has any effect o’
bigger than the observable effects that can be inferred for it. Observe(E, 7)() is the set of observable effects
of o

Observe(€, T)(a) ={init(p, 7"), read(p, '), write(p, ') € o | p € f(E) U fr(r)} U {s € o |c € fu(E) U fu(7)}
Observable Effects
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The observable effects are the effect variables ¢ that occur free in 7 or £ and the effects of the form
init(p, '), read(p, ') and write(p, ') where p occurs free in 7 or in £, We write Observe(r)(o) for
Observe({},7)(c) and Observe(o)(a") for Observe( unit = unit)(a’). The functions Observe has the following
formal properties which are widely used in the rest of this chapter.

Lemma 3.2 (Observe and free variables) Ifo’ = Qbserve(7)(o) then fr(r)NRegs(o\e") = 0 and fr{c’)N
Regs(a \ o') = 0.

Proof By hypothesis, o/ = Observe(r)(o). By definition of Observe and for any p € Regs(o \ ¢'), we have
that p € fr(7) U fr(e’). Thus, (fr(7) U fr(¢")) N Regs(o \ o') = O as expected O

By the lemma 3.3, we show that the observation is stable under substitution, in that combinations of
substitutions @ to the function Qbserve can be compared with the application of the function Observeto
substituted terms.

Lemma 3.3 (Observe and substitution) If o' = Observe(r)(o) then 8o’ C Observe(07)(00).

Proof Let us write o = Qbserve(07)(0c). We proceed by case analysis. For every ¢ € ¢’ and hy definition
of Observe, we have ¢ € fu(7) and thus ¢’ D f¢. For every init(p, ') € o' (respectively, read(p, ") and
write(p, ")) and by definition of Observe, we have that p € fr(7) and thus 6p € fr(67). This implies that
init(fp,07") € ¢”. This proves that ¢” 2 6o’ O

Note, however, that the containment is proper. An example where we do not have 0( Qbserve()(c)) =
Observe(07)(0c) is T = ref, (int), o = init(py, int) Uinit(ps, unit) and 6 = {p2 — p1 }.
3.2 Formal Properties of the Static Semantics
The lemma of substitution is used both in the proof of consistency and in the proofs of correctness for the

reconstruction algorithm. Since we have added the rule (sub) of observation and changed the rule (let) for
let expressions, we shall formally confirm that it is verified.

Lemma 3.4 (Substitution) If £t e: 7,0 then 0+ e: 07,00 for any substitution 0.

Proof The proof is by induction on the proof derivation. The case analysis of the rules (var), (abs) and
(app) are identical to the proof of lemma 2.1.

Case of (let) By hypothesis £ (let (x e;) ey) : 7,01 Uoy. By definition of the rule (let), we have
Ele im,o0 and Ex+ {x— Gen(o,E)(T1)}F ea: T 00

By induction hypothesis on e;, we have 8 + e, : f7,0c; for any substitutjon f. Let Y9.1; be
Gen(o1,E)(m1). Consider any § and define 6" as the extension of #; with {# — '}, with fresh »' and
thus not free in 0oy or in 0€. This ensures that 0/(Vo.m) = Vo'.(0'm) and:

0(Ex + {x— Gen(oy,E)()}) = 0Ex + {x — Gen(foy,08)(0' 1)}

Using the induction hypothesis on e; with @', we get that ¢'£ & ey : 7y, #a; and thus , by definition of
Gen, 0E F ey : 0’801, By induction hypothesis on ey, we get:

B(Sx + {X Lo d Gen(ol,f)(n))} ke eqg 97‘, 90'2

which is equivalent to 0€x + {x — Gen(fay,0E)(0'm1)} F ey : 07,603, By definition of the rule (let), we
can then conclude that 0€ - (let (x e1) es) : 07,00



3.2. FORMAL PROPERTIES OF THE STATIC SEMANTICS 53

Case of (sub) By hypothesis, £ - e : 7,0. By definition of the rule (sub), this requires that there exists
o’ such that
Ete:7,0' and & D Observe(E,7)(0)

Let # be any substitution. By induction hypothesis on the derivation, we have that
BEF e: bt 00

Let o} = Observe(€,7)(¢’) and o}, = ¢’ \ o}. Let us define the substitution ¢’ that maps effect variables
in o/, to  and regions in Regs(c}) to fresh regions, not free in 8€, 67 and fo}. By the lemma 3.2, Regs(a}) N
(f(r) U f(E) U fr(e})) = 0. Thus, for any substitution of the form # o §', we have

0E o : 07, 0(c, UO'oh)
By definition of the rule (sub),
0E e : Or, Observe(0E, 07)(0(c] U8 b))
By definition of Observe,
Observe(0E,07)(0(0'ah)) = Observe(0E,07)(0'ch) =@ and  Observe(foi)(9'oh) =0

Thus,
BE + e : 01, Observe(0E,07)(00))

By definition of Observe, Observe(0€,87)(0a) C fo{. By the rule (sub), 0€ e : é7,00]. Since o D o1,
we have 8o D 6o}, and by the rule (sub),

6EFe: 0,00

Another significant property of the typing rules, is that if one can prove a type 7 and an effect o for an
expression e with a type environment £, then 7 and ¢ can also be proved for e with a stronger environment

than £.

Lemma 3.5 (Strengthening) If £ & e: 7,0 and if 7' < &(z) implies 7' < E'(z) for every = € Dom(E)
then&'Fe:1,0.

Proof The proof is by induction on the derivation. By hypothesis, £ and £’ are such that ™ < &(x)
implies that 7" < £'(x) for every x € Dom(€£).

Case of (var) By hypothesis, £ F x : 7,0. By definition of the rule (var), we have that r < £(x). By
hypothesis, 7 < £'(x). By definition of the rule (var), we conclude that

Erx:r D
Case of (abs) By hypothesis, £ F (lambda (x) e) : 7 = /,0. By definition of the rule (abs), £x + {x —

7} F e : 7/,0. By induction hypothesis with £x + {x — 7}, £ + {x — 7} F e : 7/, 5. By definition of the
rule (abs),

E'F (lambda (x) e):7 > 7,0

Case of (app) By hypothesis, £F (e €') : 7/,0Uc’Uc¢”. By definition of the rule (app) Ete: 7T g, o

and £ ¢’ : 7,0'. By induction hypothesis with £, &' F e : 7 i r',0 and £ F &' : 7,¢'. By definition of the
rule (app),

Er(ee): T, cUd Uo"
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Case of (let) By hypothesis, £ and £ are such that 7/ < £(x) implies 7/ < £'(x) for every x € Dom(£).
By hypothesis, £ F (let (x e) e') : 7',0Uo’. By definition of the rule (let), this requires that £+ e: 7,0
and £x + {x— Gen(o,E)(7)} F &' : 7', ¢'. By induction hypothesis on e,

Ekeire

Since 7/ < £(x) implies 7/ < £'(x) for every x € Dom(€) and by definition of <, fo(£') C fu(€). Since
fuE") C fu(€) and by definition of Gen, 7 < Gen(o,€)(r) implies 7/ < Gen(o, £')(7). By induction
hypothesis on e/, we get

Y+ {x— Gen(c,&)(T)} e 7 o

By definition of the rule (let), we conclude that
E'F(let (x ) &):7,0U0
Case of (sub) By hypothesis, £ - e : 7,¢. By definition of the rule (sub), this requires that there exists
o D Observe(£,7)(c') such that £+ e : 7,6'. Since 7/ < £(x) implies 7" < £'(x) for every x € Dom(€) and

by definition of <, fu(£') C fu(€). Since fu(E') C fu(€) and by definition of Qbserve, o O Observe(E', T)(a").
By definition of the rule (sub),

Ere:recO

3.2.1 Conservativity over ML

It is a simple and interesting exercise to show that the type and effect discipline is conservative over Milner’s
ML typing discipline. This consists of formally proving that any ML expression, that is well-typed in Milner’s
typing discipline, is also typable in the type and effect discipline.

e =x| (e &) | (lambda (x) e) | (Let (x e) &) ML expressions

The syntax of ML expressions can be defined by the above restriction of the syntax of section 2.2.1 which
excludes store operators. We also define ML types as a restriction of those presented in section 3.1.

T o= z'm‘|a|'rl>7 ML types

Then, the typing discipline of ML can be stated as follows.

=< E&(x
L (v35)am
Ex+{x— r}bane: .
£ bFan (lambda (x) e) :‘r-gwr" {a S)d'm
]
Etane:T— 71 Ebgne' i 7
£ |*::(e el) : 1’ = (2PP)am

Ehtame:7  Ex+{x— Gen(£)(7)} Fane’ : T’
Elhan(let (x e) ) : 7 (let)dam

Static Semantics of ML

Proposition 3.1 {Conservativity over ML) Let £ a ML type environment and e an ML expression. If
Eline: T then T is an ML type and EF e: 7, 0.

Proof The proof is by induction on the syntax of expressions.
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(s3]

Case of (var) By hypothesis, £ Fgnx : 7. By definition of (var)gy, , 7 < £(x). By definition of the rule
(var), EFx:7,0.

Case of (abs) By hypothesis, £ g (lanbda (x) e) : 7 LA By definition of (abs)gm , Ex +{x+— 7} F
dne : 7. By induction hypothesis on e with the ML environment £x + {x — 7}, we have Ex+ {x— 7} F e :
7',0. By definition of the rule (abs),

& Fgm (lambda (x) e) : 7 LN .0

Case of (app) By hypothesis, £ Fgn (e €’) : /. By definition of (app)gm, € Fdme : 7 P+ and

£ Fame' : 7. By induction hypothesisone, EFe: T L 7', 0. By induction hypothesis on e, £F &' : 7,0, By
the rule (app),

EF(e &) 10
Case of (let) By hypothesis, £ Fgq (let (x e) €') : 7'. By definition of (let) gy, £ Fane : 7 and
E+ Gen(&E)(T) Fam e’ : 7'. By induction hypothesis on e, we have EF e : 7, 0.

We have that Gen(8, £)(r) = Gen(&)(7) is an ML type scheme. Thus, by induction hypothesis on e’ with
Ex+ {x— Gen(E)(7)} we get

Ex + {x— Gen(D,E)(T)} e’ : 7,0
By definition of the rule (let), we conclude that

EF(let (xe) &) 7,00

3.2.2 Deterministic Deduction

Finally, and as in the previous chapter 2, a syntax directed inference system can be obtained by the com-

position of the subsumption rule with the others. Every derivation of 4 can be inductively translated by a
derivation in F.

s ) 9 T )
e o7 O PG TT (OO
e o 7Y Ol e G (ot

Syntax-Directed Static Semantics

Proposition 3.2 (Syntax-Directed Static Semantics) If Ebye:T,othen b e 0. IfEF e:T,0
then Ebye: 7,0 for some o' C 0.

Proof Derivations using the rules (var), (app) and (let) are inductively translated by applying the rule
(obs) to their conclusion. Derivations using the rule (abs) are translated by using the rules (does) to their
premise, as in proposition 2.1 J
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3.3 Consistency of Dynamic and Static Semantics

In the static semantics of section 3.1, we introduced type schemes into type environments, types into effects
and the inference of observable effects. In order to incorporate these changes, the relation between values
and types, that was defined in the chapter 2, must be reformulated.

3.3.1 Consistency Relation

We define a new consistency judgment s:0, S |= vir which relates values and types according to a given store
model &, a store s and observable effects ¢. In the dynamic semantics, when an expression is evaluated, its
initial store s possibly mutates to another, §'.

Similarly, in the static semantics, the observable effects o that correspond to the construction of the
initial store s may be augmented with the effect ¢', inferred for the evaluated expression. Similarly, the store
. model § must be updated to §’. However, 8’ must agree with & on the locations { of its domain which refer
to observable regions in ¢. This considerations are formalized by the following definition 3.1.

Definition 3.1 (Extension) (¢/,8') extends (¢, S), noted (5,8) C (¢/,8') or (¢/,8') 2 (0, 8), iff:

cCodo

if (1) € Rng(c) then S8'(1) = S(I)
Dom(8) C Dom(S")

and, for alll € Dom(S), { if S'(I) € Rg(0) then S'(1) = S(1)

(¢!, 8') and (v, 8) are equivalent, noted (¢,8) ~ (¢, 8"), if and only if (¢,S) C (o', 8') and (¢',8') C (0, 8).

The relation, presented in the definition 3.2 below, specifies the consistency between values and types
according to observable effects. It refers to an effect which represents the effect of evaluating an expression to
a value and the history of the effects that permitted the evaluation of its environment. Unobservable effects
may however be needed to show the consistency between unused values, captured within closures, and the
types assigned to them.

Example The following example describes this situation. The expression below builds a closure £ which
references a value y in the environment it captures. The closure £ operates upon functions of type o = «
for any « and ¢.

(let (£ (let (v (new (lambda (x) x)))
(lambda (x)
(lambda (z) (if true y (new x)) =)
x)))
(4 (lambda (x) x)))

Evaluating the expression (let (y...)...), whose value is bound to £, does not proceed with observable
effects. Thus, the value of £ and its type are consistent given any store model § and effect ¢. This is not
the case, however, with the environment, noted F, captured by the value £. It references the value boud to
y, which is a pointer, noted [, to the identity function. To prove the consistency of the environment E with
respect to a type environment, such as £ = {y + ref,(a 5 «)}, one must consider some effects, unohservable
from outside £, related to the pointer {. The appropriate store model &', equivalent to § on ¢, must relate
[ to the appropriate region p and type o = o W

Definition 3.2 (Consistent values and types) Given the store s, the effects o and the model S, the
consistency relation between a value v and a type T, written s:0, S |= v:T, satisfies the following property.

s:0, 8 = uiunat

s:0,8 | Liref,(T) & (p,7) € Rng(), S(I) = (p,7) and s:0,8 | s():7

5:0,8 = (2, ¢, E):r © there exist £ such that £+ (lambda (z) e): 7,0,
o' such that Observe()(o') = 0 and Observe(c)(o’) =0,
&' such that (0,8) = (0,8") and s:0U ', 8 = E:£
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We write s:0,8 |= v:NT.7 if and only if s:0, 8 |= v:0r for any substitution 0 defined on ¥ and s:0,8 | E:€
if and only if Dom(E) = Dom(€) and s:0,8 = E(z):£(2) for any 2 € Dom(E).

In a similar way as in the chapter 2, we must define the typing consistency relation as the maximal fixed
point of the property defined in 3.3. This is done by considering the appropriate function F below.

Definition 3.3 (F) The function F is defined over the elements @ of P(R). R is the set of all(s,0,8,v,7).
The greatest fired point of F, gfp(F)=U{Q C & | Q C F(Q)}, defines our relation: we write 5,0,8 = v:T
if and only if (s,0,8,v,7) € gfp(F).

Flol={s.0.8;1:7) |
if v = u then 7 = unit
if v="11then T = ref,(), (p,7') € Rng(a), 8(I) = (p,7') and (s,0,8,5({),7") € Q
if v=(z, e E) then there exist £ such that £+ (lambda (z) e): 7,0,
o' such that Observe(r)(c') =0 and Observe(a)(c’) =0,
8’ such that (0,8) ~ (0, 8')
and that (s,c Uo', 8 E(z), ") € Q for any z € Dom(E) and 7' < E(=z)}

To admit a maximal fixed point gfp(F), the function F must be monotonic. This is the first property
that we thus have to verify.

Lemma 3.6 (Monotony of F) If Q C Q' then F(Q) C F(Q').

Proof Let O and Q' be two subsets of § such that @ C Q'. Let ¢ be (s,0,8,v, 7) in F(Q). We prove that
q € F(Q).

e If v = u then, by the definition 3.3, 7 = unit so that q € F(Q).

e If v = I then, by the definition 3.3, 7 = ref,(7'), (p,7’) € Rng(0), S(I) = (p, ') and (5,0,8,s5(1),7') €
Q. Since Q C @', (s,0,8,5(l), ™) € Q'. By the definition 3.3, ¢ € F(Q').

o If v = (x,e, F) then, by the definition 3.3, there exist £ such that £ F (lambda (x) e) : 7,0, ¢
such that Observe(r)(¢’') = @ and Observe(o)(c') = 0, &' such that (¢,8) ~ (o,8') and (s,0 U
o',8' E(x),7') € Q for any x € Dom(E) and 7/ < £(x). Since Q C @', (s,0Ud", &8, E(x),™) € Q.
By the definition 3.3, ¢ € F(Q') O

The lemma 3.7 connects the definition of the relation C in 3.1 with the consistency relation, defined
in 3.2, according to the following respects.

Lemma 3.7 (Extension) If s:0,8 = vir and (0,8) C (¢!, &) then s:0', 8 = vir.

Proof We consider the set Q={(s,¢’,&8' v,7) | s:0,8 & vir and (¢, 8) C (¢/,8) }. We show, by case
analysis on the structure of v, that ¢ = (s,0',8,v,7) is in F(Q). Thus, @ C F(Q), showing that Q is
F-consistent.

e If v = u then, by the definition 3.2, 7 = unit so that ¢ € F(Q).

o If v = [ then, by the definition 3.2, 7 = ref,(7'), (p,7') € Rng(0), S(I) = (p,7') and 5:0,§ |= s(I):7".
Since s:0,S |= s(1):7" and by definition of @, (s,0¢’,8",s(I),7") € Q. Since (p,7") € Bng(c), S(I) =
(p, ') and by definition 3.1, (p, 7’) € Rng(¢') and 8'(I) = (p, r'). By the definition 3.3, ¢ € F(Q).

o If v = (x, e, E) then, by the definition 3.2, there exist £ such that £ F (lambda (x) e) : 7,0, o4 such

that Observe(r)(o1) = 0 and Observe(o)(o1) = @, Sy such that (¢,8) =~ (¢,81) and s:cU 0,8 E
E(x):7" for any x € Dom(E) and 7/ < £(x).

Let us define § on Regs(oq) in such a way that the regions Regs(fc1) are not free in 7, ¢’ and §'.
Let us write & = 0, o] = 0oy and 8§ = 08;. By the lemma 3.4, £’ I (lambda (x) e) : 7,0. By
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the lemma 3.1, for all 7/ < £'(x), there exists 7/ < £(x) such that the restriction ¢’ of @ on the free
variables of £ verifies 7/ = @’7'. By the lemma 3.9, s:0 U}, 8] & E(x):7" for any x € Dom(E) and
7" < £'(x). Let us define 87 as follows,

(1), if{ € Dom(8) and 81 ({) € Rng(c U c})

Sl
' 1" _ 1
Vi € Dom(S"), S{(l) = { () otherwise

To prove that (s,0’ U o}, 87, E(x),7") € Q, it remains to show that (¢ Ue,81) C (0 U o}, 87). This
requires that, for any [ € Dom(8}), if 81(I) € Rng(o Uo}) or (1) € Rng(o Ua) then 87(1) = Si(1).

o If 8 (1) € Rng(o Ua?}) then, by definition of 87, 87 (1) = 8(1).

o If 8Y(I) € Rng(oc Ua}), we proceed by case analysis on the definition of §7. First, if [ € Dom(S)

and 81(!) € Rng(o U o) then 8Y(I) = 8{(I). Otherwise, either { € Dom(S) [This is impossible,
since we suppose that [ € Dom(8})] or 8{(I) & Rng(c U ¢}). We show that this is impossible as
well.
By hypothesis, we have that 8{() = 8'(!) € Rng(o U ). Since, by definition of ¢}, fr(3(8")) N
Regs(c}) = 0, we must have 8(l) = 8'({) € Rng(c). However, by hypothesis, we have that
(6,8) C (¢/,8'). This imposes that, if S({) or 8'(I) is in Rng(e), then 8'(I) = 8(I). Since
(6,8) ~ (0,8,) and @ does not affect o, we must have &'(I) = 8(I) = 81({) = 8;(!). Thus, we
cannot have both 8'(1) € Rng(e) and 8{(I) € Rng(c Ua}).

We have shown, by the definition 3.1, that (e U}, 81) C (' Uo}, 8Y). Since, for any x € Dom(E) and
' < E'(x), s:io0 Uol, 8] | E(x):m, by definition of Q, (5,0’ U o}, 87, E(x), ™) € O.

To show that ¢ € F(Q), we need to prove that (¢/,8') ~ (¢/,8)). Since Dom(S') = Dom(8Y), it
remains to show that, if 8'(!) € Rng(e’) or 8Y(I) € Rng(o”'), then &'(I) = 8§7(I). We proceed by case
analysis on ¢ and o' \ o.

o If 87(1) € Rng(c) or §(I) € Rng(c) then either | € Dom(S) or not. If { € Dom(S) then, since
(0,8) ~ (¢,81), 8(I) = 81(I). Since ¢ is not defined on o, S1(I) = S(I). By definition of 8,
S7(l) = 81(I). Since, by hypothesis, (¢,8) C (¢/,8"), S(I) = §'(I). Thus, S{(1) = §'()). It
1 & Dom(8) then, by definition of 87, 8Y(I) = §'(!). Thus, if §'(I) € Rng(c) then &'(1) = §{(1).

o If 8Y(I) € Rng(o' \ o) then, since Regs(c}) N fr(c') = 0, (1) & Rng(c U c}). Thus, by definition
of 87, (1) = 8'(l). Similarly, if §'(I) € Rng(c’ \ o) then, since Regs(at) N fr(c") =0, S'(I) ¢
Rng(o U c}). Thus, either I ¢ Dom(8) and then 8'(!) = S({), or I € Dom(8) and then, since
(o,8) C (¢',8"), S(I) & Rng(c). Thus, 81 (1) € Rng(c) and, by definition of 87, §7(1) = 8'(0).

We have proved, by the definition 3.1, that (¢, 8') ~ (¢, 87). By the definition of o}, Observe(7)(o}) =
# and Observe(c’)(o}) = 0. Since £ F (lambda (x) e) : 7,0 and (5,0’ U o}, 87, E(x),7") € Q for
every x € Dom(FE) and every 7 < £'(x), by the definition 3.3, ¢ € F(Q) O

The lemma 3.8 connects the definition 3.1 of the relation ~ with the consistency relation, defined in 3.2,

according to the following respects.

Lemma 3.8 (Equivalence) If (0,8) ~ (¢/,8') then s:0,8 | vir if and only if s:0', 8" |= vir.

Proof By hypothesis, (0,8) ~ (¢/,8"). By definition 3.1, (¢,8) C (¢/,8') and (0,8) I (¢/,8). I
s:o, 8 |= vir then, since (0,8) C (0, 8') and by the lemma 3.7, s:0’, 8 | vir. If s:0', 8" |= vt then, since
(¢,8) 3 (¢!, 8') and by the lemma 3.7, s:0, S = v:ir O

The lemma 3.9 states that the typing judgment s:o, S |= v:7 is stable under substitution.

Lemma 3.9 (Substitution) If s:0,8 | vit then s:00,08 = v:07 for any substitution 6.
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Proof We consider the set Q={(s,00,08,v,07) | s:0,8 |= v:7}. We show, by case analysis on the structure
of v, that ¢ = (s,00,08,v,07) is in F(&). Thus, @ C F(Q), showing that Q is F-consistent.

e If v = u then, by the definition 3.2, 7 = uni#t so that ¢ € F(Q).

e If v = [ then, by the definition 3.2, 7 = ref,(7'), (p, ') € Rng(c), 8() = (p,7') and s:0, S |= 5(I), 7.
Since s:0, 8 = s(1):7" and by definition of Q, (s,0¢,08,s({),07') € Q, 8(p,7') = 08(l) € Rng(fc). By
the definition 3.3, ¢ € F(Q).

e If v = (x,e, E) then, by the definition 3.2, there exist £ such that £ - (Lambda (x) e) : 7,0, ¢’ such
that Observe(7)(o’) = 0 and Observe(a)(o’) = 0, &' such that (0, 8) ~ (¢, 8') and s:0U0’, 8" | E(x):7
for any x € Dom(E) and 7/ < £(x). Let us define the substitution 6’ of Regs(c') by regions Regs(# ')
not free in 07 or fc and let ' be same as ¢ elsewhere,

Let us write £ = 6’6, 8" = 'S’ and ¢” = #'¢’. By the lemma 3.1, for all 7" < £'(x), there exists
7' < £(x) such that the restriction §” of ' on the free variables of £ verifies 7/ = #”7’. By definition of
Q, (s,0cUc", 8", E(x), ") € Q for every x € Dom(E) and every 7/ < £'(x). By definition of Observe
and ¢, Observe(8o)(c”) = 0 and Observe(67)(c”) = 0. By the definition 3.1, (#7,08) ~ (0o, S"). By
the lemma 3.4 with ¢/, £’ F (lambda (x) e) : 07,0. By the definition 3.3, ¢ € F(Q) O

The lemma 3.10 is a refinement of lemma 3.9 and states that the judgment § = v:r reduces to § | v:ifr
for any substitution @ that affects 7 but not o. It is used in the proof of consistency, theorem 3.3, to show
that our type generalization criterion is correct.

Lemma 3.10 (Instantiation) If s:o, 8 = vir and 0 is defined on fo(7) \ fu(o) then s:0,8 = vifr.

Proof By hypothesis, s:o, § |= vir and 0 is defined on fy(7) \ fu(o). By the lemma 3.9, s:0, S = v:67. By
the definition 3.1, (¢, 8) ~ (7, 68). By the lemma 3.8, s:0, § | v:0rJ

3.3.2 Notion of Succession

During the evaluation of an expression, the store is extended and updated in an organized way. The
definition 3.4 specifies the requirements for preserving consistency between types and values in the presence
of side-effects.

Definition 3.4 (Succession) (s,0,8) becomes (s',0',8'), noted (s,0,8) C (s',0',8"), if and only if Dom(s)
C Dom(s'), (0,8)C (¢/,8") and s:0,8 |= vir implies s':0', 8" |= vit for any v and 7.

The lemma 3.11 represents the situation that arises when a reference is initialized. In the lemma 3.12,
we address the situation arising when a value is assigned to a reference.

Lemma 3.11 (Initialization) Let o' = init(p,7), s’ = s+ {l— v} (1 & Dom(s)), &' = 8+ {{ — (p,7)}
(1€ Dom(S)) and s:.0,8 = vir. If si0,8 Ev':r then soUd’ 8 Ev'i7.

Proof We consider the set @={(s',c U o', &8 ,v',7') | 5:0,8 |= v':7'}. We show, by case analysis on the
structure of v, that ¢ = (s',c U ¢/, 8, v/, 7') is in F(Q). Thus, Q@ C F(Q), showing that Q is F-consistent.

e If v = u then, by the definition 3.2, 7 = unit so that ¢ € F(Q).

e If v' = I then, by the definition 3.2, 7' = ref,.(7"), (¢',7") € Rug(o), S() = (p',7") and s:0,8 |
s(l"), 7. Since s:0,8 [= s(I'):7", by definition of Q, (s',c U o', & s(I),7") € Q.

Since (o', 7") € Rng(c) and S(I') = (p’,7") then, by the definition 3.1, (p', ™) € Rng(c U ¢’) and
S'(I'"y = (p',7"). If ' =1 then, by hypothesis, v = 5'({'), 7" = 7 and s:0, 8 |= v:r. Thus, by definition
of @, (s',o U’ &, s (l'),7) € Q. Otherwise, s'(I') = s(I') and (s',0U o’,8",s(I'), ™) € Q. By the
definition 3.3, ¢ € 7(Q).
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o If v/ = (x, e, E) then, by the definition 3.2, there exist £ such that £ - (lambda (x) e) : 7,0, oy such

that Observe(7')(o1) = 0 and Observe(c)(c1) = 0, 81 such that (0,8) ~ (0,81) and s:0U 01,81 E
E(x):m for any x € Dom(E) and 71 < £(x). Let ¢ be defined on Regs(o1) and such that the regions
Regs(0o1) are not free in 7/, ¢ and ¢’. Let o} = 0oy, 8 = 68, and &' = €. Since, by the lemma 3.2,
Regs(co1) N fu(7') = 0, by the lemma 3.4 with 6, £ + (lambda (x) e) : 7, 0.
By the lemma 3.1, for all 7{ < £'(x), there exists m =< £(x) such that the restriction ¢, of ¢ on £
verifies 7{ = 6171, Thus, by the lemma 3.9, s:0 U0}, 8] | E(x):7{ for any x € Dom(E) and 7 < £'(x).
By definition of Q, (s,0 U ¢’ U}, 87, E(x),7{) € Q for every x € Dom(E) and every 7/ < &£'(x).
We have defined of such that Observe(c U o')(o]) = 0 and Observe(r')(c}) = 0 and S such that
(¢,8) = (0,8). By the definition 3.3, ¢ € F(Q) O

Lemma 3.12 (Assignment) Let ¢’ = write(p,7), §' = si + {l — v}, 5:0,8 |= Lref,(7) and s:0,8 |= vir.
If s:0, S E o7 then s'oUC’, 8 E o7,

Proof We consider the set Q={(s',c Ud’,8,v',7') | s:0,8 |= v":7’}. We show, by case analysis on the
structure of v, that ¢ = (8,0 U o', 8,v',7') is in F(Q). Thus, Q C F(Q), showing that Q is F-consistent.

o If v’ = u then, by the definition 3.2, 7' = unit so that ¢ € F(Q).

o If o' = I’ then, by the definition 3.2, 7' = ref,.(7"), (o, 7") € Rng(c), S(I') = (p',7") and s:0,8
s(I'), 7". By definition of Q, (s,c Uo’,8,s(l'),7") € Q. Since S(I') = (p’,7"), by definition of &,
S8'(I") = (p',7"). Since (p',7"") € Rng(c), by definition of o', (p',7") € Rng(c Ua’). If I' = [ then
v = s'(l'), s:0,8 | Liref,(7) and s5:0,8 |= vir. Thus, by definition of Q, (s',0 U o', 8 v,7) € Q.
Otherwise, s'(I') = s(I') and (s',0 Uo’,8', s(I'), 7"") € Q. By the definition 3.3, ¢ € F(Q).

o If v/ = (x,e, E) then, by the definition 3.2, there exist £ such that £ F (lambda (x) e) : 7,0, oy
such that Observe(c)(o1) = 0 and Observe(7)(oy) = 0, Sy such that (¢,8) ~ (7,8;) and sic U
01,81 | E(x):r' for any x € Dom(E) and 7/ < £(x). Since s:0,8 | l:ref,(7), by definition 3.2,
(p,7) € Rng(c) and then Rng(c’) C Rng(c). Thus, Observe(oc U ¢')(a1) = 0. By definition of Q,
(s,0Uc'Ucy,81,E(x),7) € Q for every x € Dom(F) and every 7' < £(x). By the definition 3.3,
g € F(Q)O

The lemma 3.13 is used in the inner proof case of the theorem 3.3 in the case the rule (sub) is used. It
tells that the consistency of the rest of the computation is not affected by unobservable effects.

Lemma 3.13 (Observability) If s:0, S = vir and Observe(r)(c) C o' C o then s:0', 8 | viT.

Proof We consider the set Q={(s,0’,8,v,7) | 5:0,8 |£ vi, ¢/ = Observe(r)(c)}. For any o’ such that
Observe(t)(o) C o' C o we show, by case analysis on the structure of v, that ¢ = (s,0’,8,v,7) is in F(Q).
Thus, @ C F(Q), showing that Q is F-consistent.

o If v = u then, by the definition 3.2, 7 = wnit so that ¢ € F(Q).

e If v ={ then, by the definition 3.2, 7 = ref, ('), (p, ') € Rng(c), S(I) = (p,7’') and s:0, S = s({), 7.
Since s:0, 8 |= s(1):7, by definition of @, (s,0", 8, 5(1), ') € Q. Since (p, ') € Rug(c) and 7 = ref,(7'),
by definition of Observe, (p, ') € Rng(Observe(t)(c)). Since Observe(r)(a) C o', (p,7') € Rng(c').
Thus, by the definition 3.3, ¢ € F(Q).

o If v = (x, e, E) then, by the definition 3.2, there exist £ such that £ F (lambda (x) e) : 7,0, oy such
that Observe(r)(o1) = 0 and Observe(c)(o1) = 0, 81 such that (¢,8) ~ (¢, 81) and s:0Uay, 8 = E:E.
By the definition 3.2, for any x € Dom(£) and 1’ < £(x), s:o0 Uy, 81 | E(x):7". By definition of Q,
(s,cU0,81,E(x), 7)€ Q
Let 0 = 01U(o\o'). Since Observe()(o1) = @ and fr(7)NRegs(o\a') = B, we have Observe(t)(o?}) = 0.
Similarly, since Observe(a)(c1) = 0 and fr{c’) N Regs(o \ ¢') = B, we have Observe(o')(o}) = . We
have that o Uy = ¢’ U o} and finally, since (0,8) ~ (0,81) and ¢/ C o, (¢/,8) ~ (¢/,81). By the
definition 3.3, ¢ € F(Q) O
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3.3.3 Consistency Theorem

The consistency theorem appears below. The effect & corresponds to the effect of evaluating the environment
of the expression e. Let E and & be consistent with respect to this imtial effect o, the initial store s and a
store model S e.g. s:0Uc’, 8 |= E:£. If e evaluates to s, E F e — v, f, s’ and has type and effect £+ e : 7,0,
then there exists a store model & such that (s, o, 8) becomes (s',¢’,8') and that the value v is consistent
with its type, according to the model &' e.g. s':0', 8" | viT.

Theorem 3.1 (Consistency of dynamic and static semantics) If s:.0,8 | E:£, £F e: 70" and
s,EF e— v, f, s then there exists 8’ such that (s,0,8) C (¢',0Uc’,8) and s':c Ud', 8 | vir.

Proof The proof is by induction on the length of the dynamic evaluation. The dynamic trace f is not
taken into consideration in this theorem. However, it can be related to the effect ¢/ modulo the store model
S’ by observing that Observe(€, 7)(S'(f)) C o'

Before detailling the case analysis that corresponds to each syntactic form, we detail the inner proof case
that corresponds to the application of the rule (sub) in the static semantics.

The situation is that £ Fe: 1,0/, s, EF e — v, f,s and s:0,8 = E:£. The judgment £+ e: 7,0 was
inferred from the rule of observation.

Ere:T;m Observe(E,7)(o1) C o’
&EHweyro

Let us write o] = Observe(E, 7)(01) and o4 = o1 \ o}. Let us define the substitution # on Regs(o?) such
that the regions Regs(6c%) are not free in £, cUs] and 7. Let us write ¥ = % Since Qbserve(E, 7)(ah) = B,
by the lemma 3.2, Regs(ey) N (f(€)U fi{7)) = 0. By the lemma 3.4,

. / H
Ere:T,0)Uc)

By hypothesis on the inner proof, there exists &' such that s’:c Uof Uc¥, 8 | vir and that (s,0,8) C
(s',oUaiUdal,8"). Since Observe(E, 7)(c) = 0, by the lemma 3.13,

[ TR .
shoele], S Euvr

In the same manner, let us consider any ¢ and 7/ such that s:e, & | v/:7'. Since (s,¢,8) C (¢',c U U
ol,8"), by the definition 3.4, s":.c Uo} Uoh, 8 = v'i7'. We can freely choose ¢ = 0%, in the judgment
EF e:7 0, UdY, so that Regs(cy) N fr(r') = B. By the definition of Observe, Observe(r')(cl) = 0 and
thus, by the lemma 3.13, s":0 U}, S8 | v':7'. This holds for any judgment s:0, S | v":r'. Thus, by the
definition 3.1,

(&a:8) Cl&yel ¢, 89
Since of C ¢/, by the lemma 3.7,

(s,0,8)C (s',0U0’,8) and s':0 U0, 8 | vir
Case of (var) By hypothesis 5:0,8 E F:£, s,EF x — v,0,s and o, F x : 7,00. By definition of the
rule (var) this requires that £(x) = v and that 7 < £(x). By the definition 3.2, s:0, & |= v:r. We conclude,
taking s’ = s, 0/’ =0 and 8’ = 8, that

(s,0,8)E(s',0Ud", &) and s':0 U o', & = vir
Case of (abs) By hypothesis s:o, & | E:£. The rules (abs) of the dynamic and static semantics impose

that s, £ - (Lambda (x) e) — (x,e, Ex),0,5 and £ F (lambda (x) e) : 7,0. By the definition 3.2, taking
s'=35,0' =0 and §' = &, we conclude that

(5,0,8)C (s',0Uc’,8) and s":0 U’ 8 |= (x,e, Ex):T
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Case of (let) By hypothesis, s:0, 8 |= E:£. The rule (let) of the dynamic semantics imposes that:

s, B ke —w,fi,8 sy, Ex+ {x— v} F ey — vg, fo,s
s, FF (let (x e1) e3) — wy, f1U fa,8

In the static semantics, writing ¢’ = oy U 02, we have

8"61 e e | £x+{x|—» G’en(crl,é')(ﬁ)}l-eg:'rg,ag
EF (let (x e1) e3) :m, 01 Ucy

Let us write v/ = fo(r) \ (f(o1) U f(€)). Let us define the substitution & on o' such that the variables
7 = 0(v") are distinct and not free in o U ey and £. Let us write 7 = 67;. By the lemma 3.4,

EFe T 0
By induction hypothesis on ey, there exists &y such that
(5,0,8)C (s1,0U01,8,) and s;:0 Uey, Sy | vpir

Since (s,0,8) C (81,0 Uoy,81), by the definition 3.4, s;:0 U oy, 81 | E:E.

Since 7 = fu(T)\(f(e1)Ufu(£)), TNfu(e1) = 0. Let 8 be any substitution defined on 7. Since #Nfu(ay) =0
and 7N fo(o) = 0, by the lemma 3.10, sy:0 Uy, 881 | v1:07. Since 70 fu(c Uoy) = @, by the definition 3.1,
(cUo1,81) ~(6U0oy,08;). By the lemma 3.8, s1:0U ey, 8 | v1:07. By definition of < and definition 3.2,

spioUoy, 81 v Vir

Let us write £/ = Ex +{x+~ v} and & = £x + {x — V¥7.7}. By induction hypothesis on e, there exists
&’ such that (s;,01,81) C (s',0 Uo’,8') and that s":0 Uo’, S8’ k= va:7a. Since (s,0,8) C (51,0 Uoy,S1) and
(s1,0U01,81) C (s',0Uda',8"), by the definition 3.4,

(s,0,8)C (s',0U0',8) and s:0Uc’, 8 = vaimn
Case of (app) By hypothesis, s:o, 8 |= E:€. The rule (app) of the dynamic semantics imposes that:

S,EFe1—>(x,e3,E’),f1,31 Sl,E!_eg—>b‘2,f2,32 sz,E’+{x|—>v2}|-e3—>vg,f3,33
s, EEF (eq ey) — w3, f1 U fal f3, 83

Let us write o/ = 1 U o2 U o3, In the static semantics, we have:

a
Erhe :m 3 m,o Eteg:m, 00
EF (e e3) 13,00 UoyUos

By induction hypothesis on e;, there exists &; such that
(5,0,8)C (51,0U01,81) and s1:0Ua1,81 | (x,e3, B'):m B

Since (s,0,8) C (51,0 U1, 81), by the definition 3.4, s1:0 U1, 81 | E:£. By induction hypothesis on
es, there exists &5 such that

(51,0U01,81) C (53,0 U0y Uos,S2) and sy:0 Uoy U, 82 = vaims

Since s1:0U01, 81 |= (x,es, E'):my 5 73 and by the definition 3.4, s2:0 U Uas, 8o = (x, €3, B'):my 22 74
By definition 3.2, this requires that there exist £', 8} and o such that (¢ Uy U0, 82) ~ (cUay Uas, 8),
Observe(s = 13)(0h) = 0 and Observe(o Uy U 03)(eh) = 0, verifying

E'F (lambda (x) e3) : 72 3 7,0 and sp:0 Uy Uaa U ), S = E:E

Let us write 7 = Regs(o?,) and define 6 on g by regions 0(5) not free in £, s Uoy Uy and 7 33 7.
Observe(rs = 73)(0%) = 0 and Observe(oc U oy U os)(0) = 0, by the lemnia 3.2,
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fo(ra 2 3) N Regs(oh) = 0 and fu(o U oy U a3) N Regs(oh) =0

Let us write 0¥ = 0o} and 84 = 084, we have (cUo1Uas, 8a) ~ (cUciUas, 85), Observe(ta =3 13)(0%) =0
and Observe(o Uoy Uoa)(ol) = 0. By the lemmas 3.4 and 3.9, &', ¢ and 87 verifly

0E' F (lambda (x) ez) : 7 23 73,0 and sp:o Uy Uoy Uy, Sy = E0E

Let us write B = E%+{x — vz} and £’ = 0%+ {x — m}. By the definition 3.2, so:0UcUasUcY, Sy =
E".£". By induction on eg, there exists & such that

(s2,0 U1 UeaUch,85) C(s',0Uo’ Uo,8’) and that ¢',0 Ud' Uo¥, 8" = vairs
Since s',c Ud' UcY, 8" | vairs, Observe(rs)(oh) = 0 and Observe(c Uo')(a%) = 0, by the lemma 3.13,
sioUd, 8 Eusm
In the same manner, let us consider any v' and 7/ such that s:0, § = v":7'. Since (5,0,8) C (4,0 U
o' Uol,8"), by the definition 3.4, s'c Uco' Ud¥,& | v":r'. Since, we can freely choose o/ = 0o} so
that Regs(of) N fr(7') = 0, by the definition of Observe, Observe(r')(a4) = 0. Thus, by the lemma 3.13,
s:0Uc’,8 | v':7’. This holds for any judgment s:e, S |= v:7/. Thus, by the definition 3.1,

(s,0,8) C(s',cU", &)

Case of (new) By hypothesis, s:0, 8§ = E:£. The rule (new) of the dynamic semantics imposes that:

s,EFe—n,f, s [ ¢ Dom(s)
s, B (new e) — [, fU{init(0)}, 51+ {l— v}

In the static semantics, the situation is

Ere:T;m
EF (new e) : ref,(7), 01 Uinit(p, )

Let us write o' = init(p, 7)Uoy. By induction hypothesis on e, there exists & such that (s,0,8) C (s1,0U
01,81) and that sy:0 Uy, 8y = vir. Let us write (s', 0 Ud’,8') = (s1 + {l— v}, 0 U0, 81 + {{— (p,7)}).
Since I € Dom(s1) and sy:0 U 01,8 |= vir, by the lemma 3.11, (81,0 Ue1,81) C (s',0 U o/, 8"). Thus, by
the definitions 3.4 and 3.3,

(s,0,8) E(s',0U 0", 8") and 80", 8" |= Lref,(7)

Case of (get) By hypothesis, s:0,8 |= E:€. The rule (get) of the dynamic semantics imposes that:

s,EFe—1 f1,¢ l e Dom(s")
5, B+ (get e) — s'(), fi U {read(l)}, s

In the static semantics, the rule (get) reads

E & e :ref (1), 00
EF (get e) 17,00 Uread(p,7)

Let us write ¢’ = read(p,7) U cy. By induction hypothesis on e, there exists &' such that (s,0,8) C
(s',0U01,8") and that s:0 Uoy, 8" |= Liref, (7). By the definitions 3.4 and 3.2,

(s,0,8)C (s',0U0", &) and s':cU 0" 8 = 5'(1):7



64 CHAPTER 3. THE TYPE AND EFFECT DISCIPLINE

Case of (set) By hypothesis, s:0.§ = E:£. The rule (set) of the dynamic semantics imposes that:

s, EFe1—1 fi1,8 s1,EFes—u,fy 8
5, EF ((set e1) ex) — u, fi U foU{write(l)}, ss, + {l— v}

In the static semantics, we have that

£t ey :ref,(r), 00 El ey 7,09
EF ((set e1) ey) :unit, oy Uoy Uwrite(p, 7)

Let us write ¢’ = oy U o2 U write(p, 7). By induction hypothesis on ey, there exists & such that
(5,0,8) C (81,0 U01,81) and that s1:0 U1, 81 = Liref,(7). By the definition 3.4, s;:0 Uey, 81 E E:€. By
induction hypothesis on es, there exists &5 such that

(81,0 U01,81) C (89,0 Uy Uy, 8a) and that sp:oUeoy Uey, 8o = vir

By the definition 3.4, ss:0Uc1Uas, Sa |= Liref, (7). Let us write (s', cUd”, S = (s, +{l = v}, 00U, Sa).
By the lemma 3.12, (53,0 Uy Ugs,83) C (8,0 Uc’,8'). By the definitions 3.4 and 3.2, we conclude that

(5,0,8)C (§,0Ud",8) and §':0', 8 = wiunit O

3.4 The Reconstruction Algorithm

We present the inference algorithm 7 that reconstructs the principal type and effect of expressions with
respect to the static semantics. The inference algorithm 7 uses a double recursion scheme that separates
the reconstruction of types and effects from the process of restricting effects with regard to the observation
criterion.

In the first phase of the reconstruction, the algorithm 7', given an environment £ and a constraint set
K, reconstructs the type 7 and the effect ¢ of an expression e, together with a substitution @ that ranges
over the free variables of the environment £ and an updated constraint set /. In its second phase, the
algorithm Z takes into account the observation criterion Observe in order to restrict the effect ¢ computed
by the algorithm 7.

I(E,k,e) = let (0,7,0,6") =T'(£,k,e) in (0, 7, Observe(R (0E), "' T)(F' o), k')

T'(E,k,e) = case e of
op = let (7', k') = Insi( TypeOffe]) in (Id, 7,0, kU k")
x = if x € Dom(&) then let (7', k) = Inst(E(x)) in (Id, 7,0, kU k') else fail
(lambda (x) e) = let @, ¢ new and (0,7,0,k") = Z(Ex + {x — a},x,e)
in (0,0 = 7,0,k'U{sD0c})
(e €') = let (0,7,0,k") =T(E,k,€)
(@, o, 6?) =T[08 w, )
a, ¢ new and 0" = U (0'T, 7 5 @)
in ("0 08,0"a,0"(0'c U’ Ug),0"k")
(let (x e) €') = let (0,7,0,x") =Z(£,k,e) and (Vi.(1, k"), k") = Geng:(0€,0)(7)
@, 7,0, &") =Z(0Ex + {x — VT.(7,&")}, k", &)
(80 B 7 @ lint, k)

Reconstruction Algorithm 7
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3.4.1 Constrained Type Schemes

We use constrained type schemes to generically represent the possible types and constraint sets of 1let-bound
expressions. In the static semantics, type schemes were of the form V@.7. But now, since effect variables
occeur in function types, constraint sets involving these effect variables have to be kept within type schemes.
In the algorithm, the type environment £ binds value identifiers to such constrained type schemes.

Constrained type schemes, written V7.(7, &) or V&.¥YZ.V¢.(T, k), are composed of a type 7 and a set of
inequalities s universally quantified over type, effect and region variables. The type and constraint set
assoclated with e only depend on the free variables of e and, thereby, on the type environment £. We write
Vo.(r,0) = Vo.r

In order to relate the constrained type schemes and environments of the algorithm to the static semantics,
we define a relation from the former to the latter by using the notion of principal model of constraint sets:
¥7.(r, k) = V&.(Rr) and £(x) = £(x) for all x € Dom(€).

Geng(E,0)(T) =let {17} Fu(®r) \ (FURE) Uf’U(H‘O')) in (YU.(7,kg), 6 \ k7)
Inst(V7.(7,k))=let v/ new and 0 = {7+ v/} in (07, 0k)

Generalization and Instantiation

For a given constraint set &, the function Gen, generalizes the type 7 of an expression upon the variables
that are neither free in its environment £ nor present in its observed effects 0. We write kg for the restriction
kg ={¢ Do €« |¢€ T} of k on the effect variables . We write  \ Kz the complement of xz in k. The
instantiation of type schemes for value identifiers and operators is done by using the appropriate function
Inst.

TypeOf[set] = Vooss'.(ref, () 5w B, unit, {¢' 2 write(g, @)})
TypeOf[get] = Vouos.(ref,(e) = o, {s D read(p,a)})
TypeOffnew] = Vags.(a = refy(a), {c D init(g,a)})

Constrained Type Schemes for Store Operations

In the algorithm, the store operation new, get and set are best viewed as associated with appropriate
constrained type schemes.

3.5 Constraint Resolution

We view the inference of types and effects of an expression as a constraint satisfaction problem. The algorithm
builds equations on types and inequations on effects. In the algorithm, indirections between types and effects
are introduced by the notion of constraint sets. Among the solutions of a constraint set, the principal model
still satisfies the lemma of chapter 2. “If & solves x then § = 0 o ®

However, we introduced types in effects so that effects ¢ occur in types 7 = 7/ as well as types 7 occur
in effects init(p, 7). As a consequence, some expressions may now have recursively defined types and effects
and shall thus be rejected by the static semantics.

Example The static ssmantics might constraint some expressions to have an effect ¢ containing init(p, 7 —
') itself. The simplest known example producing such an ill-formed constraint set is:

(Lambda (f)
(let (x (new (new (lambda (x) x))))
(if true f (lambda (y) (set x (new £))) y)))
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In this program, the type of the function £ has to match the type of the lambda-expression (1ambda (y)
(set x (new £)) y) that initializes an observable reference to £. Note that the incriminated effect must be

observable for this situation to appear. As a result, the latent effect of the function type for £ is recursively
defined.

u...
chrz‘ie(p’,..JU:TM.*.(,G,Q;—» a”)
4 3 — (84

For our algorithm to be effectively implemented constraint sets must be checked for well-formedness. It
must be checked that no indirect cycles are introduced through init effects B

3.5.1 Well-Formed Constraint Sets

Our solution consists of specifying well-formed constraint sets, which are the only acceptable to the algorithm
Z, in that they correspond to sound assignments of effect variables in the static semantics.

Definition 3.5 (Well-Formed Constraint Set) A constraint set x is well formed, written wfx), if and
only if, for every ¢ 2 o such that kK = &' U {¢ D o} we have:

Y (p,7) € Rng(R'o), < & fu(r)

The notation wfix) is extended to type schemes by wfiVe.(7, k) iff wfx) and type environments by wf€)
iff wfl€()) for every z in Dom(E).

The definition of well-formed constraint sets comes here with the following lemmas that state that well-
formed constraint sets are solvable by finite substitutions.

Lemma 3.14 (Well-Formed Constraint Sets) wfx) if and only if K £ &

Proof We first prove that wf{x) implies £ = £. The proof is by induction on the number of constraints in
k. If £ =0, then % = Id solves k. Consider £ = &' U {¢ D ¢} where &’ = &\ {¢ D ¢}. By definition, we have
K ={¢—®'(cUo)}o& and by induction hypothesis on ', & solves x’. For every constraint ¢/ 2 ¢’ in &',
£(¢') = {s = ®(cU ) (F'(¢")) and Fo' = {5 — F'(c U o)} (F'(0')).

e If ¢ € F'(¢’) then E(¢") = (K'(s") \ §) UR'(s U ). Since ¢ € ®'(¢) we have &(s’) = ®'(¢') UR (s U ). By
induction we have &'(¢') 2 ®'(a’). If ¢ € ®'(¢’) then (¢') = (%'(¢")\¢)UR'(sUe) so that B(¢") D &(c”).
Otherwise ¢ € '(¢') so ®(0') =%'(¢'); thus B(¢') = %' (¢) UR'({s} Ue) 2 F'(s") 2 ®'(0') =R(o")

e Otherwise ¢ € %'(¢’) and (¢’) = ®'(¢). Since ¢ ¢ ®(¢') and ®'(¢') 2 ®(0') we have ¢ ¢ ®(0'), so
K(o') = ®'(0'). Since ®' solves &', we have that %'(¢') D ®'(¢”) so that ®(¢') 2 ®(d").

It follows that ¢’ 2 e’ in both cases. For every constraint ¢/ 2 ¢ in k'; so % solves x'.

It remains to show that ¥ solves {¢ 2 c'}. By definition %(s) = {¢ — ®'(s U o) }(%'(c)). Since ¢ € ®'(g),
E(<) = (F(s)\s) UF' (s Ua) = F'(s) UR'(g). Also, B(e) = {¢ — ®(c U o)} (F(0)). If s € ®(c), then
R(o) = ®'(s) UR'(0), otherwise %(o) = ® (o). In both cases, we have that & solves {¢ D o}. We have thus
proved that % solves &.

Now, we prove that % |= & implies wf(x). Let us assume that ¥ |= x and consider any constraint ¢ D o
in k. Let us define & = k' U {¢ D o} where &' = k\ {¢ D 0} and ¥ = {¢ — ®'(cU )} o ®. By hypothesis, we
must have:

{c = F(cUa}F (<)) 2 {s = ' (c U 0)}(F'(0))

Since ¢ € F's, then {¢ — ' (cUo)}(F'(s)) = 7'(sUr) = R'sUR'e. Thus, 'sUR' e D {¢ — ®'(cUc) }(F'(0)).
Every (p,7) in Rng(®'s) must also appear in {¢c — ®(cUc)}(®'(a)). So, 7 = {¢ = F(cUo)}r. Asa
consequence, ¢ is not in fu(7). This holds for every effect (p, 7) in Rng(%'c) and every constraint ¢ D o in &,
so that we have wf{x) by definition [

We state that ill-formed constraint sets cannot be satisfied by substitutions of effect variables by finite
effect terms.

Lemma 3.15 (Tll-Formed Constraint Sets) If k is ill-formed then there does not exist a substitution
satisfying x.
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Proof We show that in order to satisfy an ill-formed constraint set %, any substitution ¢ must substitute
at least one effect variable by a non finite effect term.

We assume that ~wf{x). By definition, this implies that there exists a constraint {¢ O ¢} in & such that
(p,7) € Rng(o), s € fu(R'T) where &' = k\ {¢ D ¢}. Suppose that there exists a substitution ¢ such that
0= k.

By the lemma 2.10, we know that § = @ o . By definition of %, we know that § = {¢ — ®'(cU o)} o ®.
Then, from ¢ = k and by definition, # must verify:

0(F<) = 0(%'(s U o)) 2 0(%(0))

The substitution # must verify 6(%'7) = 0(%7). However,

0(rr) =0({c—F(cUa)}(®'T)) by definition of ®
=0({s — cUF'(0)}({s = F'<}(F'T))) since ¢ €F's, F'¢ =cUF's
=0({s—cURe}FT)) since {s — E's} o’ =F

The term @¢ must recursively verify 0¢ = 0(s U o) where (6p, 0 ¢ ®'7) € Rng(0 o %'} and s occur in
6(%'T) since ¢ € fu(F'7). Thus, the term f¢ is not finite and the substitution ¢ satisfying & cannot thus be
defined with finite type and effect terms[]

3.5.2 Unification Algorithm

In the reconstruction algorithm Z, instead of checking the well-formedness of the constructed constraint
set after each expression is typechecked, we implement an extended occurrence check test, reporting the
construction of ill-formed constraint at the point of unifying effect variables.

Ug(r, ") = case (1,7') of
(unit, unit) = Id
(a, o)) = {a— o'}
(o, T)|(7, @) = if o € fo(R7) then fail else {a — 7}
(refy(7), refp (') = let 0 = {g — o'} in Uy (07,67") 0 0
(7 5 5 e -y T}) = let & =Ue(mi, 7)), 0 = Ugm(ﬂirf,ﬂg:'r}) and 0 = {0¢(0ic) — 05 (0is")} 0 0 0 0;
in if wf{fx) then @ else fail
otherwise = fail

Unification Algorithm

Equations on the types that are built by the reconstruction algorithm are solved with the following
unification algorithm /. It either fails or returns a substitution @ standing for the most general unifier
of the two given type terms 7 and 7', also checking that the substitution # preserves the well-formedness
of the given constraint set x. The following soundness and completeness lemma give the invariants of the
unification algorithm /.

Lemma 3.16 (Soundness of i) Ifx be well-formed andU (7, 7') = 0 then 0k is well-formed and 67 = 67",

Proof The algorithm / unifies the terms of a free algebra and only departs from soundness proof of
[Robinson, 1965] in the case that requires the well-formedness of the constraint set to be checked: the case of
7' = a. By hypothesis, « is well formed and U, (7, @) = 0. By definition of &, this requires that & ¢ fu(%r)
and 6 = {a — 7}. Thus, o = 07 and it remains to prove that 0« is well formed.

By hypothesis, we have that « is well-formed. By definition, this requires that for every constraint ¢ D ¢
in &, considering &' =\ {¢ D ¢}, we have:

Y (p,7') € Rng(®'c), < & fu(r")
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We want to show that 0x is well-formed. By definition, this requires to show that for every f¢ 2 flo in
0r, considering 8k’ = 0k \ {fc 2 o}, we have:

YV (0p,07") € Rng(0x'(00)), Oc & fu(07')

By definition, @ = {& — 7}. Thus, it is sufficient to show that ¢ & fu(fr'). If o & fu(7'), then 67" = 7/
so that we have ¢ & fo(07'). Otherwise, we have that o € fu(7'). Since ¢ & fu(7') and fo = 7, it remains to
show that ¢ & fu(T).

We already know that ¢ is such that k = ¥’ U {¢ D ¢} and that there exists (p, ') € Rng(%'e) supposed
to be such that « € fu(r’). By definition of %, this requires that « € fo(%c). Then, supposing that ¢ € fu(7)
implies that o € fu(R7), which contradicts the hypothesis o € fu(%T).

We have proved that for every ¢ D 0o in 0k, considering 0k’ = 8k \ {¢ D 0o}, we have that ¢ & fu(07')
for every (p,07") in Rng(0x'(8c)). By definition, this proves that 0% is well-formed O

Lemma 3.17 (Completeness of &) Let & be well-formed. Whenever 8't = 0’1’ for a substitution ¢’

satisfying K, then U (7, 7") = 0, O is well-formed and there exists a substitution model 6" satisfying Ok such
that ' = 0" 0 6.

Proof By hypothesis, & is well-formed and there exists a substitution ¢’ satisfying % such that ¢/t = 0’7’
The case analysis which differ from the completeness proof of [Reobinson, 1965] are those which require the

well-formedness of the constraint set to be checked: 7= & or (7, 7') = (7 = 77,7/ = 7

In the case of T = «, the hypothesis is that /7 = ¢’«. By the lemma 2.10, we have that ¢ = @' o &,
so that ¢'(R7) = ¢’«. This implies that « is not in fu(%K7), so that we get that § = {& — 7} = U(c, T) by
definition. Consider ¢ defined by 8"« = ¢ and 8"”v = #'v otherwise. We have that 8 = 8" o 8 and that ¢"
satisfies fx since @' satisfies k. By the lemma 3.15, this implies that 0x is well-formed.

In the case of (r,7) = (v = 74,7/ 5 TJ'Z), the hypothesis requires that ¢/ = 8'7/, &'7f = ¢'r; and
=07

By induction hypothesis on 7 and 7/, U(ri, 7)) = 6;, wfifix) and @' = 0 o 8; for some 0} |= 0;x. Since
wf{f; k) and since there exists a substitution 8} satisfying ;% such that 8}(8;7) = 6i'(8;7'), then, by induction
hypothesis on 7y and 7}, we have Uy, (0its,0i7;) = 0f, wfi0;(0ik)) and 0] = 07 o 0 for some 0 |= 05(0;x).

Thus, there exists a substitution 0§ satisfying 0(0;x) such that 07(0;(0:i7)) = 07(0;(0;7')). But
07(05(0i7)) = 05(05(0:7")) requires that 67 (0;(0ic)) = 07(05(0i<’)). Let us write 0" = 07 and 6 = {0 (0ic) —
87(0:s" )} oy 08;.

We have H}" ofod; = 0" o0. Since the substitution 0}’ satisfies 7 (6;x) then 6" o § satisfies x so that 6"
satisfies fx. By the lemma 3.15, this implies that fx is well formed. As a conclusion, we get U (7, 7') = 4,
wflfx) and the substitution 6" satisfying 0x such that 0" = 0" o0 O

3.6 Correctness of the Reconstruction Algorithm

In this section, we prove the correctness of the algorithm with respect to the static semantics. The soundness
theorem states that the type and effect computed by 7 are provable in the static semantics, assuming any
solution of the inferred constraints.

Theorem 3.2 (Soundness) Let £ and « be well-formed. If I(€,k,€) = (0,7,0,K") then ®'(0E) F e

FrFo

Proof The proof is by induction on the structure of expressions. We assume that the constrained type
schemes in the environment £ are constructed with the function Gen, so that, for every x in Dom(&), we have
that £(x) = V.(7, k) with & restricted to the . Then, a consequence is that for any substitution , we have
that 0&(x) = 0&(x), ignoring capture of bound variables. Also note that, by definition of the reconstruction
algorithm, the constraint set k' extends 0k; every model of &’ is thus a model of 0.
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Case of (var) By hypothesis Z(€,k,x) = (Id, 07,0,k U 0x'). By the definition of the algorithm, this
requires that £(x) = V&.(7, '), that 6 = {7 — 1?} and that the v/ are fresh. Since ¢ renames the 7 with fresh
o', we have that 0(%'7) = 0x/(67). Since & and @ are only defined on ¥, we have x'(€) = €. By definition
of <, 8(%'t) < £(x). By definition of the rule (var):

O’ EF x: 0k'(67),0

Because 0 substitutes ¢ with fresh o/, we have that x U &’ = K o 8x’. By the lemma 3.4 used with %, we
can conclude that:

R0k E) F x : ®(Ox'(67)), 0

Case of (let) By hypothesis Z(€, &, (Let (x e;) e2)) = (#,7,0,£"). By the definition of the algorithm
7, this requires that:

T'(€,k,,(let (x e1) e3))=(0,7,0',k') and o = Observe(R(0E),%'7)(F ')

By the definition of Z’, this requires that there exist 01, 05 such that § = 05 o 0; and &4, o such that
o' = fy01 U oo satisfying:

(01, 71,01,k1) =Z(E,k,e1) and (0a,7,09,6") = L(01Ex + {x — VT.(11, 1)}, Y, €2)
where Genyg, (o1,61E)(m1) = (VU.(1, &), xY). By induction hypothesis on ey, we get:
%1 (1E) F e1 1 Fim, Fion
By the definition of Gen, we have that %17 = &} (R|m1), because £} is the restriction of x; on ¥ and &Y

its complement in ;. We also have that %1(0:€) = ®Y(01€) and that &0y = %oy since the 7 are neither
free in %1 (61 &) nor in ®yo7. Thus, we have that:

E&’(@lg) |_ ey !E;_’(E';Tl),ﬁ?ﬂ'l

Since &' extends 0k, we have that %' satisfies &7, so that &' o 0, satisfies x{ by definition. Then, by
the lemma 2.10, we have that % o #; = & 0 8y o k/. By the lemma 3.4 used with &’ o @,

R (02(0:€)) & ey : B (6o(R) 1)), 7 (0201)

By induction hypothesis on ey, with «{ and 61 Ex + {x — V@.(71, 1)}, we get:

B (02(0:Ex + {x = V8.(m, &) F ea 1 B, B s
Since 01 Ex = 01€x, then 0;Ex + {x — m} =0 Ex + {x — V5.(§\7)}. Thus,

R(02(018x + {x = ViR m})) F e B'7, Fow

Since § = 03 o 0; and by the definition of the rule (let), this implies that:

®(0E) F (let (x ey) es) : %', % (6201 Uoy)
We know that Observe(%'(0€),%'7)(F'0’) = o, so that, using the rule (sub), we get:

R(0E)F (Let (x e1) ey) :F'T,0

By the lemma 3.4 used with ¥ and since ¥ o ' = ®', we conclude that:

F'(0E) F (et (x e1) e) :F'T,Fo
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Case of (abs) By hypothesis Z(£, k, (Lambda (x) e)) = (0,00 < 7,0,x'U {¢ D ¢}). By the definition of
the algorithm Z, this requires that Z(€x + {x — a},k,e) = (0, 7,0, £"). By induction hypothesis on e,

B(0(Ex+{x—a}))Fe: "7 F0o
Since ¢ is fresh, ¥ (0 Ug) = §'o U¢ D ®'o. Thus, by the rule (sub):
F(0(Ex +{x— a}))Fe: %17 (cUo)
Let us write " = k' U {s D o}. By definition &’ = {¢ — ®'(sU o)} o . Since ¢ is fresh, we get:
7(0(Ex +{x— a})) F e ®'T,E's
By the rule (abs), we conclude that:
F'(0€) F (lambda (x) e) : &'(0a < 7),0

Case of (app) By hypothesis T(&,k, (e; e2)) = (0,03¢, 0,k"). By definition of the algorithm Z, this
requires that

I(E,k,e1) = (01, 71,01, K1) T(61€, k1, e2) = (82, 72,02,k2) and 83 =U(fa7y, 72 — a)

where o = Observe(R' (0€),%'(03a))(F'03), 03 = 03(0201 UaaUc) and &’ = f3k4. By induction hypothesis
on ep, we get -~
El(glg) |" € '.EI‘T]’ E10'1

By definition of %', &’ satisfies 5 0 0ak,. Thus &’ o 03 o 04 satisfies ;. By the lemma 2.10 on &, we have

% of306y =K 03003 o% . By the lemma 3.4 used with % o 03 o 5, we get:
E’(G?) l_ e . Ef(ga(ez‘."l)),E’(ﬁg(agdl))

Since 03 = Uy, (027,70 = «) then O3k, is well-formed and 03(02m) = 03(r2 = «) by the correctness
lemma on unification, yielding:

F(0E) F o1 : B (Bars) = B B(030), ' (63(8201))
Since 6,& = 6,€ and by induction hypothesis on e, with 0;&,
Eg(gg(glg)) Feq : Komy, Kooy

Since &' satisfies 0gk9, &' o 03 satisfies k5. By the lemma 2.10 using %2, we have & 003 = &' 003 0 ®y. By
lemma 3.4 used with & o 63, we get:

R (0E) b es : %' (03m2), 7 (0302)
By definition of o3 and the rule (app),
R(0E) I (e1 e) : W (faa),Fos
Since o = Observe(R'(0€), ' (03c))(F'o3) and by the rule (sub),
F(OE) L (o1 e3) : "' (030),0
By the lemma 3.4 used with %, we get:
R(0E) & (er ey) : F(fza),”o D)

The completeness theorem states that the inferred type is principal with respect to substitutions on
variables and that the reconstructed effect is minimal with respect to the subsumption on effects.

Theorem 3.3 (Completeness) Let £ and & be well-formed and 0" be a model of k. If0""EF e: 7', 0’ then
I(E,k,e) = (0,7,0,£") and there ezists 0' |= k' such that 0"E = ¢'(6E), 7' = 0'r and o’ D 0’0
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Proof The proof is by induction on the structure of expressions.

Case of (var) By hypothesis, 0" F x : 7/,0'. This requires that §”&(x) > 7' by definition of the rule
(var) and that £(x) = V¥.(r, k') by definition of £. By definition of the algorithm I’ we get:

Z(E,k,x) = (Id, 67,0,k U0K") and 0 ={7— o'}

By hypothesis, we have that 7/ < §”£(x). By definition of <, this requires that there exists a substitution
¢ defined on ¥ such that:

0(0"("'7)) = 7/
By definition of the algorithm 7', @ substitutes ¥ with fresh v. Let 6} be defined on v/ by (o) =
84(0(7)) = 0} (v"). Avoiding capture, the substitution 6} satisfies:
L0 (0(F') =

Since f renames & with fresh o/, we have 0 o & = O’ 0 §. As a consequence, 0’ = 0% o 0" o 0’ satisfies
kU k" and is such that:

P =0'(0r) and 0"E=0'F and o' D0

Case of (let) By hypothesis, 8" - (let (x e;) e;) : 7,01 Uch. By the definition of rule (let), this
requires that

P"Et er:7],0f and 0"Ex + {x— Gen(o}|,0"E)(T)}F ey : 7', 0%

By induction hypothesis on ey, Z(€, &, e1) = (61, 71,01, 1) and there exists a substitution 8] satisfying
k1 such that:

A =l (84 E) 7n=0n and o] 20
Since 0"€ = 0,(6,&), 7 = 8i 7, ¢} 2 80, and by By definition of Gen,
V7, 7= Gen(o],0"E)(r]) = 1< Gen(6,01,8,(1€))(0]m1)
As a consequence, given that 0”&y = 0/(6,Ex) and by the lemma 3.5,
81 (EJIE) + {x — Gen(#o1, 9"1(91?))(911'1)} Fey:7 0}

Let (V#.(m1, k), kY) = Geng,(01,61€)(71) and define 0} by Id on ¥ and by 6] elsewhere. By definition of
"
1 - -

07(6:£) =0,(6:E) and 0oy =801

Let us consider any 7 such that r < Gen(0 0y, 01(0:€))(0, ). By definition of <, there exists a substi-
tution 6 defined on fu(8]71) \ (fu(0] 1) U fe(01(6:1£))) such that

T = 9(95 Tl)

Let us define 6’ by 0 o #] on #. Since 0 is defined on fu(f; 1) \ (fe(0;01) U fu(04(0,€))), any variable v’ in
fu(0]v) satisfies v’ = v'. Thus
000, =6 o0f
By the lemma 2.10, 6] = 8} o %, = ] o ®]. Thus,
7= 0(01m) = 0(61(Rym)) = 0' (07 (Rim))

By definition of <, this implies that:
T X0/ (VU.R ™)

Thus, by the lemma 3.5, there exists a proof of there exists a proof of:

3;’@1_51+{x.-4m} Fey:r,of
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Since 0;£x = 0, &x, since @] satisfies s} and by induction hypothesis on ey with & and 6, £x + {x —

Vo.(m, &)}
I(0i&x + {x = Vi.(m, K’I)}s KT, 92) = (02,7, 02,K")
and there exists a substitution 04 satisfying x’ such that ' = @,7, o} 2 0405 and

01T Ex + {x — V0.(m1, 17)} = 04(0o01 85 + {x — Vo.(r1, 1) }) = 04 (0201 Fx + {x — V7R, 71)})

Let us write @ = #y 0, 03 = f01 Uos and ¢ = Observe(ﬁ’(ﬁf),E’T)(E’o’;g). By definition of the
algorithm, we get that:

I(€,k,(Let (x e1) &) =(0,7,0,K')

Let V be the free variables of #0€, ®' 72 and ® 3. Define ¢ by 0% on V and ¢/ otherwise. By definition,
¢’ satisfies ' and satisfies

= 0"E =¢'(0E) and o Uch D 0os
Since 0'c = ¢' Observe(R'(0€),&'7)(K'oa) and 0’ = &' o %', then, by the lemma 3.3,
0' Observe(R'(0€), "' 7)(R'as) C Observe(8'(6€),6'r)(07a)

We conclude that o} Uoj D #'c. We have proved that Z(£,«, (let (x e1) e3)) = (0,7, 0,x') and that
there exists a substitution ¢’ satisfying &’ such that:

9"E = 0'(0E), v’ =0'r and | Uch D 0'a

Case of (abs) By hypothesis, #”€ I (lambda (x) e) : 7 g, 77,0''. By definition of the rule (abs), this
requires that

"8y +{x—m}te:r, o
With a fresh variable «, this is equivalent to:
(0" of{ar— 7} )Ex+{x—alte:r, 0
By induction hypothesis on e since £x + {x — a} is well-formed, we have that:
I(Ex + {x— al,k,e)=(8,7,0,5")
and there exists a substitution @] satisfying ' such that:
(0" o{a— r})ex+{x—a} =0{(0€x +{x—a}), 77 =07 and o' D 0o
By definition of the algorithm, we get that:
I(€, %, (lambda (x) €)= (0,0a = 1,0,k'U{s D c})

where ¢ is new. Let us consider the model ' = ] o {¢— ¢’} of ' U {¢ D o}. We getl:

9"E = ¢'(0F) Ti 2 75 =0(0a7) and o' 20
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Case of (app) The hypothesis is 0”£ F (e; es) : 7/, 0} Uoh Uah. By the definition of the rule (app), this
requires that,

¢'Ete;:Th il o) and 0"Et es:Ty, 0
By induction hypothesis on eq, (61, 71,01,81) = Z(£, 5, e1) and there exists €] satisfying x; such that:

'
— —— o
B'E = 65 (0:E) H=r37=0n and o] 200

Since 6, = 0,€ and 6, is well-formed, by induction hypothesis on es, we get
Z(01€,k1,e2) = (B2, 72,09, Ka)
and there exists ) satisfying xs such that:
0"E = 04(82(6,8)) Ty =04 and of 2 Ohoo

Let V be the set of free variables in ®a(62(6,&)), Fame and ®aoy. Take o and ¢ new and define ¢4 as
follows:

Ov, veEV

T v=a
g oo ’
Ogv = : —
o, V=%
#lv, otherwise

By this definition, 8 satisfies k» and we get:
0" = 04(02(0,E)) T B =04 Sa) and Bhoy = B0,

by definition of Z every v in %17y is either fresh or in fu%10,€). Since 05(05(6,E)) = 05(02(0,)) = 0,(6:&),
for every v in fu(kK101&), we have 04(0ov) = 04(02v) = 0lv. For every fresh v, since f3v = v, we have
04(02v) = 04v = 01v. Thus,

Ty = 7' = 04(fa7) Blo1 = 04(6a01)

Since 0 satisfies ko and 04(0am) = 04(my = a), by the lemma 3.17, there exists a substitution 05 such
that 03 = Uy, (0271, ™ 18 a) verifying:

93(927'1) = 93(1’2 i> C\.‘)
and such that 635 is well-formed. By the definition of the algorithm, we get:
T'(€,k, (e e2))=(0,7,03,K")

where 0 = 0300500, 7 = O30, 73 = 83(0201 U s Ug) and &’ = O3k5. By the lemma 3.17, there exists a
substitution ¢ satisfying 03x2 such that 04 = 0 o 65. We get:

0"E = 0'(08) 1/ =0'(6s(2 S @) and ol Ul Ual D 0 (0y0a)
By definition of T, we have that:
(0,7,0,6") =Z(,k,(e1 €3)) and o = Observe(R'0E,%'7)('a3)
By definition, ¢ Ueoh Uoh D #og and by the lemma 3.3,
oy Uoh Uoh 2 Observe('(6),0't)(0’) D Observe(§'(0E),8'7)(0 o)

Since 05 = Ky and 03 = 6’ o fa, then, by definition of &/, we get that ¢’ |= x’. By the lemma 2.10,
¢’ o %' = ¢’. By the lemma 3.3, this implies:

ot UohUoh D0 Observe(R'OE, 7' 1) (R'og) = 0o

We can conclude that (0,7,0,k") = T(€, 5, (e1 e3)), 7€ = 0'(0), 7' =0'r and o} Uah, U gl 2 o O
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3.7 Examples

By introducing some well-known examples of list processing procedures, we show that our type and effect
system permits the assignment of the same type and effect to the functional and imperative implementations
of some familiar list processing functions.

nil : Va.list(a)

cons : Vas.a x list(a) = list(a)
car : Vas.list{a) <

null? : Yecs.list{a) = bool

cdr :Vag.list{a) = list( )

List Processing Functions

We introduce the type list(r) of immutable lists together with the following constant and functions for
manipulating them: nil is the empty list. The predicate null? tests if a list is empty. The constructor

cons pairs up an element of type o with a list of type list{«). The procedure car returns the first element
of a list and cdr the rest.

Example Our first example is the function fold, that operates a function £ over every elements of a list
1 and its intermediate result i.

(define fold (lambda (f i)
(lambda (1) ((rec (loop 1 i)
(if (null? 1) i (loop (cdr 1)
(f (car 1) i))))
1i)N

By considering observable effects, implementing the function fold recursively or by a loop using tempo-
rary locatives does not affect its typing.

(define fold (lambda (f i)
(lambda (1)
(let (result (new i))
(let (data (new 1))
(until (null? (get data))
((set result) (f (car (get data)) (get result)))
((set data) (cdr (get data)))))
(get result)))))

Both implementations of the function fold have type Yaa's¢’s” .(a x of = of) x o i (lst(a) i a').
Then, if one defines the function reverse for reversing the elements of a list by (lambda (1) ((fold cons
nil) 1)), the polymorphic type is Vag.list( o) = list() with both implementations of fold M

Example In the same vein, we consider the typing of two implementations of the function map. First we
implement map by using reverse and imperative constructs.

(define map (lambda (f 1)
(let (r (new nil))
(let (x (new 1))
(until (null? (get x))
((set r) (cons (f (car (get x))) (get r)))
((set x) (cdr (get x)))))
(reverse (get r)))))
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The detail of the imperative implementation of the function map are similar to those of the function fold
and we can also implement map by reusing the function fold defined above.

(define map (lambda (f 1)
((fold (lambda (x r) (coms (f x) r)) nil) 1)))

The same polymorphic type is assigned to both of them, by using our type and effect discipline. So,
for instance, the application of map to the identity function and the empty list has the polymorphic type
Va.list(e) of nil.

(define nill (map (lambda (x) x) nil))

On the contrary, the application of map to new and nil has a monomorphic type lisi(ref («)), accounting
for the use of the function new on a region p, with an observable effect init(p, «).

(define nil2 (map new nil))

3.8 Related Work

We have completely formalized our imperative typing discipline with effects and proved its correctness.
Before concluding, we shall now address the related work and then to present a detailed comparison of our
approach with it.

3.8.1 Weakening Type Variables

The first approach to control the typing of reference values has been introduced in the type system of
[Tofte, 1987]. It is used in the current implementation of the language Standard ML [Milner & al., 1990].
This typing discipline consists of distinguishing the type of operations that create references. This is done,
first, by defining a class of “weak” type variables which represent the type variables free in the type of
initialized references and second by restricting the generalization of weak type variables on non-expansive
expression.

Example In [Tofte, 1987], the body of a let construct is typed under the assumption that the operator
new for allocating references has type scheme Vo*.o* — refla™) where a* is a weak type variable and cannot
be substituted with a term that contains a non-weak type variable.

(let (ref-id (new (lambda (x) x)))
((get ref-id) 1))

The expression (new (lambda (x) x)) above is expansive and thus, to be consistent with the use ((get
ref-id) 1) of ref-id in the body of the let construct, @* must be instantiated to in{ ®

Expressing the type of a function that uses temporary references with weak type variables does not
permit us to generalize any of the applications of that function. This makes a difference between the typing
of procedures which depends on whether the style of their implementation is functional or imperative.

Example For instance, take the simple case the identity function id and what could be considered as its
imperative variant: rid.

(define id (lambda (x) x))
(define rid (lambda (x) (get (mew x))))

The application of our two variants of the identity function to id have different types.

(define id2 (id id))
(define id3 (rid id))
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The type of id2, defined with the functional identity id, is generalizable. On the contrary, the type of id3
cannot be generalized because it has weak type variables which come from the instance of rid’s type B

Because the criterion for distinguishing expansive versus non-expansive expressions is simple, many ex-
pressions cannot be recognized as semantically non expansive. For example, the type of the function (id
new) 1s weakly polymorphic, but a criterion of expansiveness does permit detection of generalizability.

3.8.2 Weakness Degrees for Type Variables

In order to detect precisely when references are created, Appel&Macqueen’s implementation of Standard ML
[Appel & Mac Queen, 1990] proposes an extension of Tofte’s notion of weak type variables. In this system,
type variables are associated to a weakness degree. The lower the degree is, the weaker the variable is. The
formal description and soundness proof of this system can be found in [Hoang & al., 1992].

The weakness degree of a variable measures the number of function applications that must be performed
before a reference whose type contains this variable is allocated. Variables that do not appear in the type
of a new have an infinite degree. Variables that appear in the type of a new have a degree equal to the
number of function abstractions that separate the introduction of the variable from the occurrence of the
new. Variables with degree 0 are not generalizable. Variables with degree n > 0 are generalizable. Each
function application decrements the degree of variables in the result type.

Example In Appel&MacQueen’s type system, the function k+new helow has type Va’a'?.a? — a'? —
refla’?). The partial application k+new(1) has type o' — refla’®), in which o' is still generalizable in
Appel&Macqueen’s system, since it has degree 1.

(define k+new (lambda (x) new))
(define newl (k+new 1))

However, it is not generalizable in Tofte’s system, because the expression (k+new 1) is expansive W

The type system of Appel&Macqueen seems to be designed to answer the most evident problems en-
countered with the type system of Standard ML. This is, however, at the cost of a sightly more complicated
notation, which forces the user to count the weakness degrees of the type variables he has to cope with and
introduces additional dependencies between the syntax and the typing of programs.

The type system of Appel&Macqueen succeeds to syntactically circumvent the problem of expansiveness,
but it does not take into account the scope locality of data, and thus, the examples of the previous section:
(id rid) and (rid id), cannot still be generalized.

As a conclusion, the type systems of Standard ML and its variants do not succeed in fully integrating
imperative programming features to polymorphic functional languages, in that the imperative and functional
implementation of the same function cannot be assigned equivalent and fully polymorphic types with them.
There is, unfortunately, no simple and general solution for the programmer to avoid this problem, but to
banish either functional or imperative programming styles.

In [Damas, 1985], the author proposes a sightly different approach to the problem of typing references,
the soundness of which is disputed in [Tofte, 1987]. It consisted of annotating the type schemes of functions
by the set of type variables possibly free in the types of the references allocated by the function. Unlike
for the other approaches based on effect systems and on closure typing, these sets of type variables are not
propagated using function types.

3.8.3 Typing Closures

In contrast with the previous work, the approach of closure typing, introduced in [Leroy & Weis, 1991],
assoclates with the typing of a function syntactic information, which consists of the type of every identifier
free in that function. This approach turns out to be quite effective in the issue of detecting the type of
accessible reference values.

The type system of [Leroy & Weis, 1991] mainly differs from Milner’s polymorphic type discipline E +
e : 7 by a different judgement, of the form E e : 7/C. Just as in effect systems [Lucassen & Gifford, 1988],
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the type of functions, of the form 7 - 7', does not only consists of the type of the argument 7 and of the
result 7/, but also of a static information, L. This L is a label which is related to a sequence of types 7
called dangerous types, via a set C' of constraints of the form L > 7.

When a type 7/C is generalized, by Gen(E/C)(7/C), the constraints associated with it in C are
scanned so as to detect the type of references captured in 7. This generalization criterion was supported in
[Leroy & Weis, 1991], but it is not conservative over ML, in that some expressions, which can be typed in
ML, cannot be typed with this approach. This problem is reportedly illustrated by the example capt-id
presented below, inspired from [Leroy & Weis, 1991].

?

Example As can be sketched by the following example, quoted from [Leroy & Weis, 1991], this change
makes the closure typing approach conservative over ML.

(define capt-id (lambda (f)
(let (id (lambda (y)
(if true (lambda (z) y =z)
)
¥))
(id id))))

Let o 2 «/0 be the type of £ and o' be the type of y. The closure (lambda (z) y z) has a free variable:
y. Hence, its type is o — af/{L > a'}. The if construct forces the type of the occurence of £ in id to match
with that type. Because the type variable a’ occurs in the type of £: o = a/{L 1> a'}, the function id,

!
which has type o/ = o/ and constraint {L’ > ¢ = o,L > a'}, cannot be generalized over it W

The improvements of the closure typing system, described in [Leroy, 1992], allow the generalization of
id over o/, as in ML, by making the generalization criterion Gen(E/C)(r/C) unsensitive to free danger-
ous variables in the type environment E/C. These improvements allows the closure typing system to be
conservative over ML.

However, the problem of capture. previously reported in [Leroy & Weis, 1991], does not completely vanish
with the modification introduced in [Leroy, 1992] and there are still some examples in which this phenomenon
appears. One is the function id5 in the section 3.9.

The approach based on closure typing improves over the type discipline of Standard ML. However, the
additional information needed for making it conservative over ML makes it depart a lot from the other. The
representation of this information in the static semantics, via indirections between types and constraints,
seriously impedes the intuitive understanding of the type system.

3.8.4 Typing Effects

In [Jouvelot & Gifford, 1991], the anthors introduce the notion of algebraic reconstruction of type and effect
in the presence of explicit polymorphic types. The system relates plambda expressions, which give explicit
polymorphic types to the value of expressions, with algebraic constraints on effects: Plambda expressions
must have pure effects.

Example By doing this, the system sometimes gives better results than other systems based on weak
variables. For instance, the application (id new1) can be correctly recognized as pure by their system, and
therefore its type can be explicitly generalized by

(plambda ((t type)(e effect))
(the (subr (init) ((x (refof t))) (refof t))
(id newil)))

The function id has no latent effect, and its argument is a pure expression. Annotating function types by
their latent effect allows the system to detect when references are created more precisely m

In this system, the generic functions that allocate temporary references are handled just as in Standard
ML. Even though purely local, allocations are always witnessed in the latent effect. Hence, the type of these
functions differs from the type of equivalent purely functional functions.



78 CHAPTER 3. THE TYPE AND EFFECT DISCIPLINE

Example For instance, the following is accepted in Standard ML, but rejected in this effect system.

(let (id (begin (new nil)
(lambda (x) x)))
(id id))

The expression (begin (new nil) (lambda (x) x)) has an initialization effect. Thus, its type cannot be
generalized W

In [Wright, 1992], the author presents a related type system which collects so called “typing effects”.
Typing effects consist of the set of type variables occuring in the type of allocated references. The ta-
ble of section 3.9 shows that the properties of this type system are similar to the system presented in
[Jouvelot & Gifford, 1991].

In contrast to a system based on algebraic reconstruction, which infers, in the exapmle above, that the
effect of the expression bound to id is not pure, the system of [Wright, 1992] can detect that there is no
typing effect on the type of x, so that the type of id is generalizable.

3.9 Comparison with the Related Work

In order to argue in favor of our system, the section 3.7 aims at demonstrating that the problem of integrating
imperative features to a functional language is best viewed in terms of a type and effect system, by describing
practical situations. The basic design goal of integration between functional and imperative paradigms is
a fundamental aspect of our system. It is particularly well suited within a programming environment that
supports separate compilation features and modular programming paradigms.

To give a detailed comparison of our system with the related work, the criterion of expressiveness seems at
very first sight best suited, because it is a formal criterion. The relative expressiveness of a type system with
respect to another defines itself as the capability of accepting strictly more programs. Such a proposition
requires a formal proof and in most cases, it is thus easier to show the contrary by giving a counter example.
In practice, it turns out that the criterion of expressiveness is not appropriate and many examples show that
there is usually no proper inclusions between type systems.

3.9.1 Comparative Examples

In this section, we will now present a series of more or less sophisticated examples, adapted from a survey
paper on this subject [O’Toole, 1990], and from [Leroy, 1992], that establishes the known frontiers between
the related type systems.

(define id1 (let ((x (id 1)))
rid))

(define id2 (lambda (y)
((rid id) y)))

(define id3 ((nop rid) id))

In these three examples, we write rid the “imperative” version of the identity function, defined in the
section 3.8.1, and id for the usual definition of the identity functional. We also use the function nop defined
as below.

(define nop (lambda (f)
(lambda (x)
(let ((g (lambda (y) (£ x))))
x))))
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The next example, quoted from [Leroy, 1990], shows that the observation of effects can be useful for
removing type dependencies introduced by otherwise dead-code. Our inference system generalizes the type
of id1 below, contrarily to the ones defined in [Leroy, 1990] or [Wright, 1992], which are not able to deal
with the spurious allocation effect.

(lambda (z)
(let ((id4 (lambda (x)
(if true (lambda (y) (begin (new x) y))
z)
x)))
(id4 id4)))

Nonetheless, one can force such an effect to be observable, as is shown in this other very sophisticated
example. An occurrence of the type of y appears on the arrow of the function type for g and is constrained
to match the type of £ which occurs in the context of id5. As a consequence, the type of id5 cannot be
generalized.

(lambda (f)
(let ((id5 (lambda (y)
(let ((z (new y)))
(if true (lambda (z) (if true r (new y))
z)
£))
¥)))
(id5 ids)))

In addition to this comparison, the example of recursive typing presented in section 3.5 (the function
eta-ref below requires such a recursive typing) is well typed using the system of [Leroy, 1992]. Note that
it would have been in ours, if we had chosen to make indirections between types and effects explicit in the
static semantics, using constraint sets, as is done in the inference algorithm.

(define eta-ref (lambda (f)
(let (r (new f))
(if true (lambda (x) (get (if true r (new f)))
x)
£))))

3.9.2 Benchmarks

The following benchmark summarizes the discussion above and suggests that our type and effect discipline
favorably competes with some earlier polymorphic type generalization policies.

Example [Tofte] | [Appel] | [Jouvelot] | [Wright] | [Leroy, 1990] | [Leroy, 1992] | section 3.1
id1 no yes yes yes yes yes yes
id2 yes no yes yes yes yes yes
id3 no no yes yes yes yes yes
id4 yes yes no no no yes yes
ids yes yes no no no no no
(id1 id1) | no no no no ves yes yes
(id2 id2) | no no no no ves yes yes
(id3 id3) | no no ves yes yes yes yes
(id4 id4) | no no no no no yes yes
(id5 id5) | no no no no no no no
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Leroy’s system, based on closure typing, essentially differs from ours, based on effect inference, in that
it associates functions with a static information: the type of their free variables. Type generalization then
relies on the process giving chase to dangerous types. This resembles the process of garbage collection, which
gives chase to referenced values and marks them before collecting the other.

In our approach, type generalization is expressed in a much more natural way, because it states what
information is important to it: initialized reference values. Instead of chasing for every possibly referenced
values at any time, as in a closure-typing system, we define a notion of accessibility in the static semantics,
which is represented by an observation criterion.

This explains the differences reported in the examples eta-ref, above, and fake-ref, below, adapted
from [Leroy, 1992] (Another example is the function £, defined section 3.3.1).

(define ref-id (lambda (x) (get x) x))
(define fake-ref (ref-id ((rec loop (x) (loop x)) 0)))

A type system based on closure typing cannot detect the fake character of the reference introduced in this
example. A type system based on effect inference can. It detects that no initialization effect occur.

3.10 Future Work

An appealing direction for further extensions would be the treatment of first-class continuations. Continu-
ations are objects that allow programs to capture current state of their evaluation, using the higher-order
callcc operation: “call with current continuation”, and to manipulate it, using the throw construct. These
two very simple and general operations define sophisticated control structures that may be needed to imple-
ment interleaving or backtracking mechanisms, for instance.

Continuation objects were originally introduced in the language Scheme [Rees & al., 1988] and then, but
not without trouble, in the implementation of Standard ML [Duba & al., 1991]. Continuation values where
first proposed by [Duba & al., 1991] as an extension of Standard ML implemented by an abstract data type.
Latter, the implementation of continuations in Standard ML of New Jersey [Appel & Mac Queen, 1990] was
shown unsound in the presence of type polymorphism [Harper & Lillibridge, 1992].

An accessible continuation value allows restarting the evaluation of an expression in a context which is
different from the context in which it was typed. Thus, it appears very natural to restrict polymorphism for
continuations in the same vein as for references: accessible continuations shall remain monomorphic.

In our typing discipline with effects, the typing of continuations can be integrated in a manner very
similar to reference values by the following static semantics.

Ty‘PﬁOf[Callcc]] = Vapgg’_(contp(a) S Of) gl cnm_efrom(p,a) &

! 1
TypeOf[throw] = VYoo pss'.(cont (o)< a) " Hegielna)

Static Semantics for Continuations

Above, we define cont,(7) to be the type for continuation values and the effects comefrom(p,7), for cap-
turing the current continuation, and goto(p, ), for invoking a continuation, as in [Jouvelot & Gifford, 1989].

The addition of continuations to our language does not, however, show up as a very natural extension as
far as the dynamic semantics and the proofs of consistency are concerned. The dynamic semantics needs to
be completely reformulated in terms of a continuation based semantics, as in [Duba & al., 1991], or in terms
of a reduction semantics, as in [Wright & Felleisen, 1992].

In [Leroy, 1992], following along the lines of [Duba & al., 1991], the author gives a “weak soundness”
result for the extension of its typing discipline to continuation objects, which states that “well typed ex-
pressions cannot evaluate to wrong”. The reduction semantics [Felleisen & Friedman, 1989] still permits

the formulation of a strong soundness result for continuations in the typing discipline of Standard ML
[Wright & Felleisen, 1992].



3.11. CONCLUSION 81

3.11 Conclusion

Type inference [Milner, 1978] is the process that automatically computes the type of expressions in program-
ming languages. It allows programmers to let types implicit in programs. The burden of writing types in a
program does not, however, completely disappear with type inference.

They are, indeed, a number of situations where the programmer is required to have a good understanding
of the type system. The most common situation is when a type error is reported by the compiler. The
programmer must then understand the message, make a diagnostic and locate the error in the program.
Developing large programs is made easier by decomposing them into modules that export a few identifiers
to the remainder of the program following a strict protocol. Thus, programmers must also be capable of
writing type expressions, when declaring data types or when writing module interfaces.

At very first sight, writing types raise some difficulties related to the expressive power of the type system.
The more informative the type system is, the more difficult writing types 1s. What helps to motivate the
programmer is how effective it is to give such information. Effect systems provide this additional motivation
by giving support for program optimizations.

Imperative features are required to make functional programming realistic, but integrating polymorphic
typing in an imperative language appears problematic. Solving this tension is best viewed by using an effect
systems. Effect systems answer the lack of specification for polymorphic typing in the presence of effects by
approximating state transformations.

Using effects, our typing discipline reconstructs the principal type and the minimal observable effects of
expressions. We use effect information to control type generalization. We use an observation criterion to
precisely delimit the scope of side-effecting operations. Qur observation criterion generalizes the abstraction
properties of functions in the presence of a state. A function can use a mutable object locally in a given
region without making mention of this region outside. Altogether, this allows type generalization to he
performed in let expressions in a more efficient and uniform way than previous systems.

The initial design goal of polymorphic effect systems [Lucassen & Gifford, 1988] was to safely integrate
functional and imperative constructs. We showed how effect systems can also be put to work for solving the
problem of polymorphic type reconstruction in the presence of imperative constructs. Our typing discipline
permits full integration of an imperative programming style in a polymorphic functional language.
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Chapter 4

Compiling FX on the CM-2

4.1 Introduction

The functional and imperative programming paradigms are often integrated together within sequential lan-
guages such as Common Lisp [Steele, 1990], Scheme [Rees & al., 1988] and Standard ML [Milner & al., 1990].
Tn such languages, implementors must exert care when designing code optimizers since side effects inhibit
most of the nice properties of pure functional languages which are put at work in code transformations.

Going from sequentiality to parallelism, issues get significantly more complicated, both at the program-
mer and implementor levels. Concomitant use of side effects and parallelism leads to nondeterminism,
which makes program understanding and debugging difficult because of the non-reproductibility of results.
Restricting parallel programs to be deterministic, as advocated in [Steele, 1990], is a way of making par-
allel program design in higher-order imperative languages a more manageable task. Based on the concept
of an effect system [Lucassen & Gifford, 1988, Lucassen, 1987], we present here a compile-time technique
that enforces such deterministic constraints and prove its effectiveness by describing a prototype compiler
that targets the FX programming language [Gifford & al., 1987] to the Connection Machine® (referred to as
CM-2).

The purpose of the FX/CM compiler is to demonstrate the effectiveness of program analysis and code
transformations based on type and effect information for high-level higher-order imperative languages. Qur
compiler uses the type and effect system of chapter 2 to determine when operations on vectors are amenable to
data parallelism in the presence of both side effects and higher-order functions. The absence of side-effects
for an operation mapped on every element of a vector guarantees that its execution in parallel will not
cause interferences. Such operations are run in parallel while others are conservatively limited to sequential
execution on the CM-2 front end. Our compiler uses regions to discover when the lifetime of locally allocated
data structures is compatible with the memory model of the CM-2, which encourages the allocation of parallel
vectors in the stack.

An implementation of these compile-time techniques has been integrated in the FX system, providing
a CM-2 compiler that generates *Lisp? code. Test programs have been run on both a *Lisp simulator
[*Lisp, 1987] and a CM-2 to evaluate the practicality and the performance of our approach.

Plan

After presenting in section 4.2 the vector module of the FX language, we give in section 4.3 a brief overview
of the CM-2 architecture and its object language *Lisp. We survey in section 4.12 the related work and
present in section 4.4 the essential design ideas of our analysis and code generation techniques. We discuss in
section 4.11 the interesting implementation issues before concluding in section 4.13. This work was partially
supported by the MIT contract GC-R-117153.

!Connection Machine is a registered trademark of Thinking Machines Corporation.
2#Lisp is also a trademark of Thinking Machines Corporation.

83



84 CHAPTER 4. COMPILING FX ON THE CM-2

4.2 Operations on Vectors

Since we are interested in studying the practical applications of effect systems in order to implement data
parallelism, we focus on the FX module describing operations on vectors so as to allow data parallel algo-
rithms to be easily expressed. Vectors are a specific data structure represented by the abstract data type
vector,(7) which denotes mutable arrays allocated in the region p whose elements are of type 7. In the
following, we do only give the lower hound of the latent effect of functions.

% il s v . indt(p
op ;1= make-vector initialization 7 x int "0 vector,(T)
., read(p
vector-ref dereference vector,(T) x int i L
i : write(p ;
vector-set! assignment veclor,(T) X int x T %) ynit

d(p) .
vector-length length vector,(T) retde) it

Basic Vector Operations

Basic vector operations first comprise the initialization, (make-vector v n), which allocates a vector of
length n initialized to the value v. The operation (vector-ref v n) dereferences the nth element of the
vector v. The assignment of the nth element of the vector v to the value e is performed by the operation
(vector-set! v n e). The operation (vector-length v) gets the length of a vector v.

op ::= identity identity permutation int init(e) vector,(int)

. . d(p)uread(p )uinit(s"
permute  regular permutation  wvector,(int) x wvectory(r) tpuneqdlpuimiite”. |
read(p)Uinit(p’)

—

vectory(7)

cshift circular shift int X veclor,(T) vector,:(T)
. cad(p)Uread(p’ )Uinit(p"
COMpPTess COMpression vector,(bool) x vector, (1) readbaltirandle Mniite )vectorpu(rj

Permutation Operations

Permutations permit the rearrangement of vectors. When vectors are implemented by distributed
data structures, like on the CM-2, permutations implement inter-process communications. The operation
(identity n) returns the identity permutation from 1 to n. The operation (permute p v) performs the
rearrangement of v according to the permutation p. The operations (cshift n v) and (eoshift n v v')
are the usual circular and end-off shift permutations. The operations (compress s v) and (expand s v
v') are as follows:

fx> (compress #(true false true) #(1 2 3))

= #(1 3)

fx> (expand #(true false true false true) #(1 2 3) #(0 0 0 0 0))
=#(1 020 3)

In the operation compress, s and v should be the same size. Compress selects and concatenates the
elements of v; such that the s; are true. In the operation (expand s v v'), s is the same length as v and
bigger than v. When s; is true for the i** time, v; is selected, v; otherwise.

: aUread(p)Uinit(p’

op ::=vector-map mapping (T = 7') x vector,(T) (Bl indttp) vectory (')

aUread(p)Jinit(p")
—

vector-scan scanning (7 x 7 = 7) X vector,(7) vector,(T)

. o aUread(p
vector-reduce reduction (7 x 7 — 1) X veclor,(t) — (@) T

Mapping Operations
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In addition to the standard Scheme-like basic vector operations, the current vector module supports
the mapping and reduction of first-class functions like [Blelloch, 1990] and the Fortran90 array extensions
[Fortran90].

fx> (vector-map not #(true false true false true))
= #(false true false true false)

The expression (vector-map £ v) applies the unary higher-order function £ to every element of the
vector v and returns the vector with the successive applications of £.

fx> (vector-scan and #(true false true false true))

= #(true false false false false)

fx> (vector-reduce and #(true false true false true))
= false

The expression (vector-scan f v) and (segmented-scan £ s v) sum up the binary higher-order func-
tion f over every element of the vector v and returns the vector of the successive applications of £. In
segmented-scan, summation is reset at v; if s; is false. In vector-reduce, the sum is returned.

4.3 *Lisp and the Connection Machine

The architecture of the CM-2 is based on the SIMD model (Single Instruction Multiple Data). It is composed
of up to 64k processing elements, wrapped by groups of 32 processors and local memory units, connected
into a global hypercube communication network. A front-end workstation issues instructions and transfers
data in a time-step fashion to the CM-2.

*Lisp is an extension of Common Lisp [Steele, 1990] that implements the PARallel Instruction Set
(PARIS) and supports the data structure pwars (parallel variable). A pvar is a vector whose elements are
allocated in the memory of every processing unit of the CM-2. In contrast to the usual implementation of
vectors in Common Lisp systems, pvar components are unboxed values of fixed size such as booleans, fixnums
or floats. The type of every pvar manipulated in the *Lisp program must be declared by the programmer.

The local memory of each processing element is divided into an heap area and a stack area. By default,
a *Lisp pvar expression is allocated in the stack frame of the current call.

Example The following *Lisp expression distributes the factorial of 5 on every active processing element
in an unboxed pvar coerced to the size of a fixnum.

*lisp> (coerce!! (fact 5) ’(pvar fixnum))
= #<pvar x :general *default-vp-set* (1024)>

It is expanded, by the *Lisp compiler, into the the following piece of Common Lisp code, which performs
calls to the appropriate PARIS instructions.

(let* ((slc::stack-field (cm:allocate-stack-field 31))
(#:arg-1 (fact 5)))
(declare (type slc::cm-address slc::stack-field))
(slc::move-signed-constant slc::stack-field #:arg-1 31)
(slc::allocate-temp-pvar :type :signed
:length 31
tbase slc::stack-field
tconstant-value #:arg-1))

The preceding sequence of PARIS instructions allocates a temporary pvar of 31 bits at the stack address
slc::stack-field in the current stack frame. In this example, a stack-field, slc::stack-field, with the
size of an integer is first allocated with the operation (cm:allocate-stack-field 31). Then, the value
of (+ x y) is computed and bound to #:arg-1. The variable is statically declared slc::stack-field
to be of type cm-address. The 31 bytes of the value of #:arg-1 are placed on the CM-2 at the address
slc::stack-field by slc::move-signed-constant. Finally, the address slc: :stack-fieldis boxed with
a temporary pvar header allocated with the operation slc::allocate-temp-pvar B
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Overview of *Lisp

This section introduces the most important features and operations of *Lisp used in our compiler. The
reader may find in [*Lisp, 1987] the complete definition of the language *Lisp.

In *Lisp, vectors are represented by pvars. There are several ways of allocating pvars. The most common
way is to use temporary allocation, using the operation !! or coerce!!, described in the previous example.
But it is the most unsafe. In *Lisp, pvar can also be explicitly stack allocated by using the construct *let.

*1isp> (¥let ((x (coerce!! (+ 2 2) ’(pvar fixnum))))
(declare (type (pvar fixnum) x))
(*deallocate (allocate!! x)))

= nil

This expression allocates the space for a fixnum on the stack of every PEs of the CM-2 and then moves
the value 4 to this address on every PE using the operation coerce!!. Note that declaring the type of x is
inevitable for the expression to be correctly compiled. The storage management of pvar expressions in the
heap is also explicit. The operations that performs heap allocation and reclamation are allocate!! and
*deallocate respectively.

*lisp> (+!0 (1t 1) (1! 1))
= #<pvar x :general *default-vp-set* (1024)>

For arithmetic computations, the *Lisp system extends Common Lisp’s generic operations on numbers.
They are implemented by the so-called bang-bang functions. For example, the operation +!! is the equivalent

to +, etc. Bang-bang functions operate in parallel on every component of their two pvar arguments and return
a pvar.

4.4 Overview of the Compiler

In this chapter, we introduce a series of new compile time techniques which, based on our type and effect
inference system, determine when the use of operations on vectors is actually amenable to data-parallel
execution (no inhibiting side-effects) on the CM-2 (no unimplementable parallel operations).

In FX programs are implicitly typed, may have side-effects and may use first-class functions. Qur compiler
generates *Lisp programs that use pvars with explicit typing, explicit parallelism, explicit management of
stack and heap storage and explicit name space assignment. *Lisp uses multiple name spaces for function
and value identifiers.

In the static semantics of FX, every expression is associated with its type and effect. The criterion of
parallelizability of expressions is based on type and effect. Parallelizable expressions must manipulate scalar
data structures and have no side-effects.

Parallelizable FX functions are translated into specific data structures, noted f-structure, built with the
operator make-f-struct, which consists of a tagged pair of functions, the sequential version (the f-seq
component) and the parallel one (the f-par component), operating upon pvars.

The compiler translates FX vector operations by invoking appropriate runtime library macros to imple-
ment the operations on unhoxed pvars for the corresponding vectors operations.

Even though FX is a strongly typed language, the addition of let-bound identifiers introduces generic
polymorphism. The presence of type and effect variables requires the use of run-time type dispatch for vector
operations.

We describe below the compiler memory allocation strategy, the compilation schemes for front-end and
CM expressions (restricted to a simplified language), some optimization techniques and finally the manage-
ment of let constructs and multiple namespaces.

4.5 Vector Allocation

Vectors are represented by pvars. Vectors with scalar components, such as boolean or integer, are imple-
mented by unboxed pvars. Vectors with non-scalar components, such as lists or other vectors, are represented
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by boxed pvars, called front-end pvars, which are pvars of addresses to objects that reside on the front-end
i.e. front-end objects. Since *Lisp is dynamically typed, every pvar is associated on the front-end with
a description header giving its actual address on every processing element and the size and type of its
components.

Temporary allocation of pvars is preferred wherever possible in the generated *Lisp code in order to avoid
the overhead of superfluous heap allocation. The FX compiler uses type and effect to decide when a returned
value must be explicitly moved to the heap.

Definition 4.1 (Heap Allocation Criterion) A vector operation (op ey ...en) that performs the allo-
cation of a vector, of type vector,(7), must allocate its value in the heap in one of the following circumstances:

o The vector operation is the argument of an application expression (e []) whose type is ref, ('),

. a - .
vectory (7'), lisi(7'), or "' — 7'. The region p of the vector argument occurs free in 7' or o.

e The vector operation occurs in the body of a lambda expression of the form (lambdae (=) C[]) whose
type is 7' = 7', The region p of the vector operation occurs free in 7' or in a subterm 7" of 7/, be it
a data structure ref, ("), vectory (") or lisi(t'").

If the pvar outlives the stack frame it is allocated into, i.e. if it can be referenced in its lexical environment,
it must be moved in the heap with an explicit call to allocate!!. The criterion presented above syntactically
controls the cases in which this situations may happen and that can actually be checked by using the effect
system.

Example In the followingexpression, the allocated vector escapes from the scope of its allocation according
to the previous criterion. Thus, it has to be heap allocated.

(new (make-vector true 1024))
Typing this expression produces the following derivation. It appears that the criterion 4.1 applies to the

region p in which the result of the vector operation is allocated.

£ F new : vector,(bool) olilg ref, (vector,(bool)), B

£+ true : bool, )

EF 1024 : int, init(s)
& F make-vector : bool x int ' —' wvector,(bool), )
P )

& F (make-vector true 1024) : vector,(bool), init(p)

EF (new (make-vector true 1024)) : ref, (vector,(bool)), init(p) U init(p')

In *Lisp, such an operation is compiled by the following code, which consists of calls to macros in the
FX runtime library.

(fx::new (fx::bool-heap-allocate (fx::bool-make-vector t 1024)))

The function fx::new returns a reference to its argument. The macro £x: :bool-heap-allocate per-
forms heap allocation of a boolean pvar. The macro £x: :bool-make-vector allocates and returns a tempo-
rary boolean pvar as part of the current virtual processor set (VP set). The PEs from 1 to 1024 are activated
and the value t is distributed to them. The value of the pvar on the other PEs is unspecified &

4.6 Runtime Library

The runtime library provides the *Lisp functions and macros which implement the FX vector module. Every
vector operation in FX corresponds to specialized *Lisp macros and a generic function in the runtime library,
defined as follows.

e *Lisp macros implement the data-parallel polymorphic FX operations for every type of unboxed pvars:
booleans, characters, integers, reals and complex.
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Example For example, the operation vector-ref on an integer vector expression v and an index i
and is translated to (int-vector-ref v i), which then expands to:

(the fixnum (pref (the (pvar fixnum) v) (the fixnum i)))

The operation is also specificly implemented on front-end pvars by the appropriate macro (it is the
macro front-end-vector-ref in this example) B

o The generic function implements the operation for every type of pvars (in the example, vector-ref).
It uses a dispatch construct depending on pvar headers to check the actual type of pvar arguments at
run time and to call the appropriate specialized macro.

By default, all global vector operations are performed in parallel. The FX operations that accept higher
order functions, such as vector-map or make-permutation, obey a different rule which is that there front-end
version, e.g. front-end-vector-map or front-end-make-permutation, implement the sequential version
on generic pvar arguments.

Finally, note that *Lisp operations on pvar are restricted to the set of active PEs or VP set. Similarly,
parallel vector operations are limited in FX to their actual size. In the runtime library, this is implemented
by the macro (with-context-of e e'), which disables the processing elements on which the pvar expression
e is not defined during the execution of e'.

4.7 Sequential Code Generation

Having briefly presented *Lisp, our FX vector module and the *Lisp runtime library corresponding to it, we
can now describe the *Lisp code generation scheme for sequential expressions. The input of the compiler is
an expression te which consists of an FX expression e, its principal type 7 and its minimal effect o.

te = xiT | value identifier
(lambda (x:7) te):7 | abstraction
(op te):tlo | operation
(te te):7lo | application
and so on

Syntax of Typed FX Expressions

The sequential code generation scheme is specified by an algorithm, SC, which relates a typed FX
expression te, l.e. that was successfully typed checked by the algorithm of chapter 2, with the *Lisp code
¢ that correspond to it in a given compilation context 7. This compilation context 7 serves to determine
when vector allocations must be performed in a heap and consists of a sequence of types. ¥ is the sequence
of parallelizable predefined functions, such as +, =, etc. We use the marks [] to delimit the syntactic objects
passed to or returned from a function.

SClte]fX=c

Identifiers

The compiler translates a lambda-bound identifier x to x. An identifier that appears in ¥ is a predefined
parallelizable function and is thus compiled by an f-structure.

SClx:7]|7% = if x € X then [(make-f-struct x x!!)] else [x]

Compilation of Identifiers
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Abstraction

To translate an abstraction, the compiler first compiles the body of the source FX abstraction. 'Then, if
the lambda-abstraction can be parallelized according to the predicate PF' delined below, an f-structure
initialization is generated which pairs up the sequential version of the function, generated by SC, with its
parallel version, generated by PC (presented in the next section).

SC [(Lambda (x:7) te):T = '] 7% =
let di=ST'D[x:7]
e} =5C[te](7.r.7")%
clz[[#’(lambda (x) d4 C’l)]
in if PF(r = ')
then let (£;:7)i=1,.n = {fi:7i € filte] \x:7 | i =7/ iadd ¥ A € o}
do=PTD[x:7]
ch=PCte](X.x:7)
co=[#’ (lambda (x!!) do c})]
in [(if (and (f-struct-p £;)...(f-struct-p f,))
(make-f-struct ¢; ca)

¢1))]

else ¢

Compilation of Abstraction

If the function is not parallelizable then the compiler returns the sequential version ¢ of the function.
The algorithms STD[] and PTD[] respectively generate the sequential and parallel type declarations. The
compiler uses the following static criterion, PF, based on the type of the function, to determine if it can be
parallelized.

Definition 4.2 (Parallelizability Criterion) A lambda-ezpression of type T 2 1! is parallelizable (satis-
fies the criterion PF) if and only if ils latent effect o is 0 or a union of effect variables, and if the types
7 and 7' are scalar data types, lype variables or function types that satisfy the criteria PF(r 5 7') =
PA(7) A PA(T") A PE(c), where

PA(1) = case T of PE(v) = case o of
bool | int | real | @« = true 0|c = true
% = PF(r) cUc' = PE(c) A PE(c’)
otherwise = false otherwise = false

This criterion has both compile-time and runtime aspects. Its compile-time aspect can be informally
justified in the following way. First, the lambda expression must have no side effects: no write effects
write(p) must occur in o, since they could generate non-determinism at run time. Also, no initialization
init(p) or read effects read(p) may appear, as they would indicate that the function allocates or manipulates
non-scalar values which are unimplementable on the Connection Machine. Second, the types 7 and 7/ must
be scalar variables or function types.

Runtime checks are only required in the presence of effect variables in o, to distinguish whether these
effect variables actually are () or not in each given instance. These effect variables are introduced by the
latent effects of higher-order functions, other lambda-bound function identifiers. However, we known that
every pure first-order function is compiled as an f-structure. Thus, we use the predicate f-struct-p to
decide at runtime whether the free function identifiers of a lambda-abstraction actually correspond to other
f-structures. When this condition is met, an f-structure is returned.
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Example For instance, the code generated for (lambda (g) (lambda (x) (g x))) is as below (The iden-
tifier id is fresh and the *Lisp function *funcall applies a function value operating on pvars to its arguments
and 1s used inside the parallel code.)

(lambda (g)
(let ((id #’(lambda (x)
(funcall (if (f-struct-p g) (f-seq g) g) x))))
(if (not (f-struct-p g)) id
(make-f-struct id #’(lambda (x!!) (*funcall (f-par g) x!'!))))))

Application

As already illustrated by the previous example, the general compilation scheme for an application is, first,
to translate both subexpressions and, then, to generate the *Lisp code that checks at runtime whether the
called function is a f-structure.

SC [(te te?):r"lo”]7x =
let £ fresh
c=5C[te]Tx
¢ =S5Cte']7x
in [(let ((£f ¢)) (funcall (if (f-struct-p f) (f-seq f) £) ¢'))]

Compilation of Application

Simplifications

More efficient compilation mechanisms for vector operations are given in the subsection 4.9. However, simple
syntactic rewriting rules can be used to already improve the code generated by the previous technique. They
are:

(f-seq (make-f-struct ¢ ¢)) =c¢ (funcall #'c ¢/) = (e )
(f-par (make-f-struct ¢ ¢')) = ¢ (#funcall #'c ¢') = (¢ ¢')

For instance, the combination of boxing/unboxing of functions, done via make-f-struct, f-seq and
f-par, can most of the time be simplified. This is also the case with the combination of *Lisp special forms
#? and [*]funcall.

(f-struct-p (make-f-struct c ¢’)) =t (if t ¢ ¢) =c

(f-struct-p #'(lambda (x) ¢)) = nil (if nil ¢ ¢') =¢

In the same manner, we can simplify many runtime tests that are performed using £-struct-p and
reduce the related if expressions.

(let ((id (make-f-struct ¢ ¢'))) ¢") = ¢[(make-f-struct ¢ ¢')/id]
(let ((id #'(lambda (x) ¢))) ") = ¢'[# (lambda (x) c¢)/id]

Let-bindings introduced by our tiny compiler can also be safely inlined. Then, handling the substituted
expressions reduces itself to using the previous simplification rules.
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4.8 Parallel Code Generation

We describe the *Lisp parallel code generation scheme, implemented by the algorithm PCJte]x = ¢ which
given a typed FX expression te and a sequence of parallel value identifiers ¥, generates the parallel *Lisp
code for 1t to run on the CM-2 processors. Parallel value identifiers in ¥ are either predefined arithmetic

operations, such as + or =, which are implemented on the CM-2 or user value identifiers bound by lambda
abstractions.

Tdentifier

The compiler translates a lambda-bound identifier x, appearing in the sequence ¥, by x!!. Free identifiers
correspond to values that are imported in the parallel code.

PCx:7]x = if x:7 € & then [x!!]
else case T of
bool | int | real = let t = PT(7) in [(coerce!! x (quote ¢))]

5 = [(£-par x)]
o = [(distribute x)]
otherwise = [(front-end!! x)]

Compilation of Identifiers

Scalar identifiers x (as well as constants 1,.. n) are distributed and coerced to a pvar of the corresponding
type. The function PT associates a type 7 with its corresponding *Lisp pvar-type. Functions identifiers £
are translated to (f-par £). Identifiers of variable type use the type dispatching expression (distribute
x) of the FX runtime library to precisely distinguish at run time between the previous cases. Other mutable
data structure identifiers are guaranteed by the static semantics to never be used.

Abstraction

In the compilation of lambda-abstractions, since *Lisp doesn’t create real closures, the free pvar identifiers
of the compiled lambda expression must be heap allocated, because the lambda abstraction may escape from
the stack frame at which those pvar identifiers are allocated. The function S7' associates a type T with its
corresponding Common-Lisp data-type.

PC[(lambda (x:7) te):r = '] =
let (x:73)i=1,.n = {xi:; € (fi[te] NX) \ x:7 | 7 is not of the form 7} il 7'}
(ti)i:l,..n — ST(Ta)
(dz‘)i=1,..n = PTD(I‘.T,;)
d=PTD[x:7]
c=PCte](x:7).X
in [(let ((x; (f{;-heap-allocate x;))...(x, (¢,~heap-allocate x,)))
(declare dy...d,)
#°(lambda (x!!) d ¢))]

Compilation of Abstraction
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Application
The parallel code generated for the application is:

PC(te te'):Tlo]|x =let ¢=PCte]X
¢=PC[te’]x
in [(*funcall ¢ ¢')]

Compilation of Application

If constructs Parallel if expressions are translated into *Lisp i£!! expressions. The compilation of 1£ dif-
fers from standard applications for two reasons. First, the semantics of the *Lisp expression (if!! e e’ e')
is to execute both e’ and e” and return the value of e’ where e is true and e” otherwise. To ensure ter-
mination, we add code to check that at least one processor is active before executing the if!! form itsell.
Second, if!! expressions can only return pvars even though FX if expressions may return functions. Thus,
calls to these functions must be interned within the branches of the if construct.

Example Before being compiled, the expression ((if b 1+ 1-) x) is first transformed into:
((lambda (y) (if b (1+ y) (1- y))) x)

where the function expression (if b 1+ 1-) is abstracted over a fresh y. This expression gets compiled
into the following *Lisp code, where *or performs a machine-wide reduction. If no processors are active,
nil is returned by *or.
((lambda (y!!) (if (*or t!!)
(AE1Y BYY (1400 git) (=10 yin))
(11 0)))
x!!)

Type Declarations

Using the information provided by type and effect inference, the compiler emits explicit *Lisp type declara-
tions in order to improve the efficiency of the binary code produced by the *Lisp compiler.

PT(7) =case T of

ST(r) =case T of bool = [boolean-pvar]
bool = [[boolean] ind = [fixnun-pvar]
int = [fixnum] real = [single-float-pvar]
real = [single-float] v L = lett =S8T(r') and t' = ST(r")
otherwise = [[t] in [(function (¢) t')]

otherwise = [pvar]

The figure above gives the scheme for translating type expressions into *Lisp. The function ST takes as
argument a type and returns a (scalar) *Lisp type. The function PT returns a pvar-type.

STD[x,] = [(declare (type
case T of
vector,(t') = PT(7')
otherwise = ST(7')
x))]
The function STD gives the scalar type declarations that correspond to typed FX value identifiers.
PTD[x,] = [(declare (type PT(r) x))]

The function PTD gives the parallel type declarations that correspond to typed FX value identifiers.
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Conclusion

We have presented a simple and effective algorithm for generating explicitly parallel and explicitly typed
*Lisp programs from implicitly data-parallel and implicitly typed FX source expressions. It demonstrates
that the information provided by type and effect inference can be put to work in a simple and uniform way
to specify program transformations and optimizations.

Example Note that our compilation techniques support the presence of higher order functions. As an
example, the parallel code generator is capable of handling the following function;

(lambda (f x) (lambda (y) (£ x y)))
which partially applies £ to x, by translating it into the following parallel code:

#'(lambda (£!! x!!)
(declare (type pvar x!!)
(type (function (pvar) pvar) £!!))
(Let ((x1!! (heap-allocate x!!)))
(declare (type pvar xil!!))
#’ (lambda (y!!)
(declare (return-pvar-p t)
(type pvar y!1))
(*funcall £!! x1!! y!1))))

where x11! is fresh and heap-allocate is the generic runtime type-dispatching function for allocate!!

on pvars. The declaration return-pvar-p is used to explicitly tell the *Lisp compiler that an expression
returns a pvar or not W

4.9 Optimization of Vector Operations

The code generated by the scheme described above can be dramatically improved in a variety of ways by
using simple type and effect based optimizations, especially on vector operations.
A vector operation (op e) can be considered as a particular case of an application statement. The

default mechanism for optimizing such an operation is to look at the type of the vector vector,(r) operated
upon in the expression.

SClCop:m tey ...te, ): 7' lo’]|T% =
let (%)i=1,..n [resh
e;=5CTte;]7% forall i in 1, .n
cop=8Copllop:7](x1,..n)
c=[(let ((x1 c1) ...(%Xn cn)) cop)]
in case 7/ of
vector,(7")= if p € fr(7) then let ¢t = ST(7") in [(t-heap-allocate ¢}]
else ¢
otherwise = ¢

Optimization of Vector Operations

The compilation of vector operation proceeds in several steps. First, the arguments te; ., are translated
into *Lisp code ¢y, ». Then, the code generator calls the function S'Cop to translate the vector operation op
properly, according to its type 7. Finally, a test is made to detect if the value returned by the operation op
is a vector, and if that vector shall be allocated in the heap, according to the criterion 4.1. This is done by
checking that the type 7' of the operation is of the form vector,(7"") and that p occurs in the sequence 7.
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SCopllop:7]x1,.n =
case 7 of
1 %X vector,(Ts) Lrm=lett= S5T(7s)
¢1 =[(with-context-of x» (t-op xi _,))]
ca=[(front-end-op x1,.,)]
in if PF(ry) then [(if (f-struct-p x1) ¢; e3)]

else co
vector,(T1) X T L =lett= S5T(72) in [(with-context-of x; (t-op Xi,.,))]
71 = vector,(Ts) = let t = ST(m2) in [(with-context x; ({-op X1 .n))]
otherwise = [(op x1,.1)]

Translation of Vector Operations

When 7 is a scalar data type, such as bool, int or real, the vector is implemented by an unboxed pvar
of scalar components. In this case, SCop translates the operation by a call to the appropriate *Lisp macro,
defined in the runtime library with the name t-op, where ¢ is the *Lisp translation of 7 and op stands for
the name of the vector operation.

When 7 is a non-scalar data type, such as a list or a veclor, the vector is implemented as a boxed front-
end pvar, and the operation op by the macro front-end-op of the runtime library. Otherwise, 7 is a type
variable and the compiler translates the operation into the call to the generic function of the runtime library
implementing the operation, named op.

Example Type information can be used to optimize the compilation of higher-order functions, such as the
vector operation vector-map. For instance, assume that the mapped vector has integer elements, as in the
example below.

(lambda (f x) (vector-map (if true 1+ £) x))
The compiled code invokes the macro int-vector-map and expands it into:

(lambda (f x)
(let ((x1 (if t (make-f-struct #’1+ #’1+!1) £)))
(if (f-struct-p x1)
(int-vector-map x1 x)
(front-end-vector-map xl x)

The first operation performed in this code is to bind with the fresh identifier x1 to the f-structure which
corresponds to the function expression (if true 1+ f). Because 1+ is a parallelizable predefined function,
an f-structure is created for it by (make-f-struct #’1+ #’1+!1). Then, the operation (f-struct-p £)
checks that x1 is a f-structure itself. In this case, the mapping operation is translated by invoking the
appropriate macro int-vector-map that implements the parallel map of a function on integers.

(with-context-of x
(coerce!! (*funcall (f-par x1) x) ’fixnum-pvar))

It performs a parallel call, using *funcall, to the parallel implementation (f-par x1) of x1, the result
of which the result coerced back into a fixnum-pvar B

Otherwise, the operation is performed sequentially by using the function front-end-vector-map. In this
code, no runtime type test on x is necessary, since type checking guarantees that x is a vector of integers.
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Example In a way similar to types, effects can be used to specialize some higher-order vector operations
which require runtime tests. To describe the optimization performed at such program points, let us consider
the case of compiling a form such as:

(lambda (x) (vector-map 1+ x))
Since the effect of 1+ is § and its arguments type int scalar, the compiled code is:

(lambda (x)
(with-context-of x
(coerce!! (1+!! x) ’fixnum-pvar)))

Note that in the code above, it is not tested by using f-struct-p that (make-f-struct #’1+ #'1+!1)
is an f-structure. There is no boxing and unboxing of the form (f-par (make-f-struct #’1+ #1+!1))
and there is no *funcall to #1+!!, because the simplification rules of the previous section apply B

On the contrary, if the higher-order function given to vector-map has some latent side-effect or if the type
7 of the vector elements it manipulates are not scalar, the operation vector-map is compiled by its sequential
implementation, front-end-vector-map, bypassing the runtime tests present in the runtime library.

4.10 Compilation of let

Managing the let construct (and, similarly, letrec) within the simplified compilation scheme shown above
is easy. First, we have to distinguish between value and function definitions:

Definition 4.3 (Function Identifier) An identifier f is defined as a function when it is bound in a let
expression to an explicit lambda expression. Otherwise, it is considered as a value definition.

Value definitions such as (let ((x e)) e’) are handled according to our basic compilation scheme by
translating them into ((lambda (x) e') e).

Function Definitions

Function definitions are translated by using the Common-Lisp labels construct. When (lambda (x) e),
bound to f in a let construct is a function that can be parallelized, its parallel implementation is associated
with £11.

A finite map m replaces the sequence of parallelized functions £. In m, the identifiers £ of parallelizable
function are associated with the sequence of lambda-bound function identifiers £ on which the parallelizability
of £ actually depends at runtime.

SC[(Let (f (lambda (x:7y) te)m Lm) te')imslos] 7T, m =
let d=STD[x:71]
c1=5CTte]7.m
¢; = [(lambda (x) d ¢])]
in if PF(7y)

then let £ = {f:r; e T} € fifte] \ x:m | ¢5 € 01}
dy = PTD[x:7]
¢y = PClte]xim
¢z = [(lambda (x!!) dy c4)]
c3 = SC[te'](ra.7), (m + {f — £})
in [(1abels ((f ¢;)(£!! ¢2)) ea)]
else let cg = SCTte'](ms.7),m
in [(Let ((£ #'¢1)) ¢2)]

Compilation of Definitions
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Function Identifiers

An occurrence of a function identifier £ in function position (£ e) is left as such during sequential code com-
pilation. An occurrence in value position, such as in (lambda (x) £) or (e f) is translated, as previously,
by the allocation of an f-structure if £ was added to .

SCx:7]7,m =
if x € Dom(m) then [x]
else let x1, ., = m(x)
in [(if (and (f-struct-p x;)...(f-struct-p x,))
(make-f-struct #°’x #’x!!)

x) ]

Compilation of Tdentifiers

If £ is parallelizable (modulo the possible run-time check on its free function identifiers) the f-structure
(make-f-struct #’f #°f!!)) is returned. Otherwise, #°f is generated.

Example As an example, the following definition:

(lambda (g)
(let ((£ (lambda (x)
(g x))))
1)
is compiled as:
(lambda (g)

(labels (((f x)
(funcall (if (f-struct-p g) (f-seq g) g)
X))
(e xv 1)
(*funcall (f-par g) x!!)))
(it (f-struct-p g)
(make-f-struct #°f #'f!!)
#°1)))

During parallel code generation, an occurrence of a parallelizable function identifier £ in function po-
sition is translated to £!!. The static semantics guarantees that non-parallelizable functions occurring in
parallelizable FX expressions are never used. The occurrence of £ in a value position, such as in (lambda
(x) £) or (e f), is translated into #'£!! W

4.11 Implementation

The FX compiler for the CM-2 was implemented by using the initial implementation of the FX-91 interpreter,
consisting of a parser, a kind and type checker and a simple interpreter. The FX-91 interpreter is written
in Scheme and runs under T [Rees & al., 1984] and has been adapted to *Lisp. The techniques described
in this chapter have all been implemented. The examples given in this chapter have all been run using this
implementation.

The FX/CM Compiler has first been tested on the *Lisp simulator [*Lisp, 1987]. We have used the
CM-2 installed at ETCA (Arcueil, France) and run other data-parallel algorithms, such as a 1ife program,
a quicksort algorithm using segmented scanning and a matrix transposition algorithm.
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Example We illustrate the speed-up obtained by our compiler by the case of the segmented matrix trans-
position algorithm segment-transpose (described below) which uses higher-order functions and segmented
vectors as 2D matrices.

(define (segment-transpose m segment)
(let ((id (segment-identity segment))
(offset (1+ (vector-reduce max id))))
(permute m
(vector-map2 + (segment-index segment)
(vector-map (lambda (i) (* offset i))
id)))))

It was executed on 4x4 to 128 128 integer matrices on a 8K processor CM-200a. Busy times are almost
independent of the problem size, except for the last case. For a 128x128 matrix, the VP-set exceeds the
actual machine size and thus multiple operations are performed on each processor, slowing down the overall
execution B

Matrix size 8 x 8 16 x 16 32 x 32 64 x 64 128 = 128

Elapsed Time (s) | 1.48 x 107% | 1.51x 1072 | 1.83 x 107% | 1.52x 107* | 1.74 x 10~*
Busy Time (s) 6.47x 1072 | 6.48 x 1072 | 6.43 x 1072 | 6.43 x 1073 | 1.04 x 10~2

4.12 Related Work

In order to go beyond the *Lisp system [*Lisp, 1987], several other programming paradigms have been
suggested. The major proposals are the APL-inspired alpha and beta global operations on xectors in CM-
Lisp [Hillis, 1985], the paralation abstract data type and its element-wise operations in Paralation-Lisp
[Sabot, 1990] and the scan operations over segmented vectors in SV-Lisp [Blelloch, 1990].

In the *Lisp language, the low-level programming features that are introduced in order to efficiently
use the CM are all easy to compile. Not so for these other languages. However, their reference manuals
[Hillis, 1985, Sabot, 1990, Blelloch, 1990] are quite elusive on the issue of which compile-time analysis would
be necessary for programs to be effectively compiled.

Nonetheless, the data-parallel constructs designed in the SV-Lisp language [Blelloch, 1990] or in the V-
Code [Blelloch & Chatterjee, 1990] provide a programming model that made its way into the design of the
vector module for the FX language. It proved here to be effectively compilable using our type and effect
system. Qur approach is thus not to introduce a new data model, but to describe how a sophisticated static
system can be used to safely implement data parallel constructs on a massively parallel machine in the
presence of side effects.

4.13 Conclusion

The FX/CM compiler prototype supports the claim that effect systems can be used to integrate, for the
first time, functional and imperative programming on massively parallel architectures. Effects are used
to decide whether potentially parallel constructs can actually be implemented as such without leading
to non-determinism. Reglons are used to optimize space allocation strategies and limit the garbage col-
lection overhead. We expect to extend our system to multi-dimensional arrays, using ideas expressed in
[Blelloch, 1990, Sabot, 1990]. We are also looking at other applications of regions, for instance using them
to manage the alignment of vectors to minimize communication costs.



98

CHAPTER 4. COMPILING FX ON THE CM-2




Chapter 5

Future Work

In [Tofte & Talpin, 1993], we propose an application of the type and effect inference system of chapter 2 for
imposing a stack-based allocation discipline to functional programs. It consists of associating a region with
the type of every data structure manipulated in a program and then determining the lexical scope of regions
by using an observation criterion.

Translation Process

The translation process described in the next figure associates every source expression e with an expression
¢’ annotated so as to explicitly specify the scope, instantiation and generalization of data regions associated
with the value of expressions.

The directive (r-let (r) e) locally defines a region in the expression e that can be collected when the
execution of e terminates. The directive (r-abs (r) e) abstracts the expression e over the region r which
can be applied to a region ' by (zx-app (z’) e)

g(x):'r S(x):V&'@E’T 9:{&HF§H5751—> 5-'}

Erx=x:7,0 EFx= (z-app (p) x) : 01,0 (et
Ext+{x—riFe=e 70 oo,
7 ~a
£F (lambda (x) e) = (lambda (x) ') :7°= 70 (t-abs)
Ere=el 7570 Eley=ey:7,0" (tan)
EF (e e3) = (ef eh) 7, cUd’Uc” PP
ezplle] EFey=zel:iT0  Ex+{x—TlFeszeb:7 o bt
EF (let (x e1) en) = (let (x e}) &) : 7/, 0U’ (F-ilet)
—exple] EF e = el im0 VagST = Gen(E)(r) Ex+{x—Vagiritres=e): 70 et
EF [s6 Cx 7] 230 =0lsk (% sbn (B 900} siber,alie (telet)
¥ ! - /
Ere=e im0 o = Observe(E,7)(0) = filo\ o) (ote)

EFe= (z-1let () e') 7', Observe(E, 7" (o U o)

Annotating Expressions with Data Regions

The generalization of the value of expressions using the directive r-abs is performed by the lexical binding
of value identifiers to the value of non expansive expressions, which are usually functions. The instantiation
of data regions by the directive r-app is performed for every occurrence of these bound identifiers. Finally,
the rule (obs) of observation is used to lexically isolate non observable data regions g.
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Example The process of translating source expressions with explicit annotations about data regions is
illustrated by this last figure related to the definition of the function fold previously studied in section 3.7.

(lambda (f i)
(lambda (1)
(r-let (r1)
(let (result ((r-app (rl) new) i))
(r-let (r2)
(let (data ((r-app (r2) new) 1))
(until (null? ((r-app (r2) get) data))
(((r-app (r1) set) result) (£ (car ((r-app (r2) get) data))
((r-app (r1) get) result)))
(((r-app (z2) set) data) (cdr ({(r-app (r2) get) data))))))
((r-app (r1) get) result)))))

Note that the region of data, noted r2, is not mentioned outside the let construct of its definition. The
region ri is also local to the function.
Polymorphic Recursion

One of the major unflexibilities in the Hindley/Milner type system is that recursive functions remains
monomorphic in the body of their definition.

E¢+{f— 1} F (lambda (x) e): 7,0
EF (rec (f x) e):7,0 (rec)

The impact of this feature on our storage optimization scheme will be to force recursive invocations of a
function to occasionally refer to the same data regions.

Example This is significant in the following version of the factorial procedure that uses pointers to store
its intermediate results.

(define fact (lambda (n r)
(if (<= n 1) ((set ) 1)
(let (i (new n))
(fact (- n 1) i)
((set ) (* n (get 1)))))))

Without polymorphism inside the recursive function definitions, the function fact is assigned type:

-;Ua'nit[p,ini)Uread(p)Uwrite(p) .
— untt

fact : ant x ref,(int)
This means that p is the region of every successive temporary pointer i. This result 1s evident in the
following output code, where r1 is abstracted over the whole lambda abstraction global region:

(lambda (n 1)
(if (<= n 1) (((r-app (r1l) set) r) 1)
(let (i ((r-app (r1) new) n))
(fact (- n 1) 1)
(((r-app (r1) set) r) (* n ((r-app (r1) get) i))))))

A solution to the general problem of regions whose sizes cannot be computed at compile-time is to implement
them by a linked list of pages, each page having a fixed size. When a page is full, the memory manager
allocates a new page and links it to the previous one. Deallocation of a region then just puts the region into

a “free-list” of available pages. Under this scheme, the runtime system works like a generational garbage
collection scheme, where entire regions are collected at a time.
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The problem of “polymorphic recursion” is to find the polymorphic type of a recursive function which
exactly satisfies the following recursive definition:

£g + {f — Gen(€)(r)} I (Lambda (x) e) : 7,0
EF (rec (£ x) ) :7,0 (poly-rec)

But this problem has been proved reducible to semi-unification [Henglein, 1992], which is unfortunately
undecidable [Kfoury & Tiuryn, 1990]. Nonetheless, decidable restrictions to “uniform” cases have been in-
vestigated [Leiss & Henglein, 1991]. We expect to show in [Tofte & Talpin, 1993] that the restriction of the
problem of polymorphic recursion to the inference of polymorphic region in recursive functions is decidable.

E¢+{f—Vpr}F (lanbda (x) e) : 7,0 F= fro(r)\ fr(€)
EF (rec (f x) e): 7,0 (gen-rec)

One of the main trends for extending type and effect inference is certainly to improve the inference of
regions in recursive functions in this way. This improvement has indeed a dramatic impact on optimization
that can be performed by our type and effect inference system.

Example In the previous example, using the rule (gen-rec) permits allocation of the pointer i, which store
the intermediate results of the function fact, in separate regions r2, which are lexically isolated by a r-let
construct and do not thus survive the recursive call of the function.

(r-abs (r1) (lambda (n 1)
(if (<= n 1) (((z-app (r1) set) ) 1)
(r-let (r2)
(let (i ((r-app (r2) new) n))
((r-app (r2) fact) (- n 1) i)
(((r-app (r1) set) r) (¥ n ((r-app (r2) get) i))))))))



102 CHAPTER 5. FUTURE WORK




Chapter 6

Conclusion

Contribution

We introduced a new type system to reconstruct the principal type, region and effect of expressions in-
troducing a tantamount notion to subtyping in the domain of effects, subeffecting. We have extended the
principle of polymorphic type inference of [Milner, 1978] to the reconstruction of regions and effects. Regions
statically describe uniform sharing relations between values and, incidentally, delimit the scope-locality of
data.

We have formally developed both the practical and theoretical consequences of this observation. On the
practical side, static information such as the type, region and effect of expressions assists in the design and
implementation of compile-time techniques for optimizing the management of data.

Combining types and effects allows the integration of imperative programming features with polymorphic
functional languages. We introduced a typing discipline using effect inference to determine the principal type
of expressions in the presence of assignment - the type and effect discipline.

In our typing discipline, typing references is done by inferring allocation effects which tells the data type
pointed at by regions of initialized references. Effects are used to control type generalization in the presence
of imperative constructs. To type a let construct, the allocation effect of the bound expression provides all
the necessary information to determine which type variables must not be generalized.

By using an observation criterion, our typing discipline limits the report of effects to those that affect
accessible regions. The observable effects of an expression range over the regions that are free in its type
environment and its type. Effects related to local data structures can be discarded during type reconstruction.
The type of an expression can be generalized with respect to the variables that are not free in the type
environment or in its observable effect.

The notion of observable effects is crucial to distinguishing the functions which only use references locally
and implement their purely functional counterpart with a more imperative style. By using effect information
together with an observation criterion, our type system is able to precisely delimit the scope of side-effecting
operations, thus allowing type generalization to be performed in let expressions in a more efficient and
uniform way than previous type systems.

Concluding Remarks

Among other formal methods, static typing is the most widely used technique of static analysis in program-
ming languages and is also one of the most popular. Static typing consists of detecting the most frequent
cause of errors occurring during the execution of a program, the inconsistent use of a data structure. Static
type checking detects algorithmic errors in programs by verifying type declarations. Some of the efforts
needed to correctly specify types in programs can be spared by using a type inference engine, which permits
omitted declarations to be automatically reconstructed.

Because a type system must be simple for the user to understand it and because users may nonetheless
write complex programs, any type system affects the expressive power of the language it is designed for by
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forcing it to reject some programs which are correct but cannot be recognized as such.

The tension is the most serious in the case of functional languages which are supposed, at the very least,
to support generic functions. In contrast to dynamic typing, which appears to be the simplest solution for
the implementation of such languages, introducing the notion of type polymorphism allows generic functions
to be expressed and has definitely contributed to making functional programming more popular.

By using type inference, functional languages still possess some unflexibilities of use which can be some-
what circumvented by using explicit polymorphic typing. Explicit polymorphic typing provides all the
expressive power that the user may need to mitigate any lack of expressiveness originating from a weakness
of the type system used.

Functional languages are remarkably well-designed in that they are based on sound theoretical founda-
tions. Imperative features are nonetheless required to make programming such languages feasible. However,
integrating polymorphic typing in an imperative language appears problematic. This integration shall not
compromise the correctness of the language’s semantics.

By using effect systems, imperative features can be integrated in functional languages and easily compre-
hended by users according to strong theoretical bases. Resolving the tension between imperative program-
ming and type polymorphism is effectively solved by using an effect system. An effect system provides the
appropriate medium to denote state transitions at the level of the type system in programming languages
semantics.

Just as types represent what programs compute, effects denote how programs compute. Regions appear
in types and effects, and represent precise sharing relations between data. As a result, type, region and
effect inference establishes a very strong relationship between structural information: types, relational infor-
mation: regions, behavioral information: effects. For the user, it offers precise, general and comprehensible
documentation about programs.

For the implementor, this relationship eases the specification of optimization techniques based on semantic
information and provides general and efficient static analysis techniques for the implementation of functional
programming languages. It allows better code to be generated and data to be represented efficiently.

When functional and imperative programming paradigms are integrated together within a programming
language, implementors must exert care when designing code optimizers, since side effects inhibit most of
the nice properties of pure functional languages which are put to work in code transformations.

When going from sequentiality to parallelism the issues get significantly more complicated at the pro-
grammer and implementor levels. Concomitant use of side effects and parallelism leads to nondeterminism,
which makes program understanding and debugging difficult because of the non-reproductibility of results.
Restricting parallel programs to be deterministic is a way of making parallel program design in higher-order
imperative languages a more manageable task.

The FX compiler prototype for the CM-2 enforces such deterministic constraints. It supports the claim
that effect systems can be used to integrate functional and imperative styles for the implementation of
programming languages on massively parallel architectures. Effects are used to decide whether implicitly
data-parallel vector operations can actually be implemented on a parallel architecture without leading to
non-determinism. Regions are used to optimize the strategies of space allocation.

The initial design goal of effect systems was to safely integrate functional and imperative paradigms. The
type and effect discipline permits the imperative programming style to be fully integrated in a functional
language equipped with a polymorphic type system. Using type, region and effect inference, we demonstrated
how an analysis technique and its use could be considered within the same framework.
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Appendix A

Typing Effects for Free

In the preceding chapters, we used constraint sets to relate types and effects in the reconstruction algorithm.
In this chapter, we introduce a syntax of type and effect that is used both in the static semantics and in the
algorithm.

In [Leroy, 1992], chapter 2, the author also presents a syntax for function types annotated with sets of
informations. It is based on the notion of extension variables, used to type records [Rémy, 1991].

Our approach is more involved. We want to be as close as possible to a set algebra and, however, make

as little change to it so as the problem of unifying terms in this algebra he unitary, as in a type system for
extensible records.

Syntax

To achieve this goal, the syntax of effects implements an encoding of constraint sets into types. This encoding
consist of distinguishing the latent effect of functions and the effect of expressions.

ex=c¢leUo latent effect
= unit | bool | int | o | ref,(7) | T S 1 types

5
|

Function Type and Latent Effect

The abstract syntax of type terms in the static semantics supports basic data types, type variables,
reference types and function types. Latent effects, written €, appear on the arrow of function types which
consist of an extension variable ¢ (a kind of label) and an effect .

An Algebra for Latent Effects

In order to precisely identify the label ¢ associated with a function type, we imposes that the extension
variable ¢ appears on the left of the form ¢ U ¢. This is achieved by restricting the axioms of the algebra of
latent effects.

(eUo)Uo' =eU(ocU0')=ecUoUg" associativity
eUocUoc=¢eUecUo=¢cUsr idempotence
eUoUcd =eUd' Uc right commutativity

Axioms for Latent Effects

Accordingly, substitutions ¢ will map effect variables to latent effects. The combination of substituted
latent effect terms in effect terms is done in the obvious way.
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Example Let @ = {c— ¢’} the substitution of the effect variable ¢ by the latent effect ¢ = ¢’ U¢’. Thus,
fleUsUo) =(eU()Ur)=eUd U’ Usand (s’ Ue)=(Ua)=¢' Uc’'Uc B
Static Semantics

In the static semantics, latent effects are constructed by the rule (abs), for lambda-expressions. They are
propagated with other effects by the rule (app), which applies for application expressions.

Ext+{x—rTlhe:T o Ere:rS o EFe 10

b
£F (lambda (x) e) :7 = 7,0 {ake) EF(e &) : 7, eUaUc

(app)

Syntax-Directed Static Semantics

Constraint-Less Reconstruction Algorithm

In this section, we present the constraint less inference algorithm 7. Given a type environment £ and an

expression e, it returns the principal type 7 and effect o of e and a substitution # which ranges over the free
variables of £.

Z(€,e) = case e of
x = if x € Dom(&) then (Id, Inst(E(x)), B) else fail
(lambda (x) e) = let @, ¢ new and (0,7,0) = Z(Ex + {x— a},e)
in (0, 0o SHE T, 0)
(e &) = let (0,7,0) =Z(E,e), (¢, 7,0") = Z(0€,¢'), &, new and " = U(#'r, 7' = )
in (0”06 of,0"a, Observe(8”(0'(0£)),0"a)(8"(s U o' U a)))
(let (x e) &) = let (0,7,0) =Z(€,e) and (¢, 7', 0") = T(0&x + {x — Gen(bE,0)(7)},¢')
in (0" 00,7, Observe(8'(0€), 7)(6'c Uo'))

Reconstruction Algorithm 7

This new algorithm is strictly simpler than the one that we presented in chapter 3. This is mainly due
to the absence of constraint sets.

Gen(E)(r) = let T= fu(r)\ fo(€) in VT.7

Inst(¥o.7) = let o' fresh and § = {#— v/} in Or

Generalization and Instantiation

The algorithm 7 uses two functions Gen and Inst described above for generalizing and instantiating types.
It uses the observation criterion defined in section 3.1.

Constraint-Less Unification Algorithm

The inference algorithm Z uses the following unification procedure which is an extension of the algorithm ¥
of chapter 2 unifying latent effects and description identifiers.

The algorithm #{ differs from the unification algorithm of chapter 2 by the unification of latent effects
(¢ Uwo,¢"Ua’), which check that the effect equation supplied is not recursive, and then unifies the effect
variables ¢ and ¢’ and sums up the related effects o and o’.
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U(r,7") = case(r,7") of
(unit,unit) = Id
(1,0) = {ama)
(e, 7)|(r,@) = if a € fu(r) then fail else {a — 7}
(refo(T), refu (7)) = let 0 ={g— o'} inU(fr,07") 00
(7i e T T -8 71) = ifc€ fulo’) or ¢’ € fu(o) then fail else

letd={c—¢, ¢~ UcUc'} and & =U(07,07]) o0
in U(@'ry,0'7() 0 0
otherwise = fail

Unification Algorithm

The correctness of algorithm I can be stated in the same terms as the theorem 2.8, because the unification
problem of latent effect terms is unitary.

Proposition A.1 (Correctness of i) Let 7 and 7' be two type terms in the domain of U. IfU(r,7') =0,
then Ot = 07’ and, whenever 't = 0’7, there exists a substilution 0" such that §' = 0" o 0.

Proof By induction on type terms in the way of [Robinson, 1965]1

Correctness of the Reconstruction Algorithm
The main novelty of this algorithm is that it does not use constraints, because of to our representation for

latent effects and substitutions. By getting rid of constraint sets, the statement and proof of the correctness
theorems of the algorithm are significantly simplified.

Theorem A.1 (Soundness of 7) IfZ(€,e) = (0,7,0) then €+ e: 7 0.

Case of (var) By hypothesis, Z(£,x) = (Id, 7,0). By definition of Z, 7 = Inst(£(x)) and thus 7 < &(x).
By definition of (var), £+ x: 7, 0.

Case of (abs) By hypothesis, Z(£, (lambda (x) e)) = (6, 6« %Y 7.0). By definition of Z, & and ¢ are
fresh and Z(Ex+{x — a},e) =Z(Ex+{x — a},e). By induction hypothesison e, #(Ex+{x+— a})Fe: 7, 0.
By definition of (abs), € F (lambda (x) e) :fa =¥ 7.

Case of (app) By hypothesis, Z(£, (e e')) = (0" 0 0’ 0 0,0"a, Observe(8” (¢ (0€)), 0" a)(6” (s U o’ UG’ 7))).
By definition of 7,

(8, 7,0)=1Z(&,e) (0',7',0')=Z(0€,e') and 0" =U(0'T, T = a)
where o and ¢ are fresh. By induction hypothesis on e, 0 I e : 7,0. By the lemma 3.4,
0" (0'(6E)) e 0"(0'T),0"(0"a)
By induction hypothesis on €/, §'(0€) F &' : 7/, ¢/, By the lemma 3.4,
(O 0EYFe: 0" 0"
By the lemma A.1, 0”(8'T) = 6" (7’ ) «) and by definition of the rule (app),

0"(0'(0E)) F (e ') : 0", Observe(8”(0'(0E)), 0" ) (0" (0’ c U o’ Us))
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Case of (let) By hypothesis, T(£, (et (x e) &')) = (#08, 7', Observe(?'(0£), 7")(¢’Ul' ). By definition
of Z,
(0,7,0)=2(E,e) and (0 ,7",0") =Z(0Ex + {x — Gen(0E,0)(7)},€')

By induction hypothesis on e, £ F e : 7, . By the lemma 3.4,
(0 (BE)) e 07(0'T),0"(6' )

By induction hypothesis on e’ with 0€x + {x — Gen(0E,0)(7)}, 8'(0€x + {x — Gen(6E,0)(T)} F &' :
7!, 0’. By definition of the rule (let),

0'(6E)F (Let (x e)e') : 7, 0'c U’ O

Theorem A.2 (Completeness of Z) If 0"E & e: 7,0’ then T(€,e) = (0,7,0) and there exists 8 such
that 8" =008, 7' =01 and o' =00

Proof The proof is by induction on the structure of expressions.

Case of (var) By hypothesis 0" t+ x : 7,0. By definition of (var), £(x) = VYU.7” and 7 < 0"&(x).
By definition of <, there exists 0; defined on @ such that r = #;7". By definition of the algorithm Z,
' = Inst(E(x)) and I(&,x) = (Id, 7/, 0). By definition of Inst, § = {T — v'}, the v/ are fresh and 7/ = 0] 7"
Thus, ¢/ = 9:}, + {v' — 0,(D)} satisfies 7 = 0'7'.
Case of (let) By hypothesis, 8”& F (let (x e;) ep) : 7/, ¢} Uoh. By definition of (let),
6"Et ey :7,0f and 60"Ex+{x— Gen(c|,0"E)(T{)}F es: 7,0
By induction hypothesis on ey, (61, 71,01, k1) = Z(€, K, e;) and there exists a substitution ¢} such that

0"E = 01(0.E) r=0n and oD 0m

Since 0"€ = (61€), 71 = 0im1, ¢} 2 001 and by definition of Gen, 7 < Gen(a,8"€)(7{) implies that
T < Gen(@01,01(01E))(0; 1) for any 7. By the lemma 3.5,

01(0:€x) + {x — Gen(81o1,01(0:E))(01m)} Fes: 7 o)

Let V.7 = Gen(oy,01E)(m1) and define 07 by Id on ¥ and by 0] elsewhere. By definition, 61'(0;€) =
#1(01€) and 0{o1 = 0] o1. Thus,

0/ (0 €x+{x—=Vin})Fey: 7 o)

By induction hypothesis on ey with §1&x, Z(#1€x + {x — VU.71},e2) = (02,7, 02) and there exists a
substitution % such that 7" = 047, 64 D 0509 and

6”1’91_8x +{x—Vi.(r,k))} = 9’2(9291_83 + {x — VG.(11, K))}) = 05(0201Ex + {x— VO.(Rj1)})

Let us write 0 = 03 0 01, 03 = fhoy Uoy and 0 = Observe(R'(0£),7'7)(F'o3). By definition of the
algorithm, we get that:

I(g,ﬁ,(let (I el) 32)): (9,1",0’,}1")
Let V' be the set of free variables in 8€, 15 and o. Define ¢ by % on V and 0] otherwise. Thus,
0"E = §'(68) =07 and o D 0oy

Since 8'c = ' Observe(0€,7)(03) and by the lemma 3.3, #'c C Observe(¢'(0€),0'r)(6"c3) and thus
o' D 0o
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due’

Case of (abs) By hypothesis, 0”& F (lambda (x) e): 7 — 74,0. By definition of (abs), 8"Ex + {x —
i} b e: 1,0’ With a fresh variable «, this is equivalent to:

6" o{a—n}éx+{x—al)kFe:rs,0

By induction hypothesis on e, Z(£x + {x — a},e) = (0,7,0) and there exists a substitution 6] such
that:
" o{a— i} Ex+{x—a})=01(0€x+ {x—a}), ;=67 and o' D bc

By definition of the algorithm,
I(€, (lambda (x) e)) = (8,00 = 7,0)
where ¢ is new. Let us consider ¢/ =0} o {c— ¢’ Uo’}. We conclude that
0 =0'(08) 7L 5 =00aLr) and 20
Case of (app) The hypothesis is £ F (e1 eq) : 7', 0] U o4 U ojy. By the definition of (app),

I
o
0"Erer:mh =700 and 0"EF ey :Th, o

By induction hypothesis on e;, we have Z(£ey) = (1,71, 01) and there exists #] such that

0E = 0)(01)  H=r3r=0n and o200
By induction hypothesis on ey, Z(01 &, e2) = (02, 72, 02) and there exists 6 such that
0"E = 05(02(0,18)) 74 =0 and of D Ohos
Let V' be the set of free variables in #9(6, &), 7 and 9. Take @ and ¢ new and define ¢4 by:

v, veV
v=a

! —
3l = ! —
03, V=g

#lv, otherwise

By definition, 8”& = 05(82(6:£)), 5= 04(my = «) and #0s = 0405. Now, for every v in 7; or
oy, either v is in fu(?1 £) or v is fresh. Thus, for every such v in fu(6, ), since 85(82(61€)) = 85(02(61€)) =
01(01&), we have 05(02v) = 04(02v) = 07 v. Otherwise, v is fresh and thus 05(62v) = 04v = @} v. Thus,

B = 04(0ym) and 0oy = 04(0a0)

Since 04(0271) = 04(m2 = «), by the lemma A.1, there exists a substitution f3 such that,
03 =U(O2m1, 72 = @) and 0O3(62m) = Oa(me = @)
By the lemma A.1, there exists a substitution ¢ satisfying 3% such that 85 = 6’ o 3. We conclude that
¢"E = 6'(6€) =0 (03(r, > @)) and o} UchUdh D 0 (0303)
By definition of Z,
I(E,(e1 e3)) = (03 005 00,030, Observe(R'0E 7' 7)(F'03(0201 U oy U)))

By the lemma 3.3, we conclude that o’ 2 ' OQbserve(R'0€, %' 7)(k'c3) O



Résumé

Dans de nombreuses disciplines scientifiques, comme en informatique, et tout spécialement dans le domaine
des langages de programmation, il est communément acquis d’associer aux études théoriques, sur les modéles
de calcul, des travaux de nature plus pratique de mise en oeuvre, ou d’implémentation. Pour cela, les tech-
niques de mise en ceuvre des langages de programmation reposent sur des méthodes formelles qui permettent
d’en assurer la correction. )

Parmi ces méthodes formelles, le typage statique est sans doute la forme la plus populaire. Il consiste a
détecter, au moment de la compilation, une source fréquente d’erreurs d’exécution de programmes: 'usage
inconsistant d’une valeur par rapport & la structure de cette valeur. Dés lors que le typage statique d'un
programme est vérifié, aucune erreur d’accés aux données ne peut se produire pendant son exécution.

Dans la recherche d’un compromis entre simplicité et performance, 'introduction du typage polymor-
phe est A l'origine de progrés notables, permettant le typage statique des fonctions génériques. Le typage
polymorphe est parfaitement approprié pour les langages fonctionnels. Mais 'ajout de traits de program-
mation impérative a un langage fonctionnel s’accompagne de la nécessité d’introduire une notion d’état pour
comprendre le sens des programmes.

Les systémes d’cffet permettent d’intégrer le typage polymorphe et la programmation impérative. De
méme qu’un type représente ce qu’un programme calcule, un effet décrit comment ce programme calcule.
Types et effets sont annotés par des régions. Les régions décrivent des relations de partage entre les zones
mémoire ou résident les structures de données.

L’intérét porté aux langages de programmation fonctionnels tels que ML ne se limite pas au seul probléme
du typage polymorphe, et notre systéme d’effet procure des informations utiles aussi bien pour le program-
meur, qui peut par ce moyen décrire la spécification de ses applications, que pour le compilateur qui peut
utiliser les informations de type pour produire un code plus efficace et une représentation de données moins
coiiteuse.

Abstract

In many scientific disciplines as well as in computer science, but perhaps more specifically in the area of
programming languages, it is a widely established fact that theoretical research must be connected and
validated with practical investigations and implementation techniques. To achieve this goal, it is very
important to base the development of implementation techniques for programming languages on methods
that allow them to be formalized simply and prove them correct.

Among program analysis methods, static typing is the most popular technique. It detects a common
cause of execution errors in a program: the inconsistent use of a data structure. Its strength is that the
successful type checking of a program guarantees the absence of type errors.

In the quest for simplicity and expressiveness, the introduction of type polymorphism resulted in a notable
progress by allowing the static typing of generic functions. Polymorphic typing is appropriate for functional
programming languages. However, adding imperative features to a functional language necessitates to intro-
duce a notion of state to understand the meaning of programs.

Effect systems permit to integrate imperative constructs to polymorphic functional languages. Just as
types describe the structure of what expressions compute, effects describe how expressions compute. Types
and effects are decorated with regions. A region describe an uniform sharing relation between data structures
and thus helps to figure out how storage resources are used and distributed in a program.

The academic interest in functional programming does not limit itself to the sole topic of polymorphic
type inference. Polymorphic effect system provides useful information for both the programmer, who can
describe the intended specification of its programs, and the compiler, which can use types to generate more
efficient code and represent data better.
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