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Résumé Etendu

La création des programmes comme un ensemble de types de comportements connus sous le
terme processus et un certain mécanisme par lequel ils entrent en interaction, semble évoluer
vers une solution d’ingénierie positive en matiere de programmation des machines paralleles.
Malgré les gros efforts effectués pour la compréhension des philosophies du processus (ex.:
Hoare, Milner, Pratt et d’autres), ces philosophies qui sont les moyens d’interaction entre les
processus, demeurent aujourd’hui un sujet a débattre.

Les philosophies sur I'interaction des processus sont une composante intégrale de la théorie
et la pratique du processus parallele, définissant les moyens d’interaction utilisés par les
processus concourrants; par “interaction” on entend non seulement 1’échange des données
mais aussi la synchronisation inter-processus.

Etant a la recherche d’une philosophie passe-partout pour la programmation des machines
paralleles, il est souhaitable de fournir une portabilité, un caractere expressif qui ne détournera
pas ’esprit du programmeur de sa tache et enfin une efficacité et cela indépendamment de
I’architecture de la mémoire de la machine.

Le transfert de message fut pendant un temps, la philosophie préférée en matiere d’inter-
action et cela du fait de sa simplicité et de la facilité de sa compréhension. Cependant, le
Transfert Généralisé de Message, caractérisé par le langage Occam [May 88|, est une philoso-
phie inappropriée dans le domaine de programmation passe-partout des ordinateurs paralleles.
Il crée des situations ou le programmeur se trouve préoccupé par des problemes complexes
de distribution des données tandis que les implémentations sont contraintes de copier les
données, qui dans le cas contraire, seraient échangées par rétérence.

La philosophie Linda [Gel85] annoncait une solution aux problemes dues a la complexité
de la distribution des données, en présentant le transfert généralisé de message. Les program-
meurs n’ont pas a étre concernés par des problemes de distribution des données. Toutefois, la
philosophie Linda est imparfaite et les sémantiques de cette philosophie sont imprévisibles; ce
qui amene les programmeurs a écrire des codes en fonction de leur compréhension de la facon
dont un optimiseur particulier ou encore un protocole correspondant sous-jacent se comporte;
ce qui renverse toute conception de portabilité.

Cette these débat de ces problemes et présente une nouvelle philosophie d’interaction.
Fase est décrite comme étant un langage de programmation passe-partout, impérative et
de haut niveau. Un programme est un ensemble de processus qui exécute de maniere con-
courrante, créant et dialoguant par l'intermédiaire des structures des données partagées tres
spécifique qu’on appelle “Contexts”.

Fase est nouveau dans le sens ou un Context fournit un intermédiaire a vocation pri-
oritaire, et introduit de maniere stricte, dans lequel les structures des données distribuées
sont construites et par lequel les processus peuvent entrer en interaction. Fase fournit des
opérateurs reliés simples et symétriques qui permettent la construction et I’échange efficace des
structures de données complexes; des constructions aussi bien pour la concurrence coopérative
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que subordonnée, et un mécanisme pour créer des ressources statiquement réutilisables et
virtuelles.

La définition du langage est utilisée comme un systeme de référence par la philosophie
tandis que la philosophie est suffisamment distincte pour étre ajoutée aux pratiques conven-
tionnelles tout comme le transfert de message et Linda l'ont été par le passé; Une définition
de C-avec- Fase est présentée. Cela illustre la maniere dont les langages hybrides peuvent étre
créés. Un compilateur de prototype est également décrit.

Conclusion

L’objectif de cette these est de développer une philosophie et un langage pour simplifier
le développement des programmes paralleles; elle est pilotée par 'observation des défauts
dans les philosophies existantes qui détournent 'esprit de I'ingénieur. Ces points ont été
soulevés dans 'introduction de cette these, a savoir essentiellement la confusion qui apparait
dans la distribution des données en ce qui concerne le transfert généralisé de message et la
confusion dans la conception approximative de Linda en matiere de la correspondance des
valeurs associatives.

La solution a ses confusions est d’adopter une abstraction de I'espace de données qui
cacherait la complexité de la distribution mais aussi énoncer la localisation directement pour
permettre a I'ingénieur de se concentrer sur le développement de ’algorithme et la localisation
des données. La solution présentée, Fase Contexts, est basée sur les structures des données
partagées ayant des caractéristiques particuliers, et qui sont identifiées, par expérience, comme
étant celles communément utilisées par les développeurs d’application.

L’objectif a également été de désigner une philosophie pouvant raisonnablement revendi-
quer une indépendance dans 1’architecture; en d’autres termes, une philosophie qui four-
nit non seulement la portabilité du programme mais aussi 'uniformité de la performance a
travers différentes architectures de la machine. Le transfert généralisé de message n’est pas
uniforme car les structures significatives de message deviennent des opérations de reproduc-
tion lorsqu’elles sont retirées d’un systeme distribué et placées dans un systeme de mémoire
partagée. Linda n’est pas uniforme car les optimisations Tuple Space ont des effets radicale-
ment différents et une localisation de données implicite.

La solution a ces problemes serait de fournir un mécanisme qui encapsule 1’échange
par référence pour les structures de données significatives mais dont les sémantiques sont
valables pour les reproductions entre les espaces d’adresse disjoints, permettant ainsi une
implémentation efficace, aussi bien sur les architectures de mémoire partagée que mémoire
distribuée. Cette solution est apportée par des opérations simples et symétriques sur les Con-
texts qui fournissent une forte expression de localisation. Par ailleurs, cet objectif limite le
choix des caractéristiques de structure des données, a savoir le choix accordé aux Contexts
et aux opérations qui leur sont rattachées; a titre d’exemple, donner un type a un Context
et un opérateur “test of presence” pourrait considérablement compliquer I'implémentation
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(qui requiert des opérations de recherche) et 'uniformité du langage. Il vaut mieux laisser
I'implémentation de ce genre de structure au soin de 'ingénieur ou au support de la bib-
liotheque.

Des objectifs secondaires ont été atteints dans la conception du langage complet. Occam
était basé sur les principes mathématiques de CSP mais s’est avéré défectueux en tant qu’outil
d’ingénierie dans bon nombre de cas en sus des problemes associés au transfert généralisé de
message. Dans la conception de Fase, j’ai tenté d’apporter une réponse aux frustrations jadis
rencontrées par les programmeurs d’Occam bien que j’ai gardé la méme base mathématique.
Certaines sont tout simplement (bien que important) syntactiques mais il y a également
d’autres réponses qui sont les suivantes: les solutions principales visent le systeme des types,
la manipulation de structure des données, le support des systemes intégrés, le temps réel et
les ressources.

En conclusion, je présente des arguments sur I'importance globale de ces objectifs et la
maniere dont les solutions présentées apportent une aide. Je réponds aux questions posées
par Hennessy et Patterson qui résument les problemes traités dans cette these.

En considérant la difficulté que représente la programmation des machines paralleles,
Hennessy et Patterson mettent en avant ce probleme:

“Why should it be so much harder to develop MIMD programs than sequential
programs? One reason is that it is hard to write MIMD programs that achieve
close to linear speed up as the number of processors dedicated to the task increases.
... think of the communication overhead for a task done by a committee .... While
n people may have the potential to finish any task n times faster, the communi-
cation overhead for the group can prevent it from achieving this .... (Imagine the
communication overhead going from 10 people to 1,000 people to 1,000,000).”

—J L Hennessy & D A Patterson
Computer Architecture: A Quantitive Approach, page 575.

Reste a savoir si Fase pourrait solidement contribuer a la diminution de cette complexité;
toujours est-il que seule l'expérience d’application peut réellement nous le dire. Clest le
jugement pragmatique des ingénieurs, et non le raisonnement, qui est décisit, quel que soit
le niveau de sa réussite. J’ai soutenu que Fase réduit la complexité dans la programmation
parallele en supprimant la complication du transfert de message; les processus individuels se
concentrent sur les données et non sur les autres processus qui partagent ces données, et par
conséquent, la localisation apparait de facon naturelle.

Je soutiens un fait qui est en rapport direct avec le sujet traité, car ¢’est une hypothese fon-
damentale de cette these: programmer avec une composition parallele est plus simple que pro-
grammer uniquement avec une composition séquentielle. Les programmeurs séquentiels sont
préoccupés par l'imbrication des activités d’un programme et des approches orientés-objet
se sont développées par suite de nécessité de traiter ce probleme. L’évolution d’une philoso-
phie orientée-objet vers des philosophies de processus n’est pas une projection déraisonnable.
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Hennessy et Patterson poursuivent:

“Another reason for the difficulty in writing parallel programs is how much the
programmer must know about the hardware. On a uniprocessor, the high level
language programmer writes his program ignoring the underlying machine or-
ganization — that’s the job of the compiler. For a multiprocessor today, the
programmer had better know the underlying hardware and organization if he is
to write fast and scalable programs. This intimacy also makes portable parallel
programs rare.”

—J L Hennessy & D A Patterson
Computer Architecture: A Quantitive Approach, page 575.

(C’est une observation importante. Une observation qui a entrainé un effort considérable
dans le développement de la traduction automatique des programmes conventionnels vers des
formes efficaces des machines paralleles. Mais le programmeur uniprocesseur y est allé douce-
ment ces dernieres années. La nature de la béte a été tolérante vis-a-vis d'une dépendance
excessive des structures globales, et indulgente vis-a-vis des effets secondaires. De nouvelles
philosophies de programmation doivent se développer; des philosophies qui désignent des lo-
calisations identifiables et qui sont dépourvues d’effets secondaires; Fase fournit ces deux
caractéristiques. En outre, la philosophie de Fase fait abstraction de 'architecture de la
mémoire sous-jacente de l'ordinateur en assistant le compilateur dans ses efforts, a savoir,
réaliser des programmes paralleles portables avec une implémentation efficace.

Le réle du compilateur doit étre, finalement, de fournir I’emplacement efficace des données
et des processus, permettant a des programmes évolutives rapides d’écrire sans se préoccuper
de l'ordinateur sous-jacent. Cette tache peut étre fortement aidée par la philosophie du
langage et de I'interaction — bien qu’aucune des deux ne peut apporter une solution directe
puisqu’elles sont dépendantes de ’architecture de l'ordinateur. De nouveau, Hennessy et
Patterson:

“The real issues for future machines are these: Do problems and algorithms with
sufficient parallelism exist? And can people be trained or compilers be written to
exploit such parallelism?”

—J L Hennessy & D A Patterson
Computer Architecture: A Quantitive Approach, page 579.

La premiere question dépasse le sujet de cette these, bien que 'observation du monde
naturel et les applications existantes laissent supposer que méme s’il existe une certaine lim-
ite concernant le parallélisme dans les problemes et algorithmes spécifiques, la composition
parallele élaborée de ceux-ci demeure utile.

Toutefois, c’est la seconde partie de cette question qui est digrectement traitée dans cette
these. Former les ingénieurs requiert un investissement considérable. Les ingénieurs, autant



que possible, ont besoin des outils familiers. Occam fut confronté a des resistances, autant
pour son notation idiosyncrasique que pour son introduction de parallélisme. Ce n’est pas
tant le parallélisme qui est complexe, c’est plutét la complexité de 'interaction du processus
qui a présenté un obstacle. Dans Fase, cette complexité est considérablement réduite tandis
qu'un style notationnel familier est conservé. Les compilateurs sont fortement assités dans
leur tache par la nature, dépourvue d’effect secondaire, du langage et I’abstraction du Context.
Hennessy et Patterson approfondissent la question:

“Compilers of the future have two challenges on machines for the future:

1. Lay out of data to reduce memory hierarchy and communication overhead,
and

2. Exploitation of parallelism.”

—J L Hennessy & D A Patterson
Computer Architecture: A Quantitive Approach, page 581.

Une premiere partie est traitée par I'augmentation du degré de localisation des données
dans les programmes; la seconde est fournie par la nature des structures de Context, des
expressions et des fonctions sans effets secondaires (qui permettent une identification simple
du parallélisme subtil par le compilateur) et des constructions paralleles explicites.

En somme, un langage de type str avec une forte base mathématique qui ne s'impose
pas a l'ingénieur, est généralement souhaitable, permettant ainsi ’application des méthodes
conventionnelles, le cas échéant.
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Abstract

The construction of programs as a collection of behavior patterns called processes and some
mechanism by which they interact is evolving as a positive engineering solution to program-
ming parallel machines. While much work has been done on understanding process models
(e.g., Hoare, Milner, Pratt and others), the models by which processes interact remain today
a subject of debate.

Process interaction models are an integral component of parallel processing theory and
practice, defining the means by which concurrent processes interact; where “interaction”
means not only the exchange of data but also synchronization between processes. In searching
for a general purpose model to program parallel machines, it is desirable to provide portability,
an expressiveness which does not distract the programmer from the task in hand and efficiency
independent of the memory architecture of the machine.

Message passing has, for sometime, been a favored interaction model on the basis that
it is simple and readily understood. However, Generalized Message Passing, as typified by
the language Occam[INMS88], is an unsuitable model for general purpose programming of
parallel computers. It causes programmers to be preoccupied with complex issues of data
distribution and implementations are compelled to copy data that might usefully be exchanged
by reference.

The Linda[Gel85] model promised a solution to the problems of data distribution com-
plexity introduced by generalized message passing. Linda programmers need not be concerned
by issues of data distribution. However, the Linda model is flawed; performance semantics in
the model are unpredictable, leading programmers to write code based on an understanding of
how a particular optimizer or underlying matching protocol behaves — subverting any mean-
ingful portability, and data structures must be contrived to develop an uncertain construction
of distributed data structures.

This thesis discusses these issues and presents a new process interaction model. Fase is
described as a general purpose, high level, imperative programming language. A program is
a collection of processes which execute concurrently, constructing and interacting via strictly
typed shared data structures called “Contexts”.

Fase is novel in the following regard: a Context provides a priority oriented and strictly
typed intermediary in which distributed data structures are constructed and by which pro-
cesses may interact. Ease provides simple and symmetric binding operators which allow com-
plex data structures to be constructed and exchanged efficiently, constructions for both co-
operative and subordinate concurrency, and a mechanism for constructing statically reusable
and virtual resources.

The language definition is used as a reference vehicle for the model but the model is
sufficiently distinct to be added to conventional practices in the way message passing and
Linda have been in the past; a definition of C—with—Ease is presented. This illustrates how
hybrid languages can be constructed. A prototype compiler is described.
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Preface

Summary of the contribution

The principal contribution of this thesis is to the field of parallel processing models and
languages. The thesis discusses existing popular process interaction models, and makes a
new proposal that arises from the rationale. The new model is simple in use, consistent and
efficient in implementation. The model has important advantages over existing models for
generalized process interaction such as Message Passing or Linda.

These advantages are two fold. First, the language allows the simple and explicit ex-
pression of locality by the construction of uniform shared data structures. In essence this
provides a mechanism that frees the programmer of data distribution preoccupations and the
need for contrived distributed data construction found in other models. Second, the model
encapsulates a mechanism that allows an implementation to exchange data by reference. This
is of particular advantage in the manipulation of non—trivial data structures and reduces data
exchange and memory space costs in both shared memory, and distributed memory architec-
tures.

The language presented is suitable for the expression of both fine and coarse grain paral-
lelism. It contains simple mechanisms for resource management and a uniform approach to
exceptional termination (including error handling) on parallel machines.

Structure of the thesis

Chapter one The thesis begins with a short, informal, and historical introduction that
aims to enlighten the reader by giving a rationale for the direction taken in the work.

Chapter two considers the range of process interaction models; covering Global Shared
Memory, Communication and Shared Data Structures.

Chapter three considers implementation issues. A particular implementation is consid-
ered for three fundamentals. Semaphores, which represent the fundamental of mechanistic
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synchronization; Point—to—point message passing, which represents the fundamental of all
message passing; and queues, representing a comparable mechanism for the implementation
of logically shared data structures. A simple comparative assessment of the costs involved is
given.

Chapter four contains a Critique that details problems with the models. In particular, a
critique is made of the popular Shared Memory, Occam and Linda models.

Chapter five briefly discusses the objective of Semiotic definitions and the importance of
making pragmatic statements in the language definition that allow the consistent and efficient
use of a language.

Chapter six introduces the Fase model of interaction; a new proposal that addresses the
issues raised by the Critique.

Chapter seven presents the full language Fase in an informal style.

Chapter eight provides a more formal definition of the Fase language.

Chapter nine provides a CSP (behavioral) semantics of the Fase model.

Chapter ten discusses current implementations of Fase; the implementation by the author
and implementations completed by John Redman (University of Western Australia) and Tim
MacKenzie (Monash); both Honours Students at an Australian Universities. Both these
implementations generate C for the GNU C compiler. The author’s version implements the
language in a static style — the Redman implementation utilizes the uSystem kernel, the
Mackenzie implementation uses a network of workstations.

Chapter eleven discusses future work and directions.
The thesis concludes with a conclusion of drawn upon the work and references.

Appendices provide examples written in Fase, a full YACC grammar for the language, a

FLEX lexer, and a definition of C—with—Ease.
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Related work

There is some historical and present related work in the area of programming models for
parallel machines.

Occam and CSP

Occam was developed at INMOS by a team of engineers under the direction of David May
at INMOS Limited’s Bristol research center in England. Occam was first prototyped in the
early 1980’s[May83], and was fully developed in an Occam 2 definition released in October
1987.

Occam is an implementation of the ideas of Tony Hoare found in CSP[Hoa85]. Occam
continues to be developed at INMOS.

CSP is the landmark work of Prof.C.A.R.Hoare and others at Oxford Programming Re-
search Group, Oxford University, England. My own endeavour to escape from the influence
of this work have inevitably served to strengthen my understanding of it and develop a real-
ization of its magnitude and importance. If there is to be an “Elements” of computation I'm
inclined to believe it will be founded on this work.

Linda

Linda was first suggested by Dave Gelernter in 1985. This model has had a significant effect
on subsequent developments in the field — including the development presented here.

This development continues at Yale and elsewhere. Most notably the work has been ex-
tended into the domain of symbolic processing by Suresh Jagannathan, now at NEC Research

labs in New Jersey, USA[Jag92].

Orca
Orca also develops the Linda ideas of shared data structures. This work was first undertaken

by Henri Bal in Andy Tannenbaum’s group in Amsterdam|[Bal89] and is also a component of
the Amoeba environment.

Ada and Pascal Plus

Ada and Pascal Plus implements the Remote Procedure Call (RPC) as the basic paradigm
for processes and interaction. RPC is a simple variant of communicating sequential processes
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modeled on the construction of procedures as processes whose formal inputs and outputs are
communications.



Chapter 1

Introduction

(A little history)

Before getting into the core of my thesis I wish to take a few informal moments to detail a
little history; history that has direct bearing on the subject of this thesis.

The construction of parallel computers continues a unique period of technological inno-
vation in human history. In the last decade of the twentieth century we are no longer in
awe of such machines. Rather we are in awe of how they might be utilized. This is perhaps
analogous to the position at the end of the last century in the development of the internal
combustion engine. The internal combustion engine had existed for several years. Few could
begin to imagine in that final decade the extent to which that technology would impact on
the following century. Fewer still could imagine that it would herald an age of motor vehicle
in which international flight became an experience of mundane character.

What other revolutionary successes, analogous to the success of the Wright brothers or
Henry Ford, await in some other discipline; waiting for the enormous power and versatility
which can be found in the technology of parallel computers?

One observation is certain: Parallel Processing will become embedded as the core technol-
ogy in most aspects of human technological endeavor. Be it in the so-called “grand challenges”
such as simulation of the global climate, the implementation of satellite communications sys-
tems, or control and monitoring of the family motor vehicle. Parallel Processing will come to
dominate the next century.

Yet our technology appears to differ significantly from that of the internal combustion
engine in the order of its complexity. Actually, this is a statement I find difficult to justify. Is
this apparent complexity any greater than the relative challenge internal combustion engines
presented engineers during the latter half of the nineteenth century? I think not.

We are a sibling science, born of the same stuff as the internal combustion engine and
the parent/sibling electronics. We are a child of human innovation. Yet we are surely the
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youngest child in this family. We are clumsy, naive, often wrong and only just beginning to
find our feet.

Like a child we stumble from one idea to the next and often find it difficult to maintain a
focused attention. In one moment it is logic programming; in the next it is functional. One
moment we are making over extensive use of grandiose mathematics, and in the next we make
careless and ambiguous statements in common language.

Like all children we are developing methods to deal with our domain. Methods which
enable us to execute a desired task in a timely and complete fashion, and also methods which
enable us to explain to the other kids on the block just how we did it.

Sometimes the methods themselves lead us astray, and we find it necessary to modity our
approach in the light of our experience. We are learning and growing; this is as it should be.

It is important to recall that our sciencel

is an engineering science. The results of our
research will be utilized by engineers and scientists trying to solve real problems with real

machines. The measure of our success is how well we address the needs of these engineers.

Much of the direction taken in this thesis is motivated by first hand industrial experi-
ence. Experience that is difficult to quantify scientifically, with intuition difficult to assess
qualitatively, though this thesis may be some measure. If [ had the time and money I would
gladly go back over the years and talk again, making a more detailed study, to each of the
opinionated engineers whose irritation finally nagged me enough to present solutions founded
on their loose remarks.

I was at the INMOS Research Center, in Bristol England, during the development of Oc-
cam and helped take that language from its prototype form to its complete form as Occam 2
(during 1985-1987). I worked on the detail of the language and its definition. The commu-
nicating process model of Occam is a simple copy of the concepts developed by Tony Hoare
at Oxford University. Under the direction of Prof. David May F.R.S., I wrote the language
definition as it is in the Occam 2 Reference Manual, published by Prentice Hall under the
name “INMOS Limited”.

Subsequently, I remained at INMOS for several years where I was a member of the Com-
puter Architecture Group and Transputer Development Team. There I worked on the require-
ments for operating systems on parallel machines, and silicon support for various applications
(including Al and graphics). I was directly involved in the design of two microprocessors —

the T810 (a “skunk project” designed to enhance the T800%) and the H1/T9000°.

There also, because of my detailed knowledge of the language, I played the role of “Occam
Guru”, listening to customers who were using (or abusing) the language. I listened with
increasing disquiet to their comments. For more than 3 years INMOS very kindly paid for me

!That section of Computer Science concerned with Computer Architecture and tools for the engineer —
such as programming languages and models.

2The T810 was canned in the end [mainly] because limitations in the T800 process technology restricted
the eventual clock speed.

31 was a member of the T9000 design team in my last months at INMOS.
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to travel across Europe and the United States — mainly I listened to engineers. They told
what rapidly became a familiar story.

I began to suspect we had got something wrong. Occam was sold to the world as, and
designed to be, a general purpose programming language for machines built with multiple
microprocessor devices (in particular the transputer). In practice, the language (though not
the devices) turned out to be rather special purpose.

How was this so when it directly countered the Occam design goal?

Engineers encountered two main problems. Programs often ran much slower than antic-
ipated — too often the multiprocessor program ran slower than the sequential version (not
good for business). Many engineers liked the new language yet project managers complain
that Occam is too difficult to use in a large project.

Typically, and briefly since the thesis develops these points further, engineers were per-
suaded by us at INMOS to use the process model (parallelism) in the free expression of their
problem. This ideal has many desirable characteristics. The expression of problems in the real
world is naturally parallel as has been pointed out extensively in the literature [Hoa85, Gel85].
Certainly, it is at least simpler than expressing the interleaving of related activities in sequence
as required by conventional programming. It is modular since processes become software
components with well defined interfaces (at interaction points), and the program structure
provides guidelines for the final hardware description of the ideal machine for the application.

Further, excessive parallelism ensures there is always a process which can be scheduled
during internodal communication latency; i.e., while one process on a device is waiting for
data other processes continue to utilize the CPU.

This rationale is indubitable in well balanced programs explicitly designed to take advan-
tage of a particular machine’s topology and network latency. Unfortunately this rationale is
flawed in the context of a literally translated Generalized Message Passing model. Why?

One reason lies in the addition of new overheads introduced by the message passing
programming model. Communication between processes and communication between devices
is not necessarily well mapped. Indeed, without fore-knowledge of the target topology, it is
hardly ever. Although, the program did describe a “perfect” message passing machine on
which the application could execute, as written, few ever build applications that way.

The processes implementing the excess parallelism invariably need to communicate. In
embedded systems cost engineering is a prime consideration. In practice this always means
that the application must be scaled down to fit a target requirement of some number of
processors less than “optimal”.

Why should this cause a problem? Point—to—point communication is a copy operation
— be it between processes communicating across a network or (and here the problem arises)
between processes which share access to the same memory subsystem. Yet the implementation
of communication across a network and communication within the same memory subsystem
have very different performance effects upon the CPU.
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The latency* over a network is much higher than the latency for the same operation
implemented by copying data in the same address space. However, the actual CPU time
involved in a non—trivial message communication implemented by a copy operation is sig-
nificantly higher than the network counterpart. Excess parallelism can hide the network
latency (on the transputer, for example) almost completely; however, the shorter latency of
a communication implemented by a copy operation has a direct CPU cost.

So, communication of a block of data in the same address space has a significantly higher
performance impact upon the CPU than the higher latency network communication. In
the transputer architecture (which utilizes a RISC-like load/store model) this is because all
data must pass through the CPU in the copy operation. Further, even with DMA, in cache
architectures the source and destination of messages have poor spatial and temporal locality®
causing an indirect impact on performance via the memory subsystem; whereas a network
communication only has a single consistent effect at either the source or destination address

block.

We can see why this is a significant issue in programming by considering the following
case. Given some Occam program written in a general purpose style (i.e. without direct con-
sideration of the architecture of the target machine) we are faced with several implementation
options.

As a first option we might consider building the optimal distributed memory multi—
processor described by the topology of the program. We could take a naive approach and
simply designate one process to each processor; if processors are very cheap we might not
care that some idle time occurs due to data dependencies. While this may not be considered
an optimal use of hardware, it is a good implementation of the program. We have here a
specialized machine well suited to our particular program.

A second option might be to take some random number of processors on a distributed
memory multi-processor less than optimal which represents constraints imposed by the avail-
able resource, cost engineering or an operating system. This is a common case and very
often the result of attempting program execution on a general purpose MIMD machine. The
mapping here will require a scaling down of the program to fit the available resource.

The process of scaling down the program will cause collections of processes to share
processors; communication between these processes will be implemented by copy operations.
It we again consider the transputer implementation these operations require the involvement
of the CPU. On the T4XX/8XX the cost is 2 cycles per word, the TIXXX is 1 cycle per
word since the CPU can perform one read and one write in a cycle — this is best case with
a well behaved memory subsystem and favorable locations for the source and destination. In
practice the cost will be higher. Where the messages involved are non—trivial a significant
performance penalty is incurred.

As a result of this effect engineers are shocked to discover that, counter to their intuition,

4Defined as the total time for the communication operation to complete.
®Good spatial and temporal locality is essential for efficient cache characteristics[Prz90].
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their programs execute slower than expected® since the CPU is now busily copying data. This
cost is so high in fact that [ saw several cases in my time at INMOS where competent engineers
had decomposed sequential programs only to find that the parallel version ran slower or with
only marginal improvement over the sequential version.

This problem is at its worse when we consider a single processor implementation; this
represents the worst case resource offering of the previous option. On a single device all
communication between processes involves a memory to memory copy operation.

As a final option consider the effects of running our general purpose message passing
program on a shared memory multiprocessor. The copy effect is now manifest on a parallel
machine; for data which would benefit from being exchanged by reference must now be copied.
This is one reason there is no interest in Occam for such architectures — again, the Occam
model does not map well when processes share memory — an implementation is compelled
to copy data that might otherwise be exchanged by reference.

This copy cost I call the copy penalty and while it is manifestly obvious on transputers it
will be less obvious on other machines with hardware support for block move operations (i.e.
via DMA) in the same address space where the effects will be manifest by side effects in the
memory subsystem, or dwarfed by high communication start up caused by operating system
overheads.

The copy penalty is often unnoticed or dismissed on non—transputer systems because many
current communication architectures incur such high message start up latencies in operating
systems. This cost in its turn has encouraged programmers to increase message sizes in an
attempt to amortize the start up latency — this only serves to increase the copy penalty and
is nothing short of a disaster for the future. Programs written today in a generalized message
passing style, directed by attempts to amortize communication overheads, will find they hit
new problems tomorrow. We can expect to see the start up cost of communication reduce as
communication architecture evolves. Unfortunately the memory subsystem bottle neck will
not disappear so easily.

Memory cache systems do not help us here. Indeed, a memory to memory copy oper-
ation can have devastating effects on cache memory hierarchy, particularly where multiple
processors are involved. Messages have poor spatial and temporal locality (by definition).
Implementations often require message placement in non—cached parts of the memory space
causing performance side effects in memory subsystems either because message data is further
copied into cached memory or because variables used in communication must be mapped into
a non—cached space.

I do not wish to distort the importance of the copy penalty by contributing too lengthy
an explanation — in fact, we shall see later, that distractions caused to the programmer
by the message passing model are a far more significant issue. Any benefit resulting from
reference exchange as opposed to copy exchange will vary according to machine architecture
and application. However, it has been shown in even simple and regular cases to be of benefit.

5In many cases much slower than expected.
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In the transputer case a 10% increase in effective bandwidth was seen by Hopkins and
Welch[HoWe89] of the University of Kent, England, Computing Laboratory in 1989, when
(by forced sequence in Occam) using exchange by reference. In a topology aware Data flow
solution for systems of linear equations and using a hand crafted balanced pipeline using
the exchange of pointers to manage buffers conventionally copied Hopkins and Welch noted
only(sic) a 10% increase in effective bandwidth and 50% saving in memory requirements.

It is a general principle in the development of the new proposal described in this thesis
that, for efficiency of performance and memory usage, and for uniform performance across
architectures, a mechanism should be provided which allows data to be exchanged by reference
where possible. Such a mechanism will reduce traffic in the memory subsystem and make the
exchange of data in shared memory subsystems a fixed cost independent of the size of the
data involved.

On current technology there is an additional overhead caused by operating system net-
work subsystem software routing. This is because hardware architectures do not provide a
fully connected network. This we can call the “routing overhead”; i.e., the cost of implement-
ing data routing in software. This routing is often required to allow processes not directly
connected by hardware to communicate. I will not be concerned by this overhead here since
it is one that I anticipate will be solved by future systems architectures in hardware; i.e., 1
expect parallel machines and distributed architectures in the future to provide fully connected
networks or routing which has no effect on intermediate processors. Evidence to support this
contention exists in developing technologies[Pou90, TMC92, INTEL92]. Further, this issue
is a general one which I delegate as the direct concern of a system level implementation and
is thus not strictly a penalty caused by the programmers model (in that it is a performance
issue common to them all on distributed systems). However, many of these same routing sub-
systems will benefit from the model proposed in this thesis since operating system services
very often copy data which can be exchanged by reference. The thesis presents a model which
allows this to be simply expressed.

The copy penalty manifest in the Generalized Message Passing model has a semiotic
effect”. Occam programmers when they discover the copy penalty often overcome it by
turning the Occam usage checker off. This allows programmers to pass data by reference
circumventing the Occam usage rules®. In other cases the code is often rewritten (by the
user) to provide a balanced process decomposition. In other words, efficient message passing
programs can be written with a detailed awareness of the target topology — however the
resulting code is highly machine/topology dependent, ergo specialized®.

“Semiotics are explained later in the thesis, but account for the effect a language has upon the behavior
of the user, i.e. here the way the engineer or scientist is forced to use the language.

8Hopkins and Welch, mentioned earlier in the text, have shown how forced sequencing via a manager /butler
Occam process can be utilized in simple cases. Double/triple buffering techniques are commonly used in
optimization and conform to Occam rules.

°Indeed, INMOS and the Programming Research Group at Oxford University are aware of the problem
and extensive effort has been placed in the development of manual transformation tools[Gol88] which allow
Occam programs to be algebraically transformed from a general form into a topology specific form.
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These are efficiency problems and they have a direct effect upon the behavior of engineers.
In practice there is a more remarkable semiotic effect which supports a contention that Occam
is too difficult to use in a large project. This problem arises for several reasons, some have
nothing to do with the language, none-the—less there is a common thread which indicates a
language and model flaw, i.e.

Occam programmers become preoccupied with issues of data distribution.

Forget for a moment configuration issues; i.e., how to map an Occam program onto a target
machine, consider only the issue of sharing data between parallel processes working together
on a particular algorithm. Occam programmers become side tracked — nay, preoccupied
— by issues of routing, buffering'® and multiplexing data between the components of an
algorithm. They expend disproportionate amounts of time on such issues which have nothing
to do with the application problem they are trying to solve. As programs become larger the
complexity of these issues grow rapidly.

In December 1989 I left INMOS and went to Yale University at the invitation of Prof.David
Gelernter. I was intrigued by the activity of the Linda group and the simple model Linda
promised. Why? What problems did Linda solve?

Linda’s simple interaction model is as tempting and deceptive in its simplicity as the
message passing story with two circles and an arrow. Linda promised a solution to the
complexity of data distribution by providing a conceptually simple global space in which data
can be placed and exchanged. Unlike Occam programmers, Linda programmers need not be
concerned with issues of data distribution. Data objects, called tuples in Linda, are placed in
a globally accessible space called Tuple Space, and tuples may be retrieved subsequently by
value associative matching.

Linda’s distinguishing characteristic is this value associative matching, which amounts
to complex address translation in a global shared memory — this turns out to be an opera-
tion with unpredictable performance characteristics and this lack of predictability also has a
semiotic effect.

Consider the case of the Linda optimizer, write a Linda program or Lindaize an existing
C code. You cannot predict the performance of the program, and you will not know the
performance until the task is complete — any empirical analysis you perform at any point
in the development will likely be invalidated by subsequent changes to the program since the
optimizer will almost certainly change strategy as you add new tuple types.

Ok, so the engineer learns everything there is to know about the optimizer — now you
have subverted portability. In fact most “successtul” Linda programs are either written within
a few feet of the implementor of the optimizer or are so parallel and have such granularity
that the Linda overhead disappears into insignificance and in such cases pretty much any
model would do.

10 Although buffering is almost entirely a performance related issue in use.
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Like Occam programmers, Linda programmers have learnt ways to circumvent these prob-
lems and Linda programmers also do what amounts to turning off the usage checker in Occam.
At Boeing where some work using Linda has taken place, they use tuples to exchange pointers
into the shared address space of a large database. Is this a legitimate use or does it break
the model? I would argue that it does break the model, though the engineers who wrote the
code simply solved a problem with the tools at hand. From an engineers point of view that
is legitimate use.

If it is a consistent programming model we need it should capture all that we seek to
express. Our problem is then to write efficient programs using either Generalized Message
Passing or Linda on parallel machines today the engineer is often compelled to break the
model. Nor is this just a simple case of hacking for the last few drops of performance as
might be the case on a uniprocessor, for the gains are so significant pragmatics present the
engineer with no other option.

The lesson to learn from this precise is that the existing models are not meeting the true
needs of the engineering and scientific community.

For completeness, I should not end this passage without mention of the various proposals
made for Distributed/Shared Virtual Memory [RaTe et.al.89, RaKh88/50], least the reader
think they be forgotten. Such proposals seek to provide a global address space for shared
data management. Two central issues exist in such systems

e the expression of locality, and

e the reduction of copy operations within the same virtual address space.

If we consider the implementation of Linda and Generalized Message Passing models
in such systems we find that we are confronted with the same set of problems mentioned
in the foregoing discussion. The copy penalty remains problematic, perhaps more so. The
preoccupation with data distribution remains. An implementation of Linda using such a
system may be useful[RaKh88/38] but does not address the previous critique.

[ here view Distributed/Shared Virtual Memory as an implementation technology and
not as a programmers model; though in the thesis I shall consider global memory models of
interaction and the problems associated with them. Distributed/Shared Virtual memory does
not provide solutions to the classic critical region problems addressed by Occam and Linda.

Even if such systems provide guarantees of atomicity at some level, alone such memory
systems provide no means to express locality — in fairness, such proposals have included
proposals for programmers models, usually based on communicating objects or in the case of
Ra[RaKh88/38] by implementing Linda. Thus such existing systems supplement the Virtual
Memory system with the additional support of a programming model. I consider this a
reasonable approach and expect the proposal given here to implemented on such systems.
Such implementations will benefit from the features of the proposed model.



25

The future

Concurrency is being developed at many levels within the parallel machines under devel-
opment today: Super—scalar designs for microprocessors with multiple execution units and
long instruction words, MIMD and SIMD architectures, shared and distributed memory, high
connectivity networks.

Some of these technologies are well understood and established, others are new. These
latter developments are changing the fundamental nature of the machine. In particular,
high connectivity networks, able to provide virtual connections between any two nodes in
a network, will inspire an increased interest and utilization in the development of parallel
algorithms on multiprocessor MIMD machines, whose processing elements will number many
times greater than those on current machines.

It is a simple matter to project where all this might lead, and it is on the basis of such
projections that the model presented here has evolved. My projected view sees a progressive
integration of the varying parallel architectures into parallel machines which combine the
architectural components previously described as, for example, machines where nodes consist
of multiple super-scalar microprocessors which share local memory, interconnected to similar
nodes via high connectivity networks; a combination of shared and distributed memory. In
addition, nodes in such machines will include resources such as vector processing components,
SIMD processors and other specialised hardware.

Instruction scheduling compilers will be required to exploit opportunities for parallelism
at the instruction level; this is a very low level machine issue primarily aimed at hiding
memory access latency, and fine grain data dependency.

Compilers will require much greater sophistication to transform a given program — be it
sequential, implicitly or explicitly parallel — into a final form for efficient execution. Many
of the criticisms arise here because compilers today perform literal translation, future work
arising from this thesis demands a review of non-literal translation by optimization compilers
in the light of interaction models.

I first made these remarks in my 1990 Fase report — announcements at the time of
writing from machine manufactures have confirmed this intuition. In the Thinking Machine’s
CM5 each processor is surrounded by vector units|TMC92]. We have entered the world of
parallel machines. Parallel in every sense, fine and coarse grain, implicit and explicit, it is all
important.

Solutions are being sought at many levels to enable effective utilization of future and
existing parallel machines.

An important effort is the development of tools which allow the transition of existing ap-
plications and skills to this new domain; e.g., Automatic parallel decomposition of FORTRAN
code and other languages. Extensions to existing languages, such as Linda, provide simple
extensions to current convention which do not require massive re-education of the existing
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skill base.

These are ad hoc but necessary approaches to the problem of utilizing rapidly advancing
machine architectures.

We are confronted with the following questions:

e How do we develop architecture independent algorithms which execute efficiently on
a range of architectures (existing diverse architectures and the projected integration),
taking advantage of the architectural features of each target? For example by limiting
copy operations to communication between disjoint nodes.

e How may a common view of system resources on parallel machines (including specialised
hardware components) be developed and simple access mechanisms be provided?

e How do we translate programs onto parallel machines to provide the most effective use
and reduce overheads?

e How can failure and error be handled on parallel machines uniformly?

Caveat

To a degree the design of programming languages is a subjective affair. Occam was criticized
extensively for its idiosyncratic style. The language presented here tries to be a little less
idiosyncratic and to make allowances for the training of the existing engineer. For example, the
primitives are predefined in a procedural form in the language in recognition that many USA
observers disliked the query (7) and bang (!) notation; from a design point of view however
it is desirable to maintain a clear notational distinction between procedural abstraction and
fundamental primitives. In any case such aesthetics often determine the language of favor.
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Process Interaction Models

A Process Model describes a program as a collection of behavior patterns called “processes”.
A Process Interaction Model describes the means by which processes interact; i.e., the means
by which processes synchronize and exchange data.

In this chapter I discuss Process Interaction Models; including the issues of process syn-
chronization and data exchange. Several forms of process interaction concepts are currently
in existence and these decompose into three categories:

e communication — the direct assignment of a value yielded in one process to a variable
defined in another.

The reader may be tempted to believe broadcast and buffering have been ignored in the
above statement, this is not the case, a buffer is a simple process, an intermediary, that
often implements (an indirect) nonsynchronized communication between two processes.
A broadcast is similarly a process, again an intermediary, that implements multiple
communications from a single source.

e global memory shared data — the extension of existing sequential models where
defined variables are specified to be accessible to several or all of the processes composed
in a program, and

e logically shared data structures — where shared data structures are distinctly
defined and adopt characteristics (such as write order) not found in the global memory
model.

It is not my aim here to provide a comprehensive rendition of historical and current
interaction models. Such surveys are readily available and will not be improved by repeti-
tion here. For such perspectives 1 direct the reader to the excellent recent publication of
Prof.Gregory Andrews book “Concurrent Programming: Principles and Practice” published
by Benjamin/Cummings[And91]. This book provides an excellent and detailed overview with
very good historical notes.

27
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The purpose of this focused review is first to identify interaction models as a single issue in
parallel processing; thus, I highlight that what many perceive as distinct models (e.g., barrier
synchronization, communication and shared data structures) are, in fact, classes of a single
model. The Interacting Process Model provides a common process model, mechanisms for
synchronization and data exchange (sharing) between processes. In addition it is important
to clearly identify issues effecting performance and functionality.

In this chapter I focus on fundamental characteristics of process interaction models. In
the following chapter I shall discuss the implementation of these characteristics and, in par-
ticular, the focus is on three existing systems with some pedigree: Semaphores and global
shared memory, Occam — an example of the direct communication method, and Linda —
the most widely understood advocate of the logically shared data structure model. In the
following chapter I consider some implementation requirements of these models in a manner
that encourages a comparative assessment of the issues for data exchange in each model.

My objective is to lead the reader to a natural conclusion compatible with the views
presented in the introduction; thus, I seek to persuade the reader that existing programming
models for parallel machines address several issues badly. 1 will detail these inadequacies
further in a following Critique and will present solutions later.

2.1 Processes and termination

All of the models considered allow for the explicit creation of processes; thus a program is a
set of behavior patterns that interact via some interaction model. This set of processes may
have been directly described by the programmer or may have been generated by a higher
level compiler — such as a functional language compiler or a compiler which automatically
decomposes FORTRAN — the origin of this decomposition is of no concern to us here.

In this section we consider processes and in particular the collective termination charac-
teristics of process compositions.

There are two fundamental forms of process synchronization on termination in Interaction
Models. Simply, process compositions either synchronize with all the other components of
the composition or they do not.

Synchronized process termination assures that no subsequent process will continue before
a composed set of processes has terminated. This is commonly called barrier synchroniza-
tion. Barrier synchronization is present in many parallel models, such synchronization is
an interaction between all the processes in the composition. Each process terminates only
when all other processes in the composition have terminated and this requires the exchange
of termination information between the processes in the composition.

Synchronized process termination manifests a synchronous process model; i.e., the barrier
provides a step marker such that composed processes appear to have the same duration —
though they, in fact, may not have.
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Process termination without synchronization provides no assurance concerning the joint
termination of a process composition. Each process in a composition terminates according
to its natural duration; i.e., upon termination no interaction takes place between composed
processes. Process termination without synchronization manifests an asynchronous process
model; i.e., composed processes may have differing duration.

Process creation and synchronization interaction have long been supported by the mech-
anisms

e Fork — start a process, and

e Join — complete a forked process.

These mechanisms have proven to be the fundamental mechanisms of process creation
and synchronization and continue to play a major role in implementation — although they
are disappearing from the programmers model for higher level abstractions.

The primitive
Fork L

allows control flow to pass to the program statements identified by the label L (like “go to”)
but also allows the flow of control to continue to the program statements following the Fork;
thus, establishing two “threads” of control. The primitive

Join

as the name suggests, brings together two such threads of control, by combining Forked
threads.

In conventional multiprogramming Fork and Join combine to provide process creation
and process termination synchronization; i.e.,

count := 2

Fork L1

P

go to L2
L1: @

L2 : Join count

creates a process labelled L1 whose behavior is described by (), while a process described by
P continues. This process pair is recombined by a Join statement that allows subsequent
processes to begin only when count = 0; each instance of the Join instruction has atomi-
cally decremented count, thus Join provides an implementation of synchronized termination
discussed in the previous section.

A version of Fork is still used today in the UNIX operating system. UNIX Fork, however,
does not require a label and no Join equivalent exists. Library functions enable a process
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to identify whether it is a child or parent process. A Fork instruction makes a complete
copy of the memory allocated to a process and creates a new process that utilizes the copied
“environment”. The use of this copied environment by the newly created process avoids
the dangers of data sharing (which I shall discuss in the following section). Both the child
and the parent process continue execution from the point the Fork instruction was called.
Unfortunately, because the environment is copied, UNIX Fork is an expensive operation and
not to be used for the creation of non-trivial processes.

Rapidly, Fork and Join evolved into higher level compositional constructions allowing a
structured process model to be considered; i.e.,

cobegin P;() coend

provides a composition of the processes P and () and is similar to that found later in Occam.
The semantics of this composition can be implemented by the previous example of Fork and
Join.

The construction of processes in this style was first proposed by E.W.Dijkstra and adopted
by Hoare as the basis for the parallel construct in CSP.

The composition,
Pll@

in Hoare’s notation, behaves like P and () concurrently and terminates when both P and )
terminate. Hoare rationalizes his choice in the following discussion ([Hoa85], page 226)

“One great advantage of this structured notation is that it is easier to understand
what is likely to happen [compared with Fork and Join], especially if the variables
used in each of the [processes] are distinct from the variables used in the other

In this case, the processes are said to be “disjoint”, and (in the absence of
communication) the concurrent execution of P and ) has exactly the same effect
as their sequential execution in either order

begin P;() end = begin (); P end = cobegin F;() coend

Furthermore, the proof methods for establishing correctness of parallel composi-
tion can be even simpler than the sequential case. That is why Dijkstra’s proposal
forms the basis for the parallel construct in [CSP].”

It we look at the case of processes without terminating synchronization we can follow
Hoare’s rationale more completely and find a means to address his concern. Restating the
above, it P, () and R are disjoint then

PQ=q;P="r|Q,
where P; () denotes the sequential composition of P and (). I further introduce the notation

/1P
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to mean the process creation (i.e., Fork) of P we find that

PllQ;R# [/P;]]Q; R.

The distinction is in the terminating synchronization; i.e.,

[/P:]]Q; R = P|Q| &,

and we find that
P;//Q; R = P; R||Q.

In processes that are not disjoint (i.e., they interact in some way) there is synchronization at
the start of a forked process that defines the environment the created process inherits from
the behavior of the creating (parent) process up to the process creation.

2.2 Global memory interaction models

Shared memory programming was the first practical model of parallel (though more com-
monly called “multi”) computing. Global Memory interaction models extend conventional
single address space programming models by adding mechanisms for process creation and
synchronization (described in the previous section). Data exchange mechanisms are absent
from traditional global memory models since all processes can access conventional variables
that are within scope.

Global Memory models do, however, need to provide synchronization mechanisms to
permit exclusive access to variables. These mechanisms manage the well known “critical
region” problem. These problems are widely known and discussed and I refer the reader to the
literature for deeper discussion. These problems have long been dealt with in operating system
literature. Peterson and Silberschatz’s classic text on “Operating System Concepts” [PeSi85]
still provides a good overview of the issues.

2.2.1 Semaphores — conditional precedence

Semaphores were first introduced by Dijkstra[Dij65] as synchronization operations to manage
the critical region problem.

A critical region is a process whose actions upon a variable set are exclusive; i.e., con-
current access by another process is forbidden since such access may produce a conflict.
Semaphores provide the synchronization mechanism that permits exclusive access to be im-
plemented.

As an example consider the deletion of a record from a linked list in a parallel system
with a common address space. This problem will be of interest to us later when considering
a shared process scheduling list. Fach entry in the list has a next pointer pointing to the
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following entry, and the list is implemented by a front and back pointer. The front pointer
points to the first entry in the list; the back pointer points to the last entry, the behavior

back->next = new_entry; /* update pointer in the last entry */
back = new_entry; /* update back pointer */

adds an entry to the list, and the behavior

front; /* get pointer to entry and */
front->next; /* delete entry from list */

entry
front

deletes an entry.

A problem will arise in both cases if we consider what may happen if two processes
attempt to add or delete entries to the list at the same time. Consider a deletion where two
processes simply interleave the assignments required for deletion:

PO: entry = front;
P1l: entry = front;
PO: front = front->next;
PO: front = front->next;

a process reads the value of the pointer to the first entry but before the front pointer is updated
a second process reads the same front pointer. Subsequently the two processes each update
the front pointer. Now, by this description, both processes point to a single deleted entry
while two entries have been deleted, and this is certainly not the desired effect. We need to
ensure that the two assignments required to implement the operations we have defined occur
without conflicting interruption. In a single processor multitasking system it is sufficient to
ensure that no interrupt (e.g., a time slice) can occur during the update.

The transputer instruction set solves this problem by allowing interrupts only at well
defined points in the instruction stream, such as at a loop end!, and was designed with the
above consideration in mind for uniprocessor multitasking.

Unfortunately the issue is a little more problematic when multiple independent processors
share the same address space; and this is where the use of a semaphore comes in.

A semaphore S is an integer variable that, after assignment of an initial value, can only

be accessed by the atomic operations P and V. The classic definitions of P and V behavior

ELI’62

P(S) = while S <0:skip
Si=5-1

!Given today’s super scalar pipeline architectures loop ends will not always be such a good choice for
performance reasons. Many small loops are able to utilize the pipeline very efficiently; e.g., for like vector
operations. A timeslicing scheduler would have a rather profound effect on the performance of such operations.

2The busy nature of the definition of P is unimportant here, needless to say, the nonbusy implementation
has the same behavior without the performance hit of continuously looping.
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V(S) = Si=8+1.

Conceptually semaphore embodies a fundamental notion of synchronization, simply, a flag.
A process wishing to enter a critical region waits on a flag value before proceeding; just as
a train waits on a rail side signal before proceeding. Thus, if S is a semaphore that protects
the list in the previous example then to allow the safe deletion of an item from the list our
delete operation must become

P(S); /* wait until it is safe to proceed
and set semaphore */

entry = front; /* get pointer to entry and */

front = front->next; /* delete entry from list */

V(s); /* reset semaphore */

Other processes must cooperate; i.e., they too must use P(.5) and V(5) to access critical
variables protected by S. Thus concurrent processes are excluded from access to critical
variables by surrounding the statements (the region) in a process that accesses them with

P(S) and V(9) (figure 2.1).

declare semaphore S =0

cobegin
(P(S); P;V(5))
(P(5); @;V(5))

coend

Figure 2.1: Semaphores provide guards for the implementation of critical regions; enforcing
sequential synchronization. Here, although composed concurrently, P and () are forced to be
sequential since only one can succeed past P(.S) before it must wait an instance of V() to
reset the semaphore.

Semaphores work well as long as the programmer observes the discipline of P and V
around each critical region. However, if a P or V is neglected or placed in the wrong order
chaos will result. Such errors can be non—obvious and difficult to detect.

Barrier synchronization (i.e., Join) between processes is defined by the semaphore notion
also. If the semaphore NP is set to indicate the number of processes in a parallel composition
then Join is simply the sequence

V(NP); P(NP); V(NP).

The first V instance counts the number of terminating processes, each P will terminate when
all the processes terminate, and as each terminates it permits the termination of each of the
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other processes. We can rewrite our earlier example that used Join as

declare semaphore NP := —1
Fork L1
P
go to L2
L1: @
L2: V(NP)

2.2.2 Critical regions

Critical regions can be specified as a higher level construct implemented by semaphores. This
has the significant advantage that the semaphore operations are automatically placed around
the region and in the correct order. Given P and () as the critical regions acting on the
variable set (¢ (figure 2.2) a composition of processes P and ) may be sequentially composed
in either order (i.e. P; @, or @; P) but not concurrent.

region((¥): P
region((¥) : ()

Figure 2.2: Critical regions: a composition of the regions P and () acting on G must be
sequential.

Critical regions were first introduced as a language construct by Brinch Hansen and
Hoare[Hoa72]. Hoare also introduced the notion of a conditional critical region

region (G when B : P

where B is a boolean expression. P is performed only if B is true; otherwise, the region is
restarted.

Again, semaphores prove to be the primitive notion. Regions are simply abstractions for
region((¥) : P = P(S5); P(G); V(9)

where S is the semaphore that guards the usage of G. Regions possess the additional advan-
tage that the compiler can simply spot and check the usage of G; i.e., ensure that ' is not
used outside of a region.

Conditional Regions are considerably more complex to implement since they require that
the condition be tested not only on entry to the region but also as each releasing process
terminates since that process may have cause the condition to change. Even so, it is the
semaphore that is the principal component of the implementation ([PeSi85], page 380).
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2.2.3 Monitors

Monitors were later developed by Hansen and Hoare[Hoa74] as a further abstraction of critical
regions. By Hoare’s account ([Hoa85] page 228) Monitors were inspired by the class concept
in SIMULA 67, classes themselves being a generalization of ALGOL 60 procedures.

A monitor provides safe access to a set of abstract data types by parallel processes.
Monitors are very much like class objects in the object oriented model; providing a guaranteed
mutual exclusion, for example, a monitor

monitor count

var n

proc *up{n:=n+1}
{n :=0;#;print n

}

provides an operation up that increments a variable, # is replaced in an instance of the
monitor by the body of the specified procedure; i.e.,

instance count P

being equivalent to
monitor count
var n
proc *up{n:=n+1}
{n:=0; P;print n

}

within the body of P no reference can be made directly to n but the starred procedure up
may be called. Monitors provide even greater containment than regions by providing stronger
locality; making the job of the compiler in identifying shared variables even easier and enabling
the implementation to safely place semaphores to protect them.

Monitors alone do not though provide all the synchronization required (see Peterson
[PeSi85] for a more complete discussion) and thus condition typed variables were introduced.
These provide a further form of synchronization which allow instances of a monitor to be
descheduled (placed in a dormant state) or rescheduled (woken from a dormant state). Given
a condition variable (' the action

C.wait

deschedules the current monitor,
(.signal

reschedules a monitor previously descheduled by C.wait.

Condition typed variables go beyond the semaphore and provide mechanisms to directly
manipulate the scheduling characteristics of an implementation.
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None-the-less, as in all the above cases, it is the notion of conditional precedence that
is fundamental; i.e., in essence the semaphore. Region constructions simply provide a higher
level abstraction based upon these primitives. Similarly, monitors provide a high level pro-
gramming abstraction which guarantees consistent access. None—the-less maintaining consis-
tency (i.e., sharing of data) is complex in all the above cases; very often leaving the consis-
tency issue completely in the programmers hands. In programming any non—trivial project
this complexity is difficult to manage and error prone.

2.2.4 Threads and semaphores on the Encore Multimax

In this section I take a brief look at an existing system on a shared memory multiprocessor.
The system is Encore Parallel Threads (EPT) based on work done at Brown University.

EPT provides Monitors, Semaphores, Threads and Micro Threads. A Thread is a Fork
like process except the user can specify the portion of the environment to be copied. In
practice very little of the parents environment is copied and thus remains directly accessible
to subsequent Threads. In addition a certain efficiency is gained by the absence of memory
bounds checking. The programmer explicitly states the stack size to be associated with the
Thread and is expected not to exceed this limitation.

Micro Threads are designed to implement only fine grain parallel processes such as those
forming the body of loops. Micro Threads are pro—active in their scheduling; i.e., they
constantly loop checking for activation. They consume processor time while pending.
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EPT is implemented as a C library the Thread calls of which are

THREADcreate —create a new Thread.

THREADcurrent —id of the current Thread.

THREADgo —initialize the Thread system
THREADreschedule —start next process.

THREADkill —terminate a specified Thread and descendants.
THREADreturnvalue —return the value of a terminated Thread.
THREADjoin —the join instruction.

THREADreadytorun —test for a waiting Thread.
THREADcreatequeue —create a new Thread (wait) queue.

THREADrun —add Thread to run queue.
THREADwait —add Thread to a specified wait queue.
THREADdequeue —delete Thread from its current queue.
THREADnext —next Thread on a specified queue.

THREADrunning —~head of run queue.

THREADstartclock  —start preemptive scheduling.
THREADstopclock  —stop preemptive scheduling.
THREADfreeze —generate a signal and start a new thread.
THREADfrozen —test specified Thread is dormant.
THREADfrozenparent-returns id of dormant parent of Thread.

Micro Threads have a small set of functions

uTHREADcreate—create n Micro Threads.
uTHREADgo  —start Micro Thread group.
uTHREADjoin —Join operation.
uTHREADKill  —delete Micro Thread group.
uTHREADpark —stop Micro Thread group.
uTHREADready —ready Micro Thread group.

Semaphores are simply what we expect

THREADseminit-initialize semaphore.
THREADpsem —semaphore P operation.
THREADvsem —semaphore V operation.

Monitors are

THREADmonitorentry —enter monitor when no other Thread is active in it.
THREADmonitorexit —exit monitor.
THREADmonitorinit —create a monitor.

THREADmonitorsignalandexit —generate signal and exit.
THREADmonitorsignalandwait—generate signal and wait.
THREADmonitorwait —wait for a signal.

THREADmonitorwaitevent — —wait for a specific signal.

The purpose of this rendition is not to give a detailed specification of the Encore Parallel
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Threads package. The purpose is simply to illustrate the degree of complexity the engineer
must confront when building systems on many existing machines. Even so, the rendition
given here is simplified. Some subset of these functions do prove useful as a target for higher
level abstractions (such as that specified later in this thesis) but the whole is a shocking mess
to program with. I would hope that to scan this plethora of functions will convince the reader
of the need for simple high level models of programming multiprocess applications.

The value of high level models is often questioned on the basis of performance cost. How-
ever, such models can be constructed to incur no additional performance cost. In the following
sections we shall consider several high level models which would at first seem to contradict
this statement; Occam: a model that is in many respects efficient but introduces complexity
into the programming model and lacks practical functionality, and Linda: providing a degree
of functionality but with weak locality and at the cost of efficiency.

None-the—less, the later proposal will present a new model (Fase) which is as efficient
as Occam with the functionality, and more, of Linda. What is more, the reader should
understand why this is so.

2.2.5 Distributed Shared Memory

The advent of distributed memory computing has rather complicated the issues surrounding
the global memory model. On such machines the ability to share conventional variables is not
(without support) possible. Conventional implementations of semaphores and, consequently,
Join are difficult on such machines for this reason. Conventional implementation is dependent
on access to a counter variable which must be shared between many, perhaps distributed,
processes. Proposals exist that extend virtual memory concepts across distributed proces-
sor machines[RaKh88/50, RaTe et.al.89]. These provide virtual address spaces in which the
Global Memory model can be implemented. These concepts are of interest to us here because
they often provide mechanisms to assist in the management of consistency.

The most referenced proposal is probably Kai Li’s[Li89] “shared virtual memory”. In this
system virtual memory pages can be distributed among many processors (processes). Virtual
memory pages can be arbitrarily duplicated by read operations provided that all such copies
remain read only. A write operation to a page ensures that all such copies are first eliminated;
thus consistency is assured. Li’s model is, in fact, a slight variation of the Berkeley protocol for
multiprocessor cache consistency. However, this simple mechanism can be effectively used to
simulate a global memory model on a distributed machine and it has been further elaborated
in operating system circles. In particular in Mach[RaTe et.al.89] and Ra[RaKh88/50].

At a low level I suspect we shall see increasing support for this model on distributed
machines. The primary interest of programming models built upon this architecture is the
expression of locality and the reduction or elimination of copy operations in the virtual address
space. My later proposal will provide solutions to both these issues.
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2.3 High level process models

One of the clearest exponents of a high level process model is Occam. Occam in turn derives
its process model from CSP and what is said in the following of one in general applies to the
other. In this section I briefly reiterate the notion of high level processes suggested in the
earlier section, outline why the reiteration is necessary and highlight the advantages of a well
defined process model.

In UNIX systems and those parallel machines supporting UNIX (nearly all such machines
at this time) there is constant reference made to Daemons, Programs, Tasks, and Threads;
often with so—called “lightweight” and “heavyweight” characteristics. To the community of
engineers educated in the Furopean engineering culture of the 1980’s, a process is all of these
things.

An operating system is a process, which in turn consists of processes providing support
to other processes — often called “user programs”. A vending machine is a process, which
interacts with another process called a “human being”. So, to clarify what has gone before,
we speak of processes and their composition; very often using the notation P and () to denote
processes. In CSP P composed with () in sequence is denoted

P;Q.

P composed with () in parallel is
PlQ.

This is a subtly distinct notion from that of “process creation” fostered with Fork in
UNIX or Threads of control. Although, as I have shown earlier, simple process creation can
be simplified to a form equivalent to CSP parallel composition.

To further clarify this let us look closer at the Occam process model. In Occam, as-
signment, input and output comprise the most primitive processes. Programs are built
from compositions of processes formed by construction; i.e., larger processes are built by
combining smaller processes. A construction builds a process which is of one of the forms

SEQ sequence
IF conditional
CASE  selection
WHILE loop

PAR parallel
ALT alternation

A sequential process is built by combining processes in a sequence, conditional or selec-
tion construction. Loops are constructed by combining processes in a WHILE construction.
Concurrent processes by parallel and alternation constructions.

The constructions SEQ, IF, PAR and ALT can all be replicated; i.e., specified to duplicate
the constructed process some number of times.
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Occam uses indentation to denote construction grouping so a sequence

SEQ
P

Q

composes two processes P and Q. Q is executed if and when P terminates successfully. A
replication

SEQ 1 = 0 FOR N
P(1)

creates N copies of P each with a distinct index constant 1.

A conditional combines a specified number of processes each of which is guarded by a
boolean expression. The conditional evaluates each boolean expression in sequence. If a
boolean is true the associated process is performed, and the construction terminates. If none
of the booleans are true the construction does not terminate; i.e., no process later in a sequence
containing the construction is performed.

is a conditional which performs P if b is true, and Q is b is false and c is true, and stops
otherwise.

Like sequence, a conditional may be replicated. A replicated conditional constructs a
number of similar choices; i.e.,

IF i =0FORN
b(i)
P(1)

creates a number of similar choices each guarded by a boolean expression b(i). The replica-
tion may be expanded to show its meaning; i.e., where N is 2

IF
b(0)
P(0)
b(1)
P(1)
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A selection combines a number of options, one is selected by matching the value of a
selector with the value of a constant expression.

CASE s
e

is a selection that performs P if s is e, performs Q if s is f, and stops otherwise. e and f must
be distinct values. Case is a special form of conditional.

A loop repeats a process while an associated boolean is true.

WHILE b
P

is a loop that performs P if b is true and repeats P if b remains true after P.

A parallel combines some number of processes concurrently.

PAR
P

Q

is a parallel process combining P and Q concurrently.

A parallel can be replicated, in the same way as sequences and conditionals. A replicated
parallel constructs a number of similar concurrent processes; i.e.,

PAR 1 = 0 FOR N
P(1)

creates N copies of the process P.

An alternation® combines a number of processes guarded by inputs and performs the
process associated with a guard that is ready.

ALT
c?v
P
k7?v

Q

3The “alternation” in Occam is badly named and should really be called “choice”.
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is a choice between the inputs ¢ ? v and k ? v. If the input on ¢ is ready, the input then P
are performed, if the input on k is ready the input then Q are performed, if both are ready then
one of the inputs and its associated process are performed; the choice being nondeterministic.

An alternation can be replicated in the same way as sequences, conditionals and parallels.

ALT 1 = O FOR N
I(1)
P(1)

performs a ready input I(i) and then the process P(1).

The strong sense of process should be clear from this description. The distinction between
a notion of process composition and the notion of Threads of control often associated with
Fork? should also be clear.

In many ways Fork and/or Threads compound sequential thinking, where, process com-
position compounds parallel thinking. The latter is preferable when constructing programs
for parallel machines.

A first order process model with well defined composition has a number of other attrac-
tions. Chief among these are true modularity, the inherent parallel nature and openness to
mathematical treatment.

All that remains is to answer the question of how composed processes should interact.

2.4 Communication

Communication has arisen in programming models over the past decade.

*In many respects, there has been a transatlantic cultural divide over process models. Many USA engineers
are unfamiliar with the Occam like process model and perceive of processes in the UNIX context. Similarly
many European engineers were unfamiliar with the paradigms of Fork and Threads of control discussed in
the previous sections. Though this is less true in the more formal communities on both sides of the Atlantic.
The reason is historical and has much to do with the success of UNIX. UNIX has only in recent times come
to play a significant role in European engineering, whereas there are two decades of pervasive experience with
UNIX in the USA.

A brief historical anecdote will prove to illustrate this divide. The first implementation of protoOccam ran
under a system know as the UCSD P-System and INMOS made Occam available under this system on the
Apple II computer in 1984. It was, still, not at all clear to us in the England at that time that C and UNIX
were a force to be reckoned with in the engineering community. In 1985, when the first transputers became
available, development systems (with Occam and no C) still ran on top of the UCSD P-System on Sage
computers. It wasn’t until 1987 that INMOS began to support the IBM PC as a development platform and
this was still (in retrospect) hopelessly out of touch with what was happening in the engineering community
in the USA. In fact it wasn’t until 1989 that UNIX began to see support at INMOS and then only with tools
and compilers that ran on transputer boards plugged into UNIX work stations. By 1989 all the opportunities
in the USA had passed and the market was lost, perhaps forever, to INMOS. As a measure of the perceived
priorities a realistic C based development system has only come from INMOS in recent years.
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The advent of communication in high level programming coincides with the advent of
distributed memory machines. Communication models primitive actions in distributed com-
puting and its generalization was a natural step. Communication between computing nodes
is a fundamental primitive on distributed machines, and as such can be considered at the
same level of abstraction as Fork, Join and Semaphore.

Just as the shared global storage programming model was suggested by the hardware
of the then existing machines, so too communication is suggested by the evolution of net-
works and today’s communication technology. In the following sections I briefly outline the
basic communication primitives considering both synchronized and nonsynchronized message
passing.

2.4.1 Synchronized message passing

For simplicity in this section I focus on Occam. Occam is a known and integrated message
passing model for programming. Occam message passing is synchronized and point—to—point.
In other words communication is via an object shared between only two processes.

Occam is significant in that it is based on the well formed mathematical principles laid
down by Hoare in CSP. The central message of Occam is Communication and Concurrency.
Values are passed between concurrent processes by communication on “channels”. Each chan-
nel provides non—buffered, unidirectional point-to-point communication between two concur-
rent processes. The format and type of communication on a channel is specified by a channel
“protocol” given in the declaration of a channel. Two actions exist in Occam to perform
communication on a channel, they are: input and output.

An input receives a value from a channel and assigns the received value to a variable; e.g.,

clv

receives a value from the channel ¢ and assigns the value to the variable v. The input waits
until a value is received. The value input must be of the same data type as the variable to
which it is assigned, otherwise the input is not valid.

An output transmits the value of an expression to a channel; i.e.,

cle

transmits the value of the expression ¢ to the channel ¢. The output waits until the value has
been received by a corresponding input.

Point—to—point communication, as found in Occam, benefits significantly from simplicity.
Point—to-point communication is both
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Figure 2.3: Message passing: a deceptively simple idea to sell. A process inputs a value
output by some other process.

e simple to implement, and

e simple to explain.

The advantage of simple implementation has been exploited on the transputer [May88]. Con-
sider just how simple a notion point—to—point communication is (figure 2.3). Channels are
synchronized such that an outputting process will wait until the inputting process is ready to
receive the output, an inputting process will wait until the outputting process is ready. This
synchronization characteristic Occam message passing allows the exchange to be implemented
without buffering. The destination space for the message is present in the receiving process.

2.4.2 Non-synchronized message passing

Non-synchronized message passing appears in several languages and operating systems (refer
to Andrews[And91] for a detailed historical analysis of such systems). Like Occam, such
systems provide an input and output primitive; however, an output does not wait for a
corresponding ready input.

Essentially, non—synchronized communication provides a buffering mechanism. Such
buffering can be easily implemented, using the concepts introduced so far, by the addition of
an intermediate process; i.e., simply

in?v; outlv
a process that copies its input to its output is a simple buffer and this may be arbitrarily

extended.

Very often such models are implemented as queues. Queuing and intermediate processes
also allow several other possible implementations of message passing. Most notable being
multiple destination, multiple source paradigms.

The primary interest of simple communication is its low level primitive nature. In prac-
tice this advantage suffers from the pitfalls of all similar primitives (such as “go to” and
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semaphore); in this case leading programmers, as the introduction revealed, to a preoccupa-
tion with data distribution in the large.

2.4.3 Express: an operating system expedient

Express is a commercial product® which derives from work begun at CalTech. It seeks to
provide supplementary facilities to a familiar OS environment at the operating system level for
today’s engineers programming parallel machines — as such it does an admirable job; though
it is a slight diversion from the main theme of this chapter which is aimed at fundamentals
in high level programming.

In essence Express provides operating system extensions to conventional languages such
as C and FORTRAN. Here I shall detail the support provided for message driven processes.
Express provides support for internodal communication on distributed memory processors
and for the creation of processes which act upon incoming messages. These features are of
particular use in the implementation of shared data models (and, indeed, are used in the
implementation of the later proposal).

The three message passing operations [ wish to highlight are

o exread — read a message of from a specified node of a specified type, and
e exwrite — write a message to a specified node of a specified type.

o exhandle — message driven scheduling,

In the following discussion I have taken a few liberties with the respective functions, their
parameters (some of which may be pointers) and use of C syntax in the cause of clarity.

exread(message, maxlength, source, type) is a function which returns the length of a
message received from source and is of type type. The incoming message is truncated, if
necessary to maxlength.

exwrite(message, length, destination, type) is a function which returns the length
of the message successfully sent to destination. The type and desired length are specified.

exhandle(function, source, type) executesfunction upon receiptof a message of type
type. The incoming message is passed to the specified function as a parameter.

An excellent example of the usefulness of this facility is given in the Express manual[Par8§]
and in the following I present an abbreviated version of it.

% Available from Parasoft Corp. 27415 Trabuco Circle, Mission Viejo, CA 92692, USA.
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The example illustrates the implementation of a global read only memory; but serves to
illustrate how distributed shared data management can be implemented.

Fach node executes a function
exhandle(memory, any, read)

The type of the incoming memory request is a structure

struct memory_request {
int address;
int length
s
which specifies the desired address and the length of contiguous memory required. The

function memory then is
memory (struct memory_request *request, 1, source, t)

{

exwrite(request->address, request->length, source, ack) ;

where ack is the type indicating a satisfied request.

A function to read this global memory is then

read(node, address, length, target)

{
struct memory_request request;
request.address = address;
request.length = length;
exwrite(request, sizeof(request), node, read);
exread (target, length, node, ack);
+

Why introduce such an example just here? Firstly it is important to emphasise that
message passing is a low level primitive on machines with distributed memory and that
implementation contrasts with the higher level programming model. Secondly it is useful to
understand that an elaboration on the above theme allows these higher level models to be
implemented with reasonable efficiency. As has already been stated: such an elaboration is
used in the implementation of the later proposal on such machines.
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2.5 Logically shared data structures

[ now consider the shared data structure (space) model, its features and advantages.

Logically shared data structures differ from conventional global memory models by pro-
viding a set of basic primitives which distinguish such structures from local variables. In
addition, shared data structures exist in a logical space which have characteristics not com-
mon to conventional variables. In particular an assignment primitive may not replace the
previous value associated with the structure but simply add a value to one of the possible
values to be yielded by it.

For simplicity I focus on Linda. Linda is not representative of all Shared Data Models.
However, Linda is well known and widely used or considered. In many respects it represents
the opposite end of a spectrum in which Occam exists. It was among the first to consider
a shared data structure model as defined above and in many ways has been the innovator
behind many recent proposals in the field (Orca[Bal89], Swarm[RoCu90] and others) though
the formal basis of Linda is weak by comparison to Occam.

The central message of Linda is Coordination and Concurrency. A message which is
subtly distinct from the message of Occam.

Linda is based on the concept of “generative communication”, which attempts to unify
the concepts of process creation and communication. Linda was first described by David
Gelernter [Gel85], and the first implementation is described by Nick Carriero [Car87]. The
Linda language combines with some associate language, typically a conventional sequential
language such as C, to form a language for the expression of parallel algorithms. The asso-
ciate language provides the semantics of computation while Linda provides the semantics for
concurrency and communication.

Linda utilizes a concept known as tuple space. Tuple space is a global associative memory,
which stores objects called tuples. A tuple consists of a sequence of typed fields; i.e,

("foo", 6, 23.5)

is a tuple which is a sequence of values; a string foo, an integer value 6, and a floating point
value 23.5. It is distinct from the following tuples

("foo", 6, 23.5, 32.5)
(6, 23.5, "foo'")
(4, 5)

These are passive tuples; i.e., passive data objects. A tuple may also contain fields which
are processes evaluated subsequent to entering tuple space. These are known as active tuples.
It is easier at this stage to think of tuple space as a bag of objects. Linda provides four basic
primitive operations which act upon tuple space:
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out (t) to put tuple t into tuple space (i.e. to put an object into the bag).
in(t) to get tuple t from tuple space (i.e. to pick an object from the bag).

rd(t) to read tuple t in tuple space (i.e. to look at an object without removing it from the

bag).

eval(t) to evaluate tuple t (i.e. put an object into the bag for evaluation).

out (t) and eval(t) place a tuple (t) into tuple space and then terminate. in(t) removes
some tuple t from tuple space and then terminates. rd(t) reads the value of some tuple t
and then terminates.

This definition naturally implies that if there is no tuple which initially matches t present
in tuple space then the primitive in or rd will not terminate until it acquires a tuple t
subsequently added to tuple space.

eval (t) acts like out (t), except that t is evaluated subsequent to its entry to tuple space
and will typically transform into a passive data tuple, for example

eval (PO, QO)

creates processes P() and Q() which are placed in tuple space and are evaluated concurrently.
P() and Q() may themselves interact with tuple space, and leave results (as tuples) in tuple
space. If P() and Q() are functions which return the integer values 6 and 7 respectively, then
the active tuple (P(), Q()) will transform into the passive tuple (6, 7). Thus is born the
term generative communication.

Note that the current definitions of the process model vary and are confused about the
scoping of free variables (and pointers) in evaled processes. In the C-Linda implementation
developed jointly by Yale and SCIENTIFIC Computing Associates eval (P) amounts to a
specialized fork of P.

Tuples have no physical or virtual address in tuple space. A tuple is selected by in or rd
by associative matching.

Each field of a tuple may contain an actual or formal, for example, if N is a variable of
integer type

(6, 7N)
contains a formal N and will match with any of the following tuples
(6, 7)

(6, 8)
(6, 1024)
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The input in(6, ?N) will select a matching tuple from tuple space, and perform the
actual to formal assignment; if several matching tuples exist in tuple space then an arbitrary
selection is made.

The output out (6, ?N) will place a tuple in tuple space, and may be selected by an input
which has an actual of integer type in the place of the formal, e.g. in(?I, 11) or in(6, 23).

More recently Linda has acquired two variant forms of in and rd. These are the primitives
inp and rdp, predicate functions which test for presence; i.e.,

if (inp(t)) found = true

inp(t) attempts to remove some tuple t from tuple space and then terminates. rdp(t)
attempts to read the value of some tuple t and then terminates. In both cases the predicate
is true if the function succeeds in its attempt and is false otherwise. In addition, the predicate
functions side effect; i.e., they will behave like their non—predicate equivalents if their result
is true.

Thus, a shared data structure in Linda is a “Tuple Space” (see figure 2.4). Tuple Space
acts as an intermediary in which data structures are created and by which processes can
interact.

A tuple space is initially an empty set of values. I shall simplify the by focusing on the
three operators that act upon this set.

e out — adds a value to the set,
e read — reads a value in the set,

e in — acts like read but also deletes the value from the set.

This description is a generalization of the tuple space model and the reason it is introduced
here will become clear later.

Although some consideration has been given to multiple tuple spaces® I have focused on
the single tuple space common to those Linda implementations at Yale University. Much
work has been done on Linda both in the research community and in industry[Lel90].

The key advantage of shared data structures is their conceptually powerful nature. They
provide an alleviation of concern about data distribution between processes and simplify
coherency and synchronization.

Indeed, T was involved with such considerations at Yale in 1990 — none of these bought a consensus.
However, I would point to the work of Suresh Jagannarthan now at NEC as the most considered of these
efforts and note that these same deliberations pointed me in the direction presented in this thesis.
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Tuple Space

(“foo”, 9)
(“bar”, 8, 2.5)

out(“foo”, M)

(“foo”, 3) out(“foo”, 6)

(“f00777 9)
(“bar”, 8, 2.5)

(“foo”, Tint) (“foo”, 6)
“f00777 3)

in(“foo”, M)

(“f00777 9)
(“bar”, 8, 2.5)
(“foo”, Tint)

“f00777 3)

rd(“foo”, 7j)

(“f00777 9)
(“bar”, 8, 2.5)
(“foo”, Tint)

LLfOO” , 3)

Figure 2.4: Linda: another deceptively simple idea to sell. Here we trace the state of tuple
space through 4 changes. The effect of the “in” and “out” primitives are clearly illustrated.
As a result of the second state change ¢ = 6, “rd” has no affect on the state of tuple space
but reads a tuple, since selection is nondeterministic j =9V 5 = 3.




Chapter 3

Implementing Interaction Models

In this chapter I take a look at the efficient implementation of the process interaction model
fundamentals we have considered. In each case and on each architecture, there are choices
to be made. To focus our discussion and to allow a comparative assessment I consider an
efficient implementation that in each case takes a similar approach.

In the following discussion I shall use C as a notational convenience to model processes
and the data structures involved in the implementation of interaction; though I shall adhere
to no standard and ignore the fact that several of the functions used would, in fact, be very
difficult to implement in real C (such as nextprocess in the following section). I use C
notation simply because I anticipate a broad understanding of it.

Each operation is described in such detail to allow the reader to gain a direct sense of
the potential implementation costs involved; such as the number of comparisons, loads and
stores involved in each operation.

3.1 Implementation of scheduling

In the following implementations I shall consider a machine with a simple and single process
scheduling queue. This scheduling queue is a linked list of process control blocks. Each
process control block will contain three pointers for

e source or destination,
e state, and

e the next process.

A process control block is modeled by the data structure

51
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struct process {
data *gource_destination;
struct pc state;
struct process *next;

I
I need not explore the structure of the type pc, for it will certainly differ in each micro-

processor architecture. It contains the state that needs to be maintained for the successful
reinstantiation of a process and at least includes the machine’s Program/Instruction Counter.

The scheduling list itself can simply be implemented in several ways (FIFO, LIFO, priority
etc..). In the following consideration we simply assume a consistent implementation; e.g.,

struct list {
struct process *pending;
struct process *tending;
} scheduling_list ;

or

struct list {
struct process *pending;
} scheduling_list ;

However, in the abstract, I shall take the function
tolist(struct list 1, struct process *p)
to be the atomic function which adds the process p to the list 1, and
fromlist(struct list 1)

to be the atomic function that removes a process from the list 1 and returns a pointer to the
removed process control block. In addition, I shall take the function

schedule(struct process *p)
to be the atomic function that specifically adds p to the scheduling list, and the function

nextprocess()
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to be the atomic function that takes the next process from the scheduling list and begins its
execution!. It is necessary to assume some unit of atomicity in our discussion, that unit will
certainly vary from machine architecture to machine architecture, to constrain our discussion
to the realms of reason I choose to define all the functions in this chapter as atomic in nature.
This atomicity makes the discussion applicable to uniprocessor multiprogramming and closely
coupled shared memory multiprocessor multiprogramming.

The issues of process placement and distribution in a distributed memory multiprocessor
I shall leave to a higher level decision making paradigm, and I shall not consider the issue of
process migration a necessary part of this discussion. I shall also use PID to mean the pointer
to the process control block of the current process.

The scheduling model illustrated here should hold no surprises. It is in common use and
closely resembles the scheduling mechanisms implemented in microcode on the transputer

and described in Peterson and Silberschatz[PeSi85].

3.2 Implementing semaphores

Semaphore is the basic synchronization primitive for implementing many of the shared mem-
ory paradigms discussed earlier. In this section we take a look at how such primitives can be
implemented efficiently.

Given our scheduling mechanism a semaphore can be modeled as a simple data structure
consisting of a counter and a process list. Such a structure can be specified by

struct semaphore {
int count;
list *processes;
} s {0, EMPTY };

All semaphores being initialized according to this definition.

Semaphores require the implementation of the P and V operations specified in the previous
chapter — though I prefer a non—busy implementation. These implementations are described
in figure 3.1.

3.3 Implementing communication

Let us now consider the implementation of communication,in addition to synchronization this
involves data exchange. The following description closely resembles the implementation of

!This function is not readily described in C directly and I abstract away from stack maintenance issues in
this implementation.
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P = e if the semaphore count is zero
— decrement the semaphore count.
e if the semaphore count is non-zero

— decrement the semaphore count,
— add the current process to the scheduling list, and

— start the next process.

P (struct semaphore *s)

if (s->count == 0)
s->count--;

else {
s->count--;
tolist(s->processes, PID);
nextprocess();

Y = o if the pending process list is empty
— increment the semaphore count.
o if the pending process list is not empty
— increment the semaphore count,
— add a pending process to the scheduling list
V (struct semaphore *s)
if (s->processes == EMPTY)
s->count++;
else {
s->count++;

schedule(s->processes) ;
fromlist(s->processes);

Figure 3.1: Implementation of P and V.
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PROCESS — > State
PID DEST/SOURCE

Data

NEXT PROCESS

Process control block

Channel

1. The first process ready saves a pointer to itself in a channel location and stores the
message source or destination in the process control block and starts the next available
process,

2. the corresponding process retrieves the message source or destination, copies the mes-
sage, initializes the channel and continues.

Figure 3.2: Point—to—point communication. A pending process.

channels on the transputer[INM90], a machine designed to implement the features of Occam.

A communication channel is modeled by a simple data structure, a single location in
memory, whose value is either the special value NULL or is a pointer to a process ready to
communicate, such a structure can be specified by

struct process *c = NULL;

All channels being initialized according to this definition.

A process that outputs on a channel knows

e the channel — identified by the location of the above data structure in memory,

o the message — which is identified by its location in the local memory of the sending
process.

As in the semaphore case the outputting process does not know the identity of the concurrent
(receiving) process or the destination location of the message. An implementation is shown

in figure 3.3.
A similar process (figure 3.4) describes the behaviour of the input.
Two very significant advantages exist for the implementation illustrated,
e simplicity, and

e no buffering.
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e if the channel is not “ready”

— place the ID of the process control block in the channel location,
— store the message location in the process control block,

— start the next process.
e if the channel is “ready”

— retrieve the destination from the inputting process control block,
— copy the message to the destination,
— add the inputting process to the scheduling list, and

— initialize the channel for subsequent use.

output (process *channel, data *message)

if (channel == NULL) {
PID->source_destination = message;
channel = PID;
nextprocess();
} else {
destination = channel->source_destination;
memcpy (destination, message, sizeof(data));
schedule(channel) ;
channel = NULL;

Figure 3.3: Implementation of point—to—point output.
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e if the channel is not “ready”

— place the ID of the process control block in the channel location,
— store the destination location in the process control block,

— start the next process.
e if the channel is “ready”

— retrieve the message location from the outputting process control block,
— copy the message to the destination,
— add the outputting process to the scheduling list, and

— initialize the channel for subsequent use.
input (process *channel, data *destination)

if (channel == NULL) {
PID->source_destination = destination;
channel = PID;
nextprocess();

} else {
message = channel->source_destination;
memcpy (destination, message, sizeof(data));
schedule(channel) ;
channel = NULL;

Figure 3.4: Implementation of point—to—point input.
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Simplicity is a virtue for its own sake, the no buffering requirement means that no demands
are made on a dynamic memory management system. Indeed, it is difficult to think of a
more elegant and efficient solution. However, problems do present themselves. This scheme
does require that both sender and receiver have read and write access to the memory of the
respective processes. On systems other than the transputer this would perhaps be difficult,
undesirable, or both. However, this issue is a general one, not particular to Occam.

This implementation requires a single address space, but the versions required to cater
for memory mapped communication devices are not dissimilar, and again the transputer
implementation illustrates this. The transputer uses a few words in the lower address space
which map onto the on chip communication links, the same instruction is used whether
the channel uses the links or otherwise. The microcode detects the difference and uses the
appropriate mechanism to copy the message.

We must now confront a central issue raised during the design of next generation trans-
puters and, indeed, all current parallel systems architecture. The problem is one of how to
provide sufficient connectivity to implement a general set of programs.

First generation transputers have only four hardware links able to implement at most four
channels in each direction. This is a limiting factor in Occam implementations and would
prove so too in our implementation here of the new proposal.

Virtual hardware channels can be provided by system support that multiplex data between
nodes. Second generation transputer hardware (if it appears) provides support for multiple
channels in the form of a hardware multiplexer. Intel’s iWarp device also provides virtual
connectivity. Such multiplexing, or virtual communication, support will be required, either
in hardware or systems software.

Programming models and implementations must reduce copy operations effecting the
memory subsystem, thus the location of buffering is a major systems issue. Hardware can
help here by providing operating systems with instructions which enable the construction of
various multiplexing strategies. Without going into detail, it is not clear that a hard wired

multiplexer of the kind currently being developed at INMOS for the H1/T9000[INM91] can

provide the flexibility demanded across systems.

3.4 Implementation and optimization in Linda

Tuple Space operations are not difficult to explain but are less than simple to implement.
Linda compilers (such as the C-Linda compiler designed by David Gelernter and Nick Car-
riero [Car87]) perform several transformations on Linda tuple space operations, which opti-
mize access and implementation of value associative matching and poor expression of locality.

A Linda program is analyzed by the compiler and the tuple space operations are trans-
formed into simpler operations which require little or no run—time matching and implied
locality grouping identified.
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Linda optimizations take several forms and these are considered in the following section.

3.4.1 Linda: Division of tuple space into distinct subsets

Tuples can immediately be divided into sets based on their structure, i.e. the number, type
and order of their fields. We know that tuples of one type structure can never match a tuple
of a differing structure. Therefore, inputs and outputs can be distinguished as operations on
one of these sets. Further, these distinct sets can themselves be divided, by usage of formal
and actual data.

Consider the tuple set of type
(STRING, INT, INT)

It’s common in Linda programs to find that one or more of the fields in a tuple of this type
structure is a common constant (a constant used in both inputs and outputs of the tuple). In
which case, operations on the set of tuples of this structural type can be further divided. Let
us assume that the analyzer discovers that in all operations on tuples of this type structure
the first field is some common constant. For example, assume these constants are the strings,
“foo” and “bar”, the tuple set described can be further divided into the subsets

(“foo”, INT, INT)
(“bar”, INT, INT)

tuples of the first type structure distinguished by common constants. Again, since operations
on one subset can never match a tuple affected by an operation on a tuple of the other subset
we can focus tuple space operations on the relevant sets.

3.4.2 Linda: Implementation of distinct subsets

Let us further assume, for the purposes of illustration, that the types discussed in the previous
section are the only types of tuples which appear in a Linda program. The inputs and outputs
in the program can now be divided into operations upon these distinguished sets. Such that
we now have two distinct sets of type

(INT,INT)

and the constant fields can be discarded since their value is now represented by selection
of one subset or the other.

Once analysis of the constants in a tuple is discerned, inspection of the usage of tuples
on input and output enables a decision to be made about the method of implementation for
each set.
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In addition to position and type, each field in a tuple has a further characteristic we have
vet to discuss. That is whether the field is an actual or formal (known as the polarity of the
field). When matching the respective fields of an input with existent tuples there are four
possible polarity combinations to consider

7 both fields are actual
X both fields are formal
/ input field is actual and the respective field is formal

\/ input field is formal and the respective field is actual

where 7 indicates a comparison of the fields value must be made for equality, x indicates that
a comparison of the fields always yields the value false, and / indicates that a comparison of
the fields always yields the value true.

To summarize, in the first case, where both fields are actual values, the fields match if
their values are equal. In the second case, where both fields are formal, no match can be made.
In the third case, where the input field is actual and the corresponding field is formal, a match
is always made. In the final case, where the input field is a formal and the corresponding
field is an actual, a match is always made, and provided all the component fields of the tuple
match, an actual to formal assignment is required.

There are four possible usage patterns for our given example subset of tuple space,

(INT,INT),

o the remaining two fields are formal,
e the remaining two fields are actual data,

e one field is formal, the other is actual.

Here we are not concerned with the values of the particular fields, since we have already
established there is no commonality (by constant).

If, by analysis of the inputs and outputs of tuples in the distinguished set, it can be
seen that inputs of the set are always formal and outputs of the set are always actual, then
no run—time matching is required to satisfy an input, since corresponding fields will always
match. We can implement such a set as a simple queue. In our example case, an output adds
two integer values to a queue, an input removes or reads two integer values from a queue, and
subsequently performs an actual to formal assignment.

If, however, analysis shows we are not so fortunate, but that one of the fields in the tuple
is always actual, then that field provides a criterion which can be used to select a match at
run—time, that is, a key which can be used to locate a matching tuple. In such cases, where a
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key is always provided, the set can be implemented as a hash table, which may be distributed.
In fact, for efficiency, the implementation provides a single common hash table for such cases.

In our example case — let us say the first field is always actual on input and output —
we can always use this field to select the correct hash slot for matching tuples. This leaves
the last field to match, if this is a formal, the first value we find will do, and we can return
this value for assignment.

Complex cases may arise in analysis. Where every field is actual in every output tuple,
but not so for every input tuple, a key is not always available. In such cases, it will be
necessary at times to perform an exhaustive search of the set. To optimize such cases, such
a set is implemented as a private hash table, that is, a single hash table for the distinct set.
Distributing a hash table which may require exhaustive searching, raises coordination and
consistency issues which in implementation are avoided by not distributing the table.

When no key is available we are compelled to search the whole set. We could choose to
implement a list and to search the whole list for each input. In fact, however, such instances
are rare, and occur only in some cases where formals appear in outputs. This usage of tuples
is so idiosyncratic that no compiler has implemented the case.

There remain some special cases to consider. Conversely, to the first case considered,
although bizarre, if it can be seen that outputs of the type structure are always formal and
inputs of the type are always actual, then again no run—time matching is required to satisfy
an input, since corresponding fields will always match. Further, because no actual to formal
assignment is required we simply need to keep track of the instances of each input or output,
and we can implement such a set as a counting semaphore.

A simpler and more realistic case exists. That is the case where all the fields are constant.
We might expect tuples which have a single string structure to be such a case. Consider a
program whose tuple space operations are all on a single tuple

(“STOP”)

No value requires storage, and we only need to keep a count of the number of instances of
this tuple in tuple space. Typically, such tuples are used to perform coordination between
processes. Operations on such a set can be modeled by a single counting semaphore. An
output increments the count, an input either decrements the count or tests for a value greater
than zero. The analysis simplifies what is intuitively a complex feature of the Linda model
— namely value associative matching. Complexity remains, though reduced to manageable
levels.

Linda implementations can reduce matching costs down to a hashing operation, frequently
to the manipulation of queues and occasionally to operations on counting semaphores. Though
we must observe that each of these mechanisms have radically different cost and this factor
will be a source of some criticism later.

This analysis also requires the complete program, thus is completed on a once and for all
basis at run—time. One can conceive of a dynamic system which uses the information from
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earlier compilations but this would constrain the optimizer significantly to decisions made
early in the process. Clearly these optimizations demand later analysis to be consistent.

3.5 Implementation of logically shared data structures

I have spent some time on the subject of shared data structures in Linda since the proposal
made in following chapters is a refinement of this model. The logically shared data structure
model, compared to semaphores and message passing, is recent and thus the implementation
is less well understood.

To continue to allow a comparative assessment with the other models here I shall focus
on the implementation of shared data structures using queues. My reason for doing so is that
not only do queues play a central role in the implementation of some Linda structures, they
play an analogous role in the implementation of non—synchronized communication and they
shall play the central role in the implementation of the later proposal. As such it is very
important that we gain an insight to the comparative performance of this primitive structure.

In this section I consider the queuing mechanism in detail in a way that allows us to
compare it directly with that of the implementation of semaphores and point-to—point com-
munication presented earlier. We shall discover, understandably, that the implementation is
more complex. The reason for this additional complexity is the need to allow for dynamic al-
location of memory space. The semaphore and point-to-point communication models deal in
absolutes; semaphores allow the direct manipulation of a shared address space, point—to—point
communication is between only two processes.

Queues are interesting mechanisms since operations upon them display consistent charac-
teristics, i.e. the addition and deletion of entities on the queue have a similar and consistent
cost. I shall later present a comparison of these costs.

For simplicity, I again consider an implementation of the essential queue mechanism for a
machine in which all the functions described are atomic;i.e. a machine with a single uniformly
accessible address space and a process queue similar to the one described in earlier discussion.

The three operations we must implement on a shared data structure I will call
e write — write a value,

e read — read a value, and

o get — read and delete a value.

I shall call the data structure to be considered a “bag” of values, each value of the same type.

As stated, our implementation is more complex than that of channels, though perhaps
surprisingly, not significantly so. One major additional requirement for shared data is the
occasional necessity to allocate memory for shared data that persists. It is desirable to reduce
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the instances of such memory allocation. In the implementation described here this is achieved
by deferring the allocation to a point after potential consumers of the data have been given
an opportunity to copy the data directly; as the implementation of channels does.

Consider a single shared data structure identified, as were channels, by a pointer to a
data structure representing it. This data structure is more complex than the channel one. In
place of the single word utilized by channels we use four. Fach word being the head pointer
of a process queue. The four queues represent pending operations as I have above described;
i.e., one each for read and get operations, and two for write operations. This use of extra
store is a direct trade off against the read memory and computational overhead of having to
make comparisons to detect the operation type.

The four queues are

e |write| — pending write operations,

o — pending allocations waiting to be moved to the write queue,

o — pending read operations,
. — pending get operations.

This structure can be described as

struct queue {
struct list *write;
struct list *free;
struct list *read;
struct list *get;
} q {EMPTY, EMPTY, EMPTY, EMPTY}

Each queue is initialized according to this definition.

Each queue points, as for channels, to a process control block which contains a pointer
to the source or destination of the data in the operation. The control block in turn either
points to the next pending process or it contains the value “EMPTY?”. The chaining operation
replaces the channel initialization required for “ready” channels. We must also add a chaining
operation when no data is available; an operation not required in the channel case.

The instructions to implement the read operation are not dissimilar from those for chan-
nels. In fact the read operation is marginally more efficient in the “ready” state since it
doesn’t require channel initialization. The implementation pays a cost in the “non-ready”
state for a chaining operation to manage the queue. I shall take a closer look at this later.
A Read operation (figure 3.6) simply looks for a “ready” Write, if one is available it copies
the value, otherwise it adds itself to the Read pending queue and starts the next available
process.
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FREE |———

q.free DATA (——
q.write NEXT p—
PROCESS
q.get
DATA
q.read
NEXT p——
PROCESS (——
DEST |———
NEXT p——
PROCESS (——
DEST |———
NEXT

Figure 3.5: Queues implement a shared data structure.
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e if no write is pending

— save the destination in the process control block,
— add current process to the read pending queue,

— and start the next process.
o if a write is pending

— retrieve the data source from the write process control block,

— copy the data to destination required.

read (struct queue *q, data *destination)

if (q.write == EMPTY) {
PID->source_destination = destination;
tolist(q.read, PID);
nextprocess();

} else {
source = q.write->source_destination;
memcpy (destination, source, sizeof(data));

Figure 3.6: Implementation of a read operation on logically shared data.
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e if no write is pending

— save the destination in the process control block,
— add current process to the get pending queue,

— and start the next process.
o if a write is pending

— retrieve the data source from the write process control block,
— copy the data to destination required,
— add the writing process to the scheduling list,

— delete the writing process from the write pending queue.
get (struct queue *q, data *destination)

if (q.write == EMPTY) {
PID->source_destination = destination;
tolist(q.get, PID);
nextprocess();

} else {
source = q.write->source_destination;
memcpy (destination, source, sizeof(data));
schedule(q.write);
fromlist(q.write);

Figure 3.7: Implementation of a get operation.

The Get operation (figure 3.7) is also similar to the input channel implementation. Again
the simple distinction is the requirement for queue management.

Like Read, the Get operation looks for a “ready” Write, if one is available it copies the
value and reschedules the writing process. Why is a writing process “pending”; shouldn’t the
writing process have been allowed to continue? All will be revealed shortly.

If no Write is available to satisfy the Get operation the Get process adds itself to the Get
pending queue and the next available process is started.

The Write operation (figure 3.8) first checks to see if a Get operation is pending, if there
is one the Write can simply satisty the Get, schedule the pending process and continue, if a
Get operation is not pending then the Write will simply add itself to the Write pending queue
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o if no get is pending
— save the source in the process control block,
— add current process to the write pending queue,
— and start the next process.

o if a get is pending

— retrieve the destination from the get process control block,

— copy the data to destination required,

add the getting process to the scheduling list,

delete the getting process from the get pending queue.
write (struct queue *q, data *source)

if (q.get == EMPTY) { PID->source_destination = source;
tolist(q.write, PID);
nextprocess();
} else {
destination = q.get->source_destination;
memcpy (destination, source, sizeof(data));
schedule(q.get);
fromlist(q.get);

Figure 3.8: Implementation of write operation.

and start the next process on the scheduling queue. By descheduling itselt in this way the
writing process gives all the other scheduled processes a first stab at reading the source data
directly and perhaps rescheduling the writer without requiring a memory allocation.

Since now writing processes are apparently blocked it may happen that the consuming
processes will appear starved and the scheduling list will appear empty. In particular, Reading
processes are not satisfied by Writes directly. This circumvents any requirement for iteration
in the instructions, since many Reads may be satisfied by a single write. Avoiding iteration
in these primitive instructions provides them with uniform performance characteristics.

With knowledge of this implementation in any particular instant an intelligent scheduler
would do well to place producers at the head of a queue and consumers at the tail. However,
the dynamics of the non—particular in any given program are likely to make such an advantage
transitory unless compiler directed assessment is allowed to control such dynamics.
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We leave the satisfaction of pending Reads to be handled by a system level daemon. This
process (figure 3.9) is evoked by the “nextprocess” instruction whenever the scheduling queue
becomes empty. This is the last possible point at which we are compelled to allocate new
memory for the shared source structure.

Even so there is hope we may avoid the memory allocation yet. Two possible states exist
for us here, i.e.

e some number of reading processes may be pending, or

e some number of writing processes may remain blocked.

We would prefer writing processes to be rescheduled by a consuming process in antici-
pation that a subsequent Get operation will reschedule the writer (circumventing a memory
allocation). Thus, if one is available, an available Read process is satisfied and run.

In the last resort we must allocate new memory and allow a writing process to continue
since clearly the program expects the written source to persist. In this case new memory is
allocated and the “source” copied. In fact we create a new process, for along with the new
data allocation we associate a process that will free the allocated memory when a Get acts
upon the data — thus completing our deletion semantics.

The function
allocfree(data *source, size_t size)

creates a process containing a pointer to allocated memory of the specified size. The “al-
locfree” process returns a pointer to a new process control block which contains a destination
pointer to newly allocated space. This new process will be scheduled by a Get operation and
when run will free the memory allocation and, in effect, deallocate itself.

In addition to those functions mentioned earlier, the function
freed(struct process *p)

is true if p is an allocated free process; i.e., a process created by the persistence daemon.

The design of the persistence daemon clearly has to cater for all the shared data structures
on a given node; where a node is a machine with a common address space. This can be
easily considered by the replication of this daemon for each data structure. In a distributed
system the daemon may communicate with other nodes in the system if the data structure is
distributed between nodes. By daemon replication communication latency can be hidden.

We saw in the previous chapter how in Express a message driven process can handle such
remote requests. In a distributed system the implementation of the daemon allows for the
addition of such processes. Thus, the next process executed by the daemon may have been
contributed by such an internodal message and not be the process scheduled by the daemon.
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e if the write queue is empty

add those values on the free queue to the write queue,

run the next process.

o if there is a read pending

retrieve the destination from the read process control block,
retrieve the source from the write process control block,
copy the data to destination required,

delete the reading process from the read pending queue,

run the next process.

o if the process on the write queue is not an allocation

daemon
if (

} el

} el

allocate a new free process,

retrieve the address of the newly allocated data space,
copy the data into the new allocation,

add the new allocation to the free queue,

run the next process.

O
q.write == EMPTY) {
q.write = q.free;
q.free = EMPTY;
nextprocess();
se if (q.read !'= EMPTY) {

destination = q.read->source_destination;

schedule(q.read);

fromlist(q.read);

nextprocess();

se if (q.write != freed(q.write)) {

tolist(q.free,
allocfree(q.write—>source_destination,
sizeof(data)));

schedule(q.write);

fromlist(q.write);

nextprocess();

Figure 3.9: Implementation of persistence daemon.
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While the implementation described for shared data structures is clearly more complex
than that for channels, shared data structures are significantly more flexible. So there is a
trade off here to consider between functionality and complexity. Is the trade off a significant
one?

The implementation described here is similar to that use in the implementation of shared
data structures in the later proposal. There remain opportunities for significant performance
and functionality improvements and I shall discuss these in coming chapters and in more
detail in the later chapter describing the particular implementation.

3.6 Comparison

I have introduced the implementation of four fundamentals in Process Interaction Models.
The implementations are general purpose; we would not use them in specialized cases such as
the automatic decomposition and scheduling of fine grain parallelism such as loop small loop
iterates (for that there are other solutions). The four I have considered are

e process scheduling,
e semaphores
e point—to—point message passing, and

e queues.

Process scheduling enables multiprogramming and multiprocessor scheduling in closely
coupled common address spaces, Semaphores are the fundamental primitive of synchronization
and frequently used for maintaining consistency is shared address spaces; providing support
for the implementation of critical regions and monitors, Point—to—point communication is the
fundamental primitive of the message passing model, and Queues are an important mechanism
in the implementation of non—synchronized message passing paradigms and logically shared
data structures.

Data exchange. Of the three primitives focused on the sharing of data between processes
we see increasing functionality.

A semaphore does not itself provide data exchange so there are no copy operations in-
volved however a pending process list must be maintained. Channel communication, being
exclusively between two processes, requires no pending process list but requires a memory
copy operation to implement a data exchange. A queue implementing a shared data structure
requires both a data exchange and pending process list.

In an attempt to gain a general feel for the differing real cost let us consider the distinctions
in the implementations described. Each of the primary operations described
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P
V
output
input
read
get
write

has the same conditional form which we shall treat as equal; i.e., each performs a single

conditional test. I shall ignore any calling overhead on the basis that I regard the functions
specified as macro definitions. I shall consider an assignment including a dereference to have
a cost d and direct assignment (such as occurs in input and output) to have a cost a.

Semaphore is the only operation that requires the use of an arithmetic operation; this in
the increment and decrement of the associated count. Even so I shall equate this as equal to

d.

The functions shall have cost values represented by their name but I will state the following

equality

tolist = fromlist = schedule

Finally I shall combine the cost of the operation independent of the conditional test result.

By this criteria we get the following

P =
% =

output
input

read
get =

write

2d+ tolist 4+ nextprocess
2d+ fromlist + schedule

2d + 2a schedule + memcpy + nextprocess
2d + 2a schedule + memcpy + nextprocess

2d+ tolist + memcpy + nextprocess
2d+ tolist + fromlist + memcpy —+ nextprocess
2d+ tolist + fromlist + memcpy + schedule + nextprocess

By simplification this we can illustrate the difference as

P =
V

output
input

read
get =

write

0

schedule — nextprocess

2a+ memcpy
2a+ memcpy

memcpy
fromlist 4 memcpy
tolist + memcpy 4 schedule
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By comparison semaphores prove to be very efficient but do not account for any copy
operations introduced by the programmer. Focus though on the distinction between point—
to—point communication and shared data structures implemented by queues. Eliminate the
memcpy cost for a moment, if we look inside the list functions we shall see that the cost of

these (depending whether we have chosen LIFO of FIFO scheduling) is either d or 2d.

Since LIFO scheduling is simple to implement, requires less memory and provides superior
spatial and temporal characteristics (essential for cache memory subsystems) my preference
will be for the cheaper function. This comes at the expense of fairness; but I see this as no
cause for concern since fairness is not required by the semantics, and nor is fairness an issue
in the point—to—point primitives against which we are making this comparison.

If we further accept that it is valid in this analysis to sum the total for each model to
derive an average cost for each operation and take 2a = d as true then we can see that the
point-to—point primitives have the same cost as those specified for the shared data structure
implementation.

So far no mention has been made of the shared data structure daemon also described in
the implementation; I shall argue here for its continued exclusion from my analysis. Here is
why: I simply regard the daemon as a process with which the primitives interact equivalent
to a process a message passing programmer will be forced to construct for himself in practice
to provide anything like the same functionality. Thus, I feel justified in excluding it from my
analysis on the basis that it will improperly distort the results.

One final point can be seen in this comparison. The function memcpy has a cost propor-
tional to the size of the data involved in the data exchange. It would be most desirable to
find a mechanism that would enable the reduction of this cost to a small constant value. This
can be achieved if we provide a mechanism that allows for the exchange of data by reference.
The later proposal does indeed provide such a mechanism.

3.7 Consistency reviewed

I have endowed myself with the luxury in this chapter of functions that I have defined to be
atomic, but not accounted for the cost of maintaining this atomicity. As I pointed out earlier
the level of atomicity is very architecture dependent. On some systems semaphores and the
channel support described here have already become available in hardware and, indeed, the
foregoing can be considered (in each case) a valid description of the hardware behavior and
costs.

Of the software implementation consider the following.

On a uniprocessor machine with no interrupts (i.e., all scheduling is non—preemptive) I
can be forgiven with grace since no consistency problem can occur.

On a uniprocessor with preemptive scheduling I shall have to insist the machine follow
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the wisdom of the transputer such that interruption occurs only at well defined points in a
program — this is also desirable to reduce the amount of state that needs to be saved on
a context switch. These points (e.g., loop end, jmp, return) do not cause problems in the
functions specified in this chapter.

On a multiprocessor machine a central scheduling list can be the source of much con-
tention. To alleviate this contention, to speed scheduling and to provide the atomicity re-
quired I shall insist that the machine contain a small additional scheduling and consistency
processor (a shared coprocessor) that is the only processor allowed to manipulate the schedul-
ing list. This processor is specially designed to minimize response time during periods of high
contention. Thus, the functions in this chapter are executed solely by this single processor
for the other processors present in the system.

Where the hardware solution is not provided I am forced to ensure the consistency of
these functions by the application of appropriate semaphores.

It should be noted that I have avoided “spin lock”techniques. For a description of such
technique for semaphores the reader is referred to Hennessy and Patterson([Hen90] page 471).
I disregard this approach first on aesthetic grounds — busy wait offends my sensibilities;
wasting cycles that might otherwise be used, second it does not scale well to many processors
because of memory subsystem traffic when the “lock” is released , third non-busy solutions
(such as that illustrated here) provide a viable and efficient solution.
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Chapter 4
Critique

We have considered interaction models; i.e., models that embody synchronization and ex-
change of data between processes. To simplify this analysis I have focused on fundamentals
of process models and interaction. Semaphores, embodying the notion of conditional prece-
dence, as a fundamental primitive of synchronization, point-to-point communication as the
fundamental of message passing data exchange and queues as the basis of a fundamental for
the implementation of Logically Shared Data Structures. Further we have focused on three
specific existing models for programming with concurrency.

e Global shared memory — evolved primarily by extensions to earlier sequential models
with regions and monitors as the high level aspects of the programming model.

o Generalized message passing, epitomised by Occam, with a focus on “Concurrency and
Communication”; i.e., the direct interaction of processes by point—to—point communi-
cation, and barrier synchronization.

e Linda, whose message is subtly distinct, purports a focus on “Concurrency and Co-
ordination”; i.e., the indirect interaction of processes via an intermediate shared data
structure.

All three models address the single issue of process interaction. In the following discussion I

take a critical look and these models in the anticipation that by developing an understanding
of their critical aspects we might evolve a useful general purpose model.

4.1 What’s wrong with global shared memory?

For a model that has received so much criticism over recent years global shared memory
has been surprisingly resilient. The principal reason for this resilience is, I believe, that it
has proven to be very effective on small scale parallel machines. In addition the concepts
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associated with it are familiar to many engineers since it has been prevalent in the operating
systems of uniprocessor machines for some time. In particular Fork and semaphore operations
are an integral part of today’s systems (such as UNIX).

Here I briefly reiterate the regular criticisms of the global shared memory model.

Recall that semaphores are difficult to use and error prone. The programmer must be
well disciplined in their use to ensure that every access to shared variables is constrained by
semaphore operations P and V. Recall also how high level programming structures, designed
mainly by Dijkstra and Hoare, had been designed to alleviate these problems.

Yet these solutions have proven inadequate as Hoare points out in his book on CSP.
Sharing is complex, conditional critical regions and monitors are inefficient due to repeated
testing of entry conditions. More elaborate schemes for monitors have evolved such as those
with the range of features illustrated in the earlier chapter for the Encore Multimax but as
Hoare says([Hoa85] page 230) “... the extra complexity is hardly worthwhile”.

A case was made for high level process models in chapter 2.

4.2 What’s wrong with message passing?

It it is not clear yet it is important here to understand the distinction between message
passing as a component of parallel machine architecture and “Generalized Message Passing”
as a programming model.

Concern for the characteristics of communication between nodes of a machine is an impor-
tant and significant issue. Operating systems and VLSI must continue to provide internodal
connectivity, in part by message passing, to support higher level models. These are not the
issues being addressed here.

The issues we are concerned with here are those of message passing as a programming
model. How programmers may conceive and construct parallel programs whose performance
semantics may be well understood and remain efficient. For instance we must consider how
efficiency can be made uniform regardless of the architecture of the machine’s memory sub-
system.

The Occam model of message passing certainly enables simplicity in implementation.
However, this simplicity has a cost, and the cost is significant.

The primary goals of the Occam model were

e simple implementation,

o Generalized Message Passing as the basis of a general purpose parallel programming
model, and

o cfficiency.
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The first goal was undoubtedly achieved in the manifestation of the transputer [INM90].
However, the remaining goals are incompatible and both fail as a result.

The failure of the model as general purpose in practice has already been highlighted in
the Introduction. Against message passing [ make two major contentions, message passing is

1. not general purpose, and

2. preoccupies programmers with issues of data distribution.

The efficiency failure occurs in the context of this generalization and is in essence caused
by the copying of data which might otherwise be passed by reference.

The criticism here of message passing does not apply in such cases where the model is
tied closely to specialized machine architecture. Specialized applications of message passing,
such as systolic algorithms for systolic arrays are simply outside this criticism.

Generalized Message Passing implements communication between processes in the same
address space as a memory to memory copy operation. This increases traffic in the most
significant bottleneck in modern machine architecture — the memory subsystem. Indeed,
modern cache memory and load and store CPU architecture conspire against the efficiency of
memory to memory copy operations.

The model does not map well across the range of MIMD parallel machine architectures for
this reason. A message passing program on a shared memory multiprocessor would certainly
pay a performance penalty for these copy operations and other programming models, which
do allow the exchange of data by reference (such as those mentioned for the global memory
model), would be, indeed are, preferred on such machines.

The real disadvantages of this simple mechanism lie at the higher level. The programmer
is forced to consider, in some detail, multiplexing and routing issues when distributing data
among groups of processes.

In addition, when programming in this channel model (as in Occam), providing sensible
names for channels proves to be difficult, problematic, and a further preoccupation for the
programmer; introducing increased levels of complexity as a program evolves.

Consider a typical, trivial example of an Occam process:

PAR
r 7 buffer[0]
P (buffer[1])
1 ! buffer[2]

where r and 1 are channels, and P is some process. The process illustrates overlapping com-
munication and computation, in a very expressive manner. However, real programs rapidly
increase the complexity of a programmers naming scheme for channels and carefully thought
out channel names begin to introduce confusion in the source.
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left
left! left?
right
right? ¢ right!

Figure 4.1: Naming channels can be confusing.

PROC R (CHAN 1, r)
PAR

r ? buffer[0]

P (buffer[i])

1 ! buffer[2]

CHAN left, right:
PAR
R (left, right)
R (right, left)

This is a trivial, and introvert, piece of code to illustrate a point. We have combined two
processes of the previous example by procedural abstraction and allocated the necessary
channels to connect our processes, what appears as right in one process instant means left
in another (figure 4.1).

Consider a real piece of Occam code, that serves to illustrate the point further. Substantial
pieces of Occam provide commensurate degrees of complexity and ambiguity.

CHAN OF [pktSize]INT clockwiseIn, clockwiseOut,
NclockwiseIn, NclockwiseOut:
PAR
LinkGuardian (clockwiseOut, clockwiselIn,
clockwiseRingIn, clockwiseRingQOut)
LinkGuardian (NclockwiseOut, Nclockwiseln,
NclockwiseRingIn, NclockwiseRingOut)
UserGuardian (userIn, userOut,
clockwiseln, clockwiseOut,
NclockwiselIn, NclockwiseOut)

In fact, the programmer has here adopted their own convention of placing channel pairs
that are formals in order, input first, output second. This style of programming could be
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described as patch panel programming, since it is synonymous with patching wires on a
telephone exchange panel.

No doubt some readers will have in their mind implementations of message passing that are
more dynamic than Occam. In particular, we can envisage those implementations of message
passing that provide non-blocking (nonsynchronized) outputs (often referred to, incorrectly,
as “asynchronous” message passing).

Even so, it should be clear that the same contentions made against Occam apply equally
to these forms of message passing, perhaps more so. Recall, they are

e not general purpose, and

e preoccupy programmers with issues of data distribution.

To conclude, Generalized Message Passing is an unsuitable model for general purpose
programming of parallel computers!. I do not contend that message passing is an unimpor-
tant component of the machine architecture, on the contrary, communication is an essential
component of current parallel machine architectures.

Generalized Message Passing is an unsuitable model for general purpose programming of
parallel computers since it causes engineers to be preoccupied with issues of data distribution
and compels the implementation to copy data that might otherwise be exchanged by reference.

It is possible to write message passing programs that are efficient but only if the engineer
writes topology specific code with a detailed awareness of the target machine. Thus it can be
concluded that message passing is a suitable model for specialized applications (e.g. systolic)
if closely mapped to a compatible target machine architecture.

4.3 What’s wrong with Linda?

In addition to the work described here, several other groups have been prompted to examine
the ideas behind this loosely defined model. Most notable among the recent work — and
representative of the broad spectrum of interest — are the UNITY like SWARM[RoCu90)]

and Orca[Bal89], a component of the Amoeba[TaMu81] distributed operating system.

The important concepts introduced by Linda are a distinct shared data space and simple
operations to change the state of that space. In many ways Linda has changed the under-
standing of how data objects can be addressed in parallel machines.

Linda concepts appear powerful. However, they are certainly too abstract in the context
of the common host language C.

!This is a conclusion many would consider foregone. However, the view that generalized message passing
is a suitable general purpose model has become a common mythology of European computer science.
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The model cannot be applied to a broad spectrum of applications on parallel machines.
The model is unsuitable for programming real-time or embedded systems since the perfor-
mance semantics of tuple space operations are difficult to predict. Linda programming is
heavily dependent on the program optimization we have seen earlier.

All modern compilers utilized optimization and these optimizations have performance
effects. However, the Linda optimizations are of a radical nature, with such different perfor-
mance characteristics, ranging from the cost of a simple counting semaphore to the complex
cost of a distributed hash table and exhaustive searching. The introduction to a program of
a single new tuple type may cause the optimizer to change strategy with remarkable effects,
invalidating any earlier empirical analysis by the programmer. This leads programmers to de-
velop techniques and conventions founded on an understanding of the behavior of a particular
optimizer or underlying matching protocol, subverting any meaningful portability.

The extensive analysis of Linda programs cannot be applied at run time, indeed they must
be applied to the whole program on a once and for all basis, thus requiring dynamic imple-
mentations to take very different approaches, with very different performance characteristics
associated with each Linda operation.

Linda does not provide opportunities for exchanging data by reference. Each operation
in the search for a match may involve several more copy operations than the equivalent
operations in the message passing model. In short, the value matching overhead, for all the
optimization, can still be significant.

Of particular concern to scientific applications is that the expression of distributed ma-
trices cannot be achieved simply. Programmers are required to contrive a tuple structure to
meet the requirement.

The Linda model makes it necessary for programmers to contrive naming schemes within
tuple space to allow an uncertain association between processes. The complete disjoint nature
of Linda processes makes it difficult to consider well formed process structures; e.g., such as
those that might describe the behavior of robots or other control systems.

Let us consider these issues in a little more detail. I have said that with the extensive
optimization it is impossible for a programmer to predict the performance of a Linda program,
without detailed empirical analysis. The problem is significant. You cannot predict the
performance of the Linda program, and you will not know the performance until the task is
complete — any empirical analysis the programmer performs at any point in the development
will likely be invalidated by subsequent changes to the program since the optimizer will almost
certainly change strategy as new tuple types are introduced.

In applications and certainly in low level programming (as encouraged by Linda’s principal
partner to date, C) this will incline programmers to adopt programming conventions based
on their developed understanding of a particular implementation. Programs designed to work
well under one implementation will have unpredictable performance characteristics in some
other implementation.
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Programmers will write programs which exploit some facet of the way the optimizer
behaves, thus subverting the very conceptual elegance the Linda abstraction seeks to provide
in the first instance.

The Linda convention for accessing components of distributed arrays; e.g.,
in("foo", 1, ? v)

optimizes to a hash table access. It may be inferred therefore that access to distributed arrays
is inefficient, a serious disappointment for the scientific community where applications depend
on such structures.

It should be possible to provide analyses that highlight opportunities for passing data by
reference, just as is should be possible for Occam (though no compiler in either case does
this), but currently copying data is always required by an interaction. This means that in
both cases manipulation of complex data structures is an expensive operation.

One of the most significant practical advantages of Linda is that it is combined with a
conventional language and thus does not require users to relearn language skills, of course,
this same advantage is gained by Message Passing in the same way.

The Linda model arose from the shared memory culture prevalent in the USA at the time
of the proposal. What was sought in the proposal was an addressing abstraction, and this
was found in value associative matching.

It is also clear from the Linda proposal of value associative matching that a principle
concern of Linda philosophy is interaction in systems with disjoint name spaces; i.e., a system
in which no one process inherits knowledge of the names specified in any other. Thus several
of the proposals for the manipulation of multiple tuple spaces (e.g. [Hup90]) include opera-
tions that ensure this imperative is preserved. This has complicated the task of specifying a
Linda system with multiple tuple spaces. Let us for a moment focus on the demands of this
imperative on Linda as we have seen it.

A name space provides a mechanism by which a name, an identifying entity, is associated
with a value. Linda isolates explicit naming to that provided by the host language — which
usually means explicit naming of local data. Yet any process acting upon a tuple set has in
any case to share knowledge of the tuple structure upon which it wishes to act. This amounts
to an implicit naming scheme shared by processes that the programmer must be aware of yet
the Linda model cannot explicitly express.

In Linda we often find contrivances of the form
out ("matrixA", i, 6)
and

in("matrixA, 0, ?v)
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This tuple structure has, in essence, associated a name (the string "matrixA") with a set of
tuples whose type is
(integer, integer).

While it is true that these names can be read; i.e.,
rd(?name, ?v, 7v)

where name is a string variable, this mechanism adds little (other than complexity) when
knowledge of the tuple structure is required by the process a priori. Indeed, in some imple-
mentations of Linda a first string field constant is a requirement.

We leave the naming issue with the following observation. Value associative matching does
not provide an elegant solution to the issue of identifying values in systems with disjoint name
spaces since processes must concur on both the tuple structure and any contrived naming by
mechanisms outside the model. Further, such concurrence is impossible to check in a compiler
without such a mechanism.



Chapter 5

Semiotics

Conventional programming language definitions have been primarily concerned with the devel-
opment of Syntar and Semantics in the context of some infinite abstract machine model. For
sequential languages this abstraction is the Turing Machine (an infinite resource uniproces-
sor). For newly evolving languages dealing with concurrency based on interacting sequential
processes, the abstract machine has been an extension of this model — an infinite number of
interconnected Turing Machines.

Abstract, infinite resource, machines enable the application of many mathematical tech-
niques to computer programs. Unfortunately, the programmer finds herself in the classic
engineering predicament of applying theory to practice. The programmers universe is a finite
one, yet when seeking guidance in this universe none can be found in the formal language
definition. The programmer is alone, or at best clutching a poorly specified and informally
described system manual which has poor relation to the language used for programming, and
is often in conflict with it. No mention is made of the effects that resource limitations may
have on program behaviour, nor is mention made of the pragmatics that exist to caused the
invention of some language feature.

In the past pragmatic issues have been left to an uncertain tutorial style which usually
takes the form of an informal introduction to the language syntax and semantics, and some
sketchy detail of implementation restrictions.

5.1 Performance semantics

In many conventional programming languages experienced programmers adopt a hidden se-
mantics based on their understanding of the behaviour of a particular or general implementa-
tion issue. These semantics I name performance semantics, since they derive from a particular
use of the language in anticipation that such use will result in some performance benefit.
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Examples of such usage in conventional sequential languages! are

e use of shift operators for positive power of two multiplication and division,
e use of in line code in preference to procedure or function calls, and

e use of a certain loop construct on the understanding that an optimizer will vectorize
the code and use an available vector processor.

Examples of performance semantics in parallel programming are prolific. Indeed, the
very nature of some explicit parallel constructions is pragmatic. Replication, for example, is
utilized when the programmer has an understanding that to use the construction will provide
some performance benefit; i.e., the use of the construction does not contribute to the solution
(is not an intrinsic of the algorithm).

None-the-less, general parallel construction need not be seen this way. Algorithmic de-
composition using parallel constructions is a modular programming methodology not dissim-
ilar from such methodologies as structured programming and object oriented programming.
Thus general parallel construction need not be regarded as introducing performance semantics
but rather be seen as a modular method of program construction; i.e., that such a program
may be run on a machine with multiple processors is incidental.

The increasing introduction of performance optimizing compilers can be a source of great
semantic abuse. Where the style and actual form of a program is directly affected by the
programmer’s understanding of the optimizing behavior of a particular implementation.

5.2 Semiotics

The term semiotic in linguistics and philosophy is used in reference to the complete study of
signs. The study in these disciplines consists primarily of the three forms syntaz, semantics
and pragmatics. In this thesis I adopt the term in a particular sense. More usually found in
linguistics or philosophy the term refers to “a general philosophical theory of signs and symbols
that deals esp. with their function in both artificially constructed and natural languages
and comprises the three branches of syntactics, semantics, and pragmatics”(Webster’s Third
New International Dictionary). In the manner I use the term here semiotics, in addition
to considering the semantics and syntax of a programming language considers the effect
the language has upon the behavior of the programmer, and, in particular, the pragmatic
statements required for the programmer to make consistent and efficient use of the language.

The syntax and semantics of existing programming languages have inherited much from
the development of mathematical formalism. In pure mathematics there are simple pragmat-
ics. These pragmatics consist of

!These examples are simply those drawn from my own observation of programmer behavior.
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e knowledge that use of the formalism is correctly applied (i.e. degree of confidence in
the ability of the mathematician), and

e interpretation of the expressions by the human observer.

In mathematics both these pragmatics are dealt with by cross referencing with the competence
of other mathematicians. However, it is important to observe that without the application of
these pragmatics the validity of any mathematical result is in question.

The role of pragmatics in mathematics is an important one. The incorrect application of
a formalism produces incorrect or meaningless results. A misconception means to interpret
the behavior of an expression incorrectly. Incorrect application of the formalism implies the
results are incorrect or unexpected. Calculus, geometry, whatever mathematical form, is just
so much scribble without these pragmatics.

The pragmatics in mathematics rests on the integrity of the mathematician doing the
work, the ability to cross reference with other mathematicians who can verify the correct-
ness of the application and interpretation. This is an entirely reasonable assumption among
mathematicians.

Plato formalised these mathematical pragmatics in a single statement written over the
door of the Academy

“Let only geometers enter.”

Indeed, these pragmatics are a pragmatic of the scientific community.

5.3 Semiotics in Computer Science

For the programmer dealing with large, non—trivial, problems a central and unavoidable issue
is performance. It is this pragmatic of performance that most distinguishes the engineering
sciences (including Computer Science) from Mathematics.

Syntax and semantics are becoming well understood in the Computer Science community,
they are issues of great complexity and form. I am concerned here not with those issues but
rather the effect that the language and its implementation have upon the behavior of the
programmer. As an example imagine a language where the use of procedural abstraction
incurred a significant performance cost. This will effect the behavior of the programmer in
time. The programmer learns through experience to avoid using procedural abstraction for
trivial pieces of code.

We have seen mentioned in the earlier discussion several instances of this semiotic effect.
In Occam, programmers soon learn that to over use communication in programs incurs a sig-
nificant penalty due to an increase in the copy penalty, programmers begin programming with
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the free expression of parallelism but pragmatics soon bring constraint and the programmer’s
behavior is modified; modified by the performance semantics of the language.

In generalized message passing a preoccupation with routing and multiplexing is a semiotic
effect that directly changes the way the programmer behaves. In this case the effect serves to
distract the programmer from the real task: algorithmic development.

In Linda the performance semantics of each primitive operation is not uniformly unpre-
dictable because of the requirement for run time matching and optimization, and again the
programmer’s behavior is modified (in the ways discussed in the introduction).

Performance semantics are less of an issue in sequential programming since a sequential
machine generally has a balanced nature with consistent performance semantics. However,
for parallel and distributed programming no such balance exists in current and foreseeable
technology. The more computer technology becomes parallel the greater this issue will be-
come. Performance is an architectural complexity dependent on the balanced nature of the
machine.

So what are we to do? We must come to understand these issues. This understanding
will itself have an effect on the behavior of programming language designers.

In the following proposal 1 have made a first attempt at providing a truly semiotic defi-
nition by providing a section of explicit pragmatics that will enable the programmer to make
efficient and consistent use of the language described.



Chapter 6

Ease — A New Proposal

Let us concede then that a process model is both a useful and desirable programmer’s model
and target model for higher level applications and systems. To support this concession we
may point to the popularity of such models in systems architecture and languages such as
Occam. [ make no further case for it here, it is an underlying assumption to the work
presented and I do not wish to distract the reader with a discussion concerning explicit versus
implicit parallelism. In return I concede that models such as the functional and symbolic
programming models may be, indeed are, preferred in some circumstances.

Thus, in pursuit of the thesis, I now consider how an expressive, general purpose, model
for interaction between concurrently executing processes can be formed. One that refines the
models we have discussed, preserving desirable characteristics and overcoming the deficiencies

highlighted.

The solution proposed arises from the earlier debate, from that debate we derive the
following objectives for our interaction model, such an interaction model should provide

e simple mechanisms with consistent performance semantics, and

e functionality that does not distract the programmer.

Thus, we wish to avoid specifying mechanisms that are difficult to implement; i.e., those
that have varying performance semantics in implementation such as those specified in the
Linda model. We also seek facility that does not distract the programmer in the way message
passing does.

We are still left with a fundamental imbalance in implementation caused on many of
today’s architectures by the dramatic difference between the addressing of data held in a
directly addressable store and the addressing of data held in an indirectly addressable store.
This difference corresponds to the distinction between local memory and non—local (remote)
memory access in distributed systems.
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This problem is one of communication latency and can only ultimately be solved, for a
fully general purpose system where the unit access time to all store is uniform. Such a model
requires the rethinking of modern computer architecture or the invention of a new, as yet
unknown, technology and is beyond our scope here.

The latency problem can be reduced (perhaps overcome) by ensuring sufficient parallelism
exists to maintain computational activity whilst non-local data is fetched. This is not a
general purpose solution and is of value only if the creation of such parallelism does not itself
introduce a significant performance cost. This cost may be high if the processes involved
have to interact extensively as a result of the extra decomposition. None-the-less, excess
parallelism does provide a partial solution on conventional machine architectures.

We have also seen that to generalize the communication mechanism so that it also pro-
vides all interaction between the processes of a program is problematic. Cited in our earlier
discussion were the copy penalty and programmer preoccupation with data distribution issues
such as routing and multiplexing.

In the following presentation a new model is presented designed according to these ob-
jectives. The proposed model has been given the name Fase. It is a model that maintains
the process model and provides a set of simple and symmetric interaction primitives. These
primitives act upon strictly typed shared data spaces called “Contexts”.

As expected, contexts provide a means of describing data structures whose components
may be shared and manipulated by many processing elements. Later a complete programming
language is illustrated that incorporates the model, and further, a definition is also given for
the incorporation of the model into the language C.

The language presented here is close to the spirit of CSP. CSP provides a mathematical
foundation for Fase since the process model is similar to Occam and Contexts can be simply
defined as processes.

The full language addresses several significant systems issues, by providing simple mecha-
nisms for the construction of statically reusable and virtual resources and providing a uniform
means for handling failure and error.

Fase programs are described as collections of processes that execute concurrently, con-
structing and interacting via strictly typed shared data structures. A context provides a
priority oriented, intermediary in which shared (perhaps distributed) data structures are
constructed and by which processes interact. Unlike the generalised Tuple Space of Linda,
Fase contexts are strictly typed and perform no matching at run time. Processes are distinct
entities that interact with and via distinct contexts. A process is well defined and cannot side
affect other processes.

FEase, like the language Occam, attempts to follow the principle of the Franciscan philoso-
pher, William of Ockham, and creates no more entities than necessity requires. The identifi-
cation of this necessity is as perceived in the context of the stated requirements. I adopt the
tenet that elegance in a programming language is found in a symmetry that allows a useful
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and intuitive expression of intent.

6.1 A new model arises

The remainder of this chapter gives an overview of the Fase model and concentrates on
those aspects of the model that distinguish Fase as a unique model for programming parallel
machines.

The model provides a type associative storage that can be efficiently implemented on a
range of machine memory architectures through the provision of mechanisms that allow the
exchange of data by reference. In implementation the methods discussed in the earlier chapter
can be utilized and the efficiency enhanced by simple exchange of references in place of the
copy operations specified, as we shall see.

The model is sufficiently distinct to be added to a conventional language as message
passing primitives and, indeed, Linda primitives have been in the past.

The model enables simpler implementation and thus greater efficiency than Linda value
associativity by obviating all run time matching. The model maintains, and enhances, the
richness of shared data spaces as the basis for expressing interactions between processes. The
model provides for efficient exchange of data by encapsulating a mechanism for exchange by
reference and thus reducing the copy cost discussed earlier. This encapsulation enables the
model to be implemented independent of machine memory architecture, yet remain efficient
when compiled for either shared or distributed memory machines.

A program is described as a collection of processes that execute concurrently, constructing
and interacting via strictly typed shared (distributed) data structures called Conteats.

Fase is novel in the following regard: a context provides a priority oriented and strictly
typed intermediary in which distributed data structures are constructed and by which pro-
cesses may interact.

The model provides simple and symmetric operators — read and write, get and put. The
process model provides constructions for both cooperative and subordinate concurrency and
a mechanism for building statically reusable and virtual resources on parallel and distributed
machines.

6.2 Contexts — shared data structures
A Contezt is a typed shared data structure, either

e a bag — an unordered set of some type.
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e a stream — a serially ordered set of some type where the least recently output value
is the value input.

e a singleton — a single distinct object or array of objects that may be selected by
subscription.

o a call-reply — a type providing guaranteed call reply semantics
Contexts of distinct types may be gathered under a single name enabling a single shared
space of multiple types to be constructed. Operations on a context space are type associative

(name equivalent); i.e., operations are valid if the type of the value or variable is one of the
types specified for the space.

6.3 Operations — actions on shared data

There are four simple, symmetric, operations on contexts. They are

e write (c, e) — copies the value of the expression e to the context c.

e read (c, v) — copies a value from the context ¢ to a variable v.

e put (c, n) — moves the value associated with the name n to the context c.

o get (c, n) — moves a value from the context ¢ and binds it to the name n.

Write and read are copy operations. Put and get are binding operators. The synchro-
nization characteristics of the operations are similarly symmetric

o get and read block if data is not existent,

e write and put are non-blocking.

Consider how these operations change the state of a program.

Write changes the state of a context, leaving the local state unchanged. Read changes
the local state whilst leaving the context state unchanged.

Put changes both the context state and local state; i.e., subsequently the value associated
with the variable name used in the operation is undefined. Get also changes both the context
state and the local state; i.e., the value bound to the variable name used in the operation is
removed from the context.
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6.4 Uniformly building and using resources

The construction of and interaction with resources has special requirements. To enable the
simple and uniform view of resources in parallel and distributed environments, Fase provides
combinations.

A combination provides guaranteed call-reply semantics via some context. A process
that outputs a request to some resource that has access to a shared context is guaranteed to
receive the corresponding reply to that request; thus two particular processes synchronize. A
combination consists of two associated operations.

e a call — behaves like an output followed by a get, and

e a resource — behaves like a get, a process and subsequently an output.

The value output by the resource is guaranteed to satisfy the corresponding get of the
associated call. This call-reply guarantee allows the simple creation of statically reusable and
virtual resources.

A statically reusable resource is a process that manages direct access to the actual resource.
A vector processor may be considered a statically reusable resource since the user process must
await its turn before use. A simulation of the resource behavior may not be useful.

A wvirtual resource is a process that “pretends” to be the actual resource. A disc cache can
be considered to provide virtual resource since it returns to the user immediately as though
the requested action had been completed on the actual resource.

6.5 The process model

Fase provides two forms of process creation that differ in their synchronization characteristics.

6.5.1 Cooperating processes

A cooperation, creates some number of cooperating parallel processes.

I1P]1Q;

is the combination of two processes P and (). The cooperation terminates when all the
processes have terminated.

Cooperations thus represent processes that cooperate closely; multitasking processes on
a single node of a uniprocessor or perhaps processes on a shared memory multiprocessor.
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A special shorthand, a replication, allows many similar processes to be created, i.e.
||e for n : P(4);

creates a cooperation of n processes where each has an index ¢ in its scope.

6.5.2 Subordinate processes

A subordination, creates one or more subordinate processes.

//P;

creates a single process P. Unlike cooperation subordination terminates immediately; i.e.,
the subordinate process is created and the creating process continues.

Again, a replication allows many similar processes to be created:
//i for n 1 P(1);

creates n processes, each of which has an argument index ¢ with a distinct value from 0 to
n— 1.

Subordinate processes are “process creation” thus they continue with a disjoint scope.
If a subordinate interacts with a context whose parallel scope has terminated (because the
process that defined the scope has terminated), the subordinate terminates. This mechanism
is useful since it enables reasoning about speculative computation and provides the automatic
release of allocated resources.

A concurrent process may access any context names in scope at the point of instantiation,
but may not include references to any non-local variables.

6.5.3 Type associativity

A simple shared data structure might be a 2 dimensional matrix, the value of a component
of such a matrix can be explicitly written to by

writelz|[y](k,e)

where e is an expression, k the name identifying the context and = and y the subscript
identifiers of the component.

We may specify contexts with multiple types, such that the name & in our example could
be a “space” consisting of both a 2 dimensional matrix of components and a bag of components
with a different type. A write

write(k, ¢')
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will place the value of ¢’ in the bag provided it is a compatible type. This amounts to a
shorthand method for gathering different shared data structures under a single name where
the particular context is selected by the type associated with the expression used in the
operation. Such selection adds no overhead to the implementation since the compiler can
infer the particular context at compile time.

The typing here is name equivalent which allows the programmer to build sophisticated,
though well typed, shared data spaces.

6.6 Priority

A further characteristic is added to each component data structure of a shared space, that of
priority; i.e., for each data structure specified under a single name a priority can be associated
such that operations upon those data structures possessing a higher priority are completed
in preference to those with a lower priority.

This priority aspect of Fase is experimental and its usefulness must be held in question
until further experience is gained. The intent is to associate priority with data rather than
associate priority with process (the case in Occam for example).
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Chapter 7

Writing Programs with Ease

Fase is an Algorithmic Language', as such it belongs to the same class of languages as FOR-
TRAN, C and Algol. Algorithms are expressed in the language using explicit control state-
ments and actions upon data whose value is respecified by assignment. The following sections
will take easy steps through the major concepts of the language though some knowledge of
other imperative languages is supposed.

The following sections will also help develop an understanding of the definitions and
methods used to describe the language and model. Each section begins with a simple precise
and often continues with a detailed description or rationale. Readers may wish to pass by
these details on first reading.

To keep forward references to a minimum the exposition begins with a precise but brief
introduction to the central concepts of process and data. A more detailed explanation of the
full language follows.

7.1 A brief introduction to the notion of “process”

A process is an action or some composition of processes. An action is an assignment to a
variable or context (a “shared data structure”). Actions are composed to form process com-
positions such as sequences, conditionals, loops and parallels, that can be further composed.
The assignment syntax

x:=1

represents the simplest kind of process called an action, it “assigns” the value represented by
1 to the variable x.

mperative Programming Language.
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e An action is an assignment to a variable or shared data structure.

e A process is an action or combination of processes such as a sequence, conditional,
loop or parallel.

Figure 7.1: Process concepts.

If P and @) are processes, a sequence

{ P
Q }

composes P and () such that if P terminates successfully then () is performed.

If b is a boolean expression (i.e. either true or false) then the sequence

test b: P
else ();

is a sequence that behaves like the process P if b is true, otherwise it behaves like the process
Q.

Processes can also be composed in parallel; i.e.,

|
1Q;

composes P and () in parallel. Parallel algorithms often make use of “replication”; i.e.,
multiple copies of the same process.

|o for n: P(7);

composes n copies of the process P(i), where ¢ names an index value that may be used in P.

Each of the above parallel compositions share a “barrier synchronization”; i.e., the com-
position terminates when all the composed processes terminate. The sequence

1 /P
Q

is also a parallel composition, but P is said to be subordinate to the sequence containing ();
i.e., the sequence begins by creating a process P and then immediately continues with @),
both the “principal” sequence and the “subordinate” P terminate independently.
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Similarly, the sequence
{ //i for n: P(i);
Q

is a parallel composition in which n copies of P are subordinate, the “principal” sequence and
each copy of P terminate independently. To summarize,

® a sequence composes processes sequentially,

e a cooperation composes processes in parallel form such that subsequent processes
continue only when all the processes in the composition have terminated, and

e a subordination composes processes in a parallel form concurrent to the subsequent
processes; i.e., the parallel processes are “created” and the principal (i.e., the creating)
process continues.

Let us end here this brief introduction to the notion of process and have a similarly brief
look at the concepts of data.

7.2 A brief introduction to the notion of “data”

Since Fase is a parallel/distributed programming language with a strong process model it
conceives of data as having one of two principal properties. It is either “local” (private to a
process) or it is “nonlocal” (shared by concurrent processes). Local variable data is repre-
sented in a process by wvariables, nonlocal variable data is represented by shared structures
called Contezts.

The behavior of an action is reflected in the effect it has on it’s environment. An enwvi-
ronment is the set of scopes whose names are valid in a process. A scope defines in which
process a name is valid.

A wvariable is an element (such as a variable name) whose initial value is determined by its
specification and whose subsequent value is defined by the actions in the sequential process
for which it is specified.

A context is an element (such as a context name) whose initial value is empty and whose
subsequent value is defined by the actions in the concurrent processes for which it is specified.

An element is a name, a subscripted name or an aggregate representing a set of distinct
variables or contexts. In particular, an element can be an array or tuple. An array is an
aggregate of distinct variables or contexts of the same type each distinguished by a unique
subscript. A tuple is an aggregate of distinct variables of differing type each distinguished by
a unique subscript.

Actions specify the value associated with an element in an assignment. Thus assignment
is the primitive notion in Fase. In effect, each assignment “respecifies” the environment.



98 CHAPTER 7. WRITING PROGRAMS WITH EASE

o Local data — Variables, may be acted upon by only one, sequential, process.

Shared data — Contexts, may be acted upon by several processes concurrently.
e Scope — the process in which a name is valid.

e Environment — a set of scopes whose names are valid in a given process.

Figure 7.2: Data concepts

An assignment to a variable is an “internal” action; i.e., its effect is only witnessed by
processes subsequent to it that share the scope of the variable, not by any process concurrent
to that sequence. An interaction is an assignment to a context and is an “external” action;
i.e., its effect may be witnessed by any concurrent (or subsequent) process that shares the
scope of the context acted upon.

7.2.1 Names, environment and scopes

Each name used in a process must be explicitly specified and is considered unique; i.e., a
name cannot have two meanings. Specifying an existent name will have the effect of masking
the old meaning of the name for the duration of the new scope. We shall cover the details of
how to specify names in the following sections.

Names represent constant values, variables, contexts, types, procedures and functions.

A scope is the process in which a name is valid. An environment is the set of scopes
whose names are valid in a given process.

7.2.2 Expressions

An expression has a value, a determined value given by the evaluation of the expression.
Variables may appear in expressions, and so may contexts under circumstances that will
be explained later. Expressions and thus the functions that appear within them have no
side—effects.
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7.2.3 Types

All data is typed so that the types can be determined at compile time. The typing is poly-
morphic — in particular, literals have a polymorphic type; i.e., in the expression

1.0+ 1.0

the literal 1.0 has a default floating point type and this expression is itself considered a literal
of that default type. All literals are specified to have a weak default type. However, in the
expression

z+1

where x is a variable or a constant (or, similarly, a function) the literal 1 will be a type
compatible with . Similarly, in the assignment

vi=1

the literal 1 is a type compatible with v. An assignment is defined to be an assignment of an
expression of a compatible type to the given variable; i.e.,

vi=x+1

is valid only if the expression x + 1 is compatible with the type of v.

This typing system is flexible and enables the concise expression of programs using poly-
morphisms, however the use of literals should be reasonable and consistent; i.e.,

1.0=1

would produce a type error since it is not possible to determine the type of the expression,
but

(x4+1.0)+1

would not, since the type of 1 may be inferred from the type of (#+1.0) which is dependent on
2 and not 1.0. It might not seem important here to allow such mixed usage, and whilst most
sensible programmers are unlikely to produce an expression of the above sort — a mechanical
source transformation system or high level application may.

With this brief overview of process and data let us now consider these concepts in greater
detail.

7.3 Actions

7.3.1 Properties of termination

The simplest component of an Fase program is an action.
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An action has properties of termination; i.e., either an action terminates or it does not
terminate. Actions that have solely this behavior are denoted using the keywords skip and

stop.
o (skip| — denotes an action that does nothing and then terminates.
e [stop| — denotes an action that does nothing and does not terminate.

These properties are important since they allow us to reason about progress and give
meaning to actions and their composition. The actions Skip and Stop are analogous to the
concept of a point in space—time. Just as a geometric point possesses no meaning except in
its relation to other points, Skip and Stop actions have no meaning except in their relation
to other actions. Indeed, Skip and Stop simply represent the termination characteristics of a
point in computational space-time.

To continue the analogy beyond the simple one above an action can be considered an
event in computational space—time described by the language semantics that reduces to Skip
or Stop. An action has a semantic value that is an abstraction of the actions behavior,
including the conditions under which subsequent events occur.

This view is abstract and some distance from the real machine. Given the objectives
stated earlier we would like some way to make pragmatic statements about events. It is
useful therefore to have some conception of “duration” for the behavior of an action.

We shall therefore consider that each action has a pragmatic value which we shall call it’s
“behavioral complexity”. Behavioral complexity is a measure that accounts for the operational
costs of an action, and is itself an abstraction of performance cost?.

I shall not go into detail concerning behavioral complexity in this thesis. It is useful to
us here in our semiotic endeavor to enable statements to be made that allow the programmer
to make efficient and consistent use of the language.

The behavior complexity of Skip or Stop can be described as®
B(Skip) =0

B(Stop) =0

where B is a function that returns the measure of the operations involved.

?Behavioral complexity may not have a direct relationship to the performance cost in a particular imple-
mentation but simply be a further abstraction; an approximation of that cost.

3Note: Stop # oo since Stop has no behavior other than it’s non—termination. In particular it is not
equivalent to the divergent process which is equal to infinity. A later section describes Stop in relation to
error, and divergence.
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7.3.2 Assignment

An assignment assigns the value of the associated expression to the associated variable and
terminates. The assignment

vi=14+1

assigns the value 2 to the variable called v; i.e., the assignment respecifies v to have the value

2.

A strict description of the above assignment is to say that the action “behaves like” Stop
until the value of the variable named v is the value of the expression 1 4+ 1, then it behaves
like Skip. We view the action as a respecification of the name v for the remainder of its scope.

The behavioral complexity of the example action can be described as
B(v:=2)+B(1+1)

i.e., the behavior complexity of the assignment plus the behavior complexity of the expression.

7.3.3 Interaction

Interactions act upon shared data structures (Contexts).

A variable has a single value; i.e., an assignment to a variable will, in effect, replace the
preceding value.

Unlike a variable, all contexts are considered sets and initially have the value of the
empty set. Subsequently a context has a set of values defined by the actions upon it; i.e., an
assignment to a context may simply add a value to the set of existing values.

Interactions are called “inputs” and “outputs”. An output is either a Write or a Put. An
input is either a Read or a Get.

A Write assigns the value of the associated expression to the context and terminates. The
Write
Kll+1

assigns (copies) the value 2 to the context called K.

A Put assigns the value of the associated variable to the context, an undefined value is
assigned to the variable, and the action terminates. The Put

K*o

assigns (moves) the value of v to the context called K and then assigns a valid undefined value
to v.
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Unlike Write, a Put does not act upon general expressions and only upon a subset of
variables; i.e., variable names, not subscripted names (components of arrays or tuples), or
segments (subsets of arrays or tuples).

A Read assigns a value of the context to the associated variable and terminates. The Read
K?v

copies a value of the context K to the variable called v.

A Get deletes a value from the context, assigns the value to the associated variable, and
terminates. The Get

K7
deletes a value from K and assigns (moves) it to the variable called v.

Unlike Read, a Get does not act upon general expressions and only upon a subset of
variables; i.e., variable names, not subscripted names (components of arrays or tuples), or
segments (subsets of arrays or tuples).

Since a context may be empty the above defines the blocking behavior of an input, since
an input cannot assign a value from an empty set.

It will be noted that whilst Read is a respecification (assignment) of a variable, and Write
is a respecification of a context, Get and Put are respecifications of both a variable and a
context.

Even so, the behavioral complexity of a Get or Put will often be much less than the
equivalent Read or Write since Get and Put encapsulate a mechanism for exchanging values
by reference (where possible), so give a particular advantage when managing non—trivial data
structures. In an implementation the behavioral complexity of Get and Put should not exceed
that of and equivalent Read or Write.

An interaction may also be written in a procedure style

write(K,141)

put (K.v)
read (K,v)
get (K,v)

each are predefined and exactly equivalent* to the previous syntax. Why not simply define
interaction this way? The reason is a wish to maintain a distinction between procedures and
actions — therefore the query(?) and pling(!) notation commonly used in CSP to express
input and output are used. However, many programmers find this notation disconcerting
thus these predefined procedures are provided.

*Even though the semantics will replace the instance of the expression with it’s evaluation since these are
also equivalent.
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e Assignment — assign a variable the value of an expression.
e Write — assign the value of an expression to the context set.
e Read — assign a variable a value contained in the context set.

o Put — assign the value of a variable to the context set, and the value of the variable
to be undefined.

o Get — assign a variable a value contained in the context set, and delete that value
from the set.

Figure 7.3: The actions. Although Fase has no conception of the pointers familiar in other
languages, Put and Get encapsulate a mechanism that allows the exchange of data by refer-
ence; thus providing an abstraction from the underlying memory subsystem architecture and
reducing copy operations in an implementation.

7.4 Names, local and nonlocal data structures

As mentioned in the introductory remarks each name used in a program must be unique and
thus first be specified in a specification.

There are two classes of specifications

e declarations give names to constants, variables and shared data spaces.

e definitions give names to types, procedures and functions.

The immediately following sections will discuss the first of these specification classes and type
definitions.

At the heart of any programming language is the manipulation and expression of data.
This section takes a comprehensive look at the data concepts that are central to the Fase
language.

7.4.1 Constants

A constant name is specified in a declaration; i.e.

let [1]=1+1
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is a declaration that declares the name ¢, the meaning of this name is the value and type of
the associated expression — in this case the value is 2 and has the default type, integer.

The meaning of a constant is easily determined. Wherever the constant appears it may
simply be replaced by the value of the expression associated with it; i.e., given the above
declaration is valid in our environment

let ¢c=1
is exactly equivalent to
let c=2.
A declaration
let e=x+1

where z is a variable, is valid only if the variable z is not assigned to in the scope of 7, even
so
let c=1

is NOT equivalent to
let c=a2 + 1

since the instance of z may be invalid®.

Constant names declared in this way can only appear in expressions. Whilst the use of a
variable is invalid in any process concurrent to the sequential process for which it is specified,
constant names may be used freely in all processes within the scope. Thus in addition to
the conventional use of constant names (such as in Pascal) a constant name may, in fact,
provide what is in essence read only access to variables in cooperations, or a snapshot copy
of a principal’s variable in a subordinate.

7.4.2 Variables
A wvariable is specified in a declaration called an allocation; i.e.,

let [v]:=0

is a specification that allocates a variable named v. The type and initial value of the variable
is that of the associated expression — which in this case is 0 and has a default type, integer.
An allocation is a special form of assignment that specifies a new name, so yes, it is also an
action.

% As the following sections repeat the scope of a variable is invalid in a concurrent process — this may
confuse some formalists and implementors who will suspect transformation problems. They may be assured
that they are permitted to dismantle such problems by the introduction of additional variables or, if necessary,
context invariants allowing them to isolate the effect. Programmers should note that by using variables in
constant declarations they may endow the declaration with a behavioral complexity greater than zero.
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let ¢ = 1:
|llet «:=0: {IC?:L'...}
|llet y:=0: {IC?y...}

Figure 7.4: The scope of a name is the process following the specification. The above case
illustrates three scopes, those of x, y and ¢, in addition the environment of this process includes
the scope of the free name K.

A variable must always be given an initial value, if an undefined value is required then
the form
let v:=__— > 1int

specifies explicitly that the initial value of the variable is an undefined integer, that is because
_—— > 1int
is an expression whose type is int and whose value is undefined (represented by the underscore

“woom )

Each specified name has associated with it a well defined scope.

7.4.3 Scope

Specifications can be placed almost anywhere in a program, but the part of the program in
which the name has meaning is only that part of the program known as the name’s “scope”.

The scope of a specification is exactly the process that follows it and, in the case of a
variable, that process must be sequential; i.e.,

let v:=0
where P is a sequential process; v may not be used in cooperative and subordinate processes
within P. The colon “:” represents the binding of the specification “block” to the process. The

scopes of other names, such as those of constants and contexts are not limited to sequences
(illustrated in figure 7.4).

Fase scope is similar to the scope concepts found in languages such as Algol, Pascal,
but is in many ways different from that found in Occam. In Occam variables remain in
scope in parallel processes, constrained by a set of rules to maintain consistency — the first
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definition of Fase shared these rules. It was modified for two reasons — first experience
showed that programmers found these rules confusing, second since the central objective of
Fase is to specify and efficiently construct shared data structures it was desirable to encourage
programmers to utilize a single mechanism and to avoid confusing exceptions in the model.

Several specifications specified in the same specification block introduce those names
simultaneously though mutual recursion is forbidden. A specification block is simply the text
from the first 1let to a colon; i.e.,

let ¢ =1
let v:=0

P.

It is therefore considered an error to specify the same name more than once in a specification
block. The naming is thus canonical (i.e., the simplest form possible), a name can only
have one meaning in any given scope. The declaration of an extant name supersedes the old
meaning for the duration of the new scope.

A specification block may follow another specification block, this has the effect of placing
the specifications in sequence, thus

let ¢c=1:
let v:=0:

P.

introduces ¢ and v sequentially where the earlier version introduced ¢ and v simultaneously.

7.4.4 Shared data structures

Fase provides separately for the creation of data that can be operated upon concurrently.
Each shared data structure is called a “context”.

A context can be operated upon by concurrent processes that share the scope in which
the data was specified. This allows the concurrent manipulation of shared data and facilitates
interaction between (concurrent) extant processes.

7.4.5 Singletons and arrays

At its simplest a shared data structure is similar to a variable. The type of a shared data
structure must be specified (though an implementation will provide several as predefined)
since specifications will require named types; i.e.,

type c context int
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defines a type called ¢ that is a context consisting of a single integer.
A data item of this type is allocated in a specification in a similar way to the variable
specified in the previous section; i.e.,

let K :=c¢

specifies a name K of the context type ¢ just specified. All contexts are initially assigned the
value of the empty set®. The action

Kle

Writes a value e such that the value of K becomes {e}. Singletons are such that, like variables,
a subsequent assignment to K will, in effect, replace the previous value in the set K. The
action

K?v
Reads that value and assigns it to the variable v. The action
K7

not only assigns the value to v but also deletes the value assigned from K; i.e., subsequently
K = {}. Other inputs, of course, will not terminate until K # {}.

Usefully, shared data structures that are multidimensional arrays can also be described
as an aggregate of singleton contexts; i.e.,

type m context[X]|[Y]single int

defines a type that is a shared 2-Dimensional matrix, where the components of the matrix are
single integers. In fact the components may be any type including arrays, tuples or, indeed,
other contexts; i.e.,

type [ context[X][Y]single (bool,float64)

similarly defines a matrix in which the components are tuples that consist of a boolean and
a floating point value.

The property described is called the singleton property and describes single and, impor-
tantly, data items addressable by subscription; i.e., given the allocation

let K:=m
the action
Klz]ly]?v

Reads the value x,y of the shared (perhaps distributed) 2D matrix K.

5Thus a context allocation, like a variable allocation, is an action.
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7.4.6 Streams

In describing streams I shall use the notation
[, K]

to indicate a totally ordered set I will call a “list”, where # represents the last (or I shall say
“most recent”) value added to the set, and K represents all subsequent components of the set
that may, of course, be the empty set. Similarly,

K, 7]
will indicate a list such that = represents the first or “least recent” value added to the set and
K represents all preceding components of the set 7.

A stream is a shared data structure the components of which are ordered according to
that defined by the contributing processes; i.e., if a single sequential process outputs to a
stream an inputting process will input values in the order defined by that sequence.

A definition
type c context int

defines a type called ¢ that is a context consisting of a list of integers. An allocation
let K:=c¢

specifies a name K of the new type ¢. As before, the context is initially assigned the value of
the empty set. The action
Kle

Writes a value e such that the value of K becomes

[e, K].

As we have seen actions on streams construct ordered sets (lists) of values. An output
adds a value to the set, an input Reads and may delete the least recent value; i.e., the action

K?v
assigns the least recent value in the set to the variable v. The action
K7

not only assigns the least recent value to v but also deletes that value from K’; i.e., subsequently
K = K’, where [K', 7] represents the value of K preceding® the output, and 7 represents the
value assigned to v.

"The concepts “most recent”, “least recent” and “preceding” will be explained in more detail in a later
explanation of order and interleaving.
8See preceding footnote.
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Figure 7.5: Stream context: The order of values in a stream is determined by the contributors.
Here a single process (on the left of our picture) outputs three values 3,2, 1, inputs input the
least recently output value (3 in this case).
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Figure 7.6: Stream context: Multiple contributors still provide a stream guarantee — a process
will not input a value from a contributor output earlier than a value previously input.
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7.4.7 Bags — unordered sets

Without the explicit specification of singleton or stream, by default, all contexts are unorder,
just like regular sets. These contexts are called bags, a shared data structure the components
of which are unordered; i.e., an input will make a nondeterministic selection of one of the
values in the bag.

A definition

type c context int

defines a type called ¢ that is a context consisting of a bag of integers. An allocation
let K:=c¢

specifies a name K of the new type ¢. As before, the context is initially assigned the value of

the empty set. The action
Kle

Writes a value e such that the value of K becomes {e, X'}, where K’ represents the value of
K preceding the output.

Regular set notation is used to describe the value of bags.

Actions on bags construct (unordered) sets of values. An output adds a value to the set,
an input Reads and may delete a selected value; i.e., the action

K?v
assigns a value in the set to the variable v. The action
K7

not only assigns a value to v but also deletes the value assigned from K; i.e., subsequently
K = K’, where {K', 7} represents the value of K preceding the output, and 7 represents the
value assigned to v.

To avoid confusion it should be noted that the sets referred to are sets of distinct value
bearing components; several or all of these components may hold the same value.

7.4.8 Put — review

In the preceding descriptions of actions upon contexts little mention has been made of Put.
For a context a Put is equivalent to a Write, as for a variable a Get is equivalent to a Read.

The Put
Kl*o

assigns an undefined value to v;i.e., a valid but unknown value of the type is assigned to v.



7.4. NAMES, LOCAL AND NONLOCAL DATA STRUCTURES 111

These semantics allow an implementation to exchange the value of v with the context
by reference. Simple analysis permits an implementation to know if a memory allocation is
required for the local variable that will permit subsequent use. However it will more often
be the case that such variables appear in Put and Get actions in such a fashion that no
memory allocation is required; i.e., a Put of a variable will often be followed by a Get with
no intervening action upon the variable. Programmers can reduce the behavioral complexity
of such operations by consistent use of variables that appear in Put and Get.

7.4.9 Typing, elements and expressions

I will not go into tutorial detail here of typing, elements and expressions. The full definition
gives adequate coverage for our purposes here. In the following subsections I shall cover the
distinguishing characteristics of these features in Fase, I shall not, for example, go into a
detailed explanation of the mathematical operations available in the language

Types

Values? are classified by their type. A type determines the set of values that may be repre-
sented by entities of that type. All typing must be determined before execution; no ambiguity
is permitted to remain. All typing is name equivalent; e.g.,

type days is int

enum from 1 -> days

Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday

let today := Sunday

procedure timepasses ()

test today = Saturday: today := Sunday
else today := today + 1 ;

“Including those associated with variables and contexts.
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Elements

An element is either

e a variable name,
e a context name,
e a subscripted variable name,
e a subscripted context name,

e or a segment.

Subscripts and segments select components of arrays. A subscript
ali]

selects the ith component of the array. The component selected may itself be an array having
one dimension less than its type for each subscript. A segment

alb for n]

is certainly an array, selecting n components of the array a from b. There are several syntactic
forms of segments illustrated in the definition.

Renaming

The name identifying an element is changed by renaming; i.e.,

let n [rename] £

is a declaration that declares the name s renames the element E£. In the scope of the decla-
ration the name n is used in place of the element £. The element and any component of it
may not be referred to except by using the new name in the scope.

The new name is the type and value of the element.

Expressions

Expressions have a value and a type. The value of an expression is the evaluation of the
equation it expresses in the mathematical sense. Thus, expressions do not have side effects
on other values.

The behavioral complexity of an expression is that of the operations within it.
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The behavioral complexity of expressions is trivially extended to account for those in-
cluding functions, that themselves involve actions — a function simply has the accumulated
complexity of the expression and process it represents.

Although we reason about behavioral complexity here as an abstraction of performance
cost in expressions, the semantics do not require the conceptualization of computation; i.e.,
the operational process of evaluation. An expression simply has a pragmatic value (distinct
from it’s semantic value) associated with the behavioral complexity of the operations involved
in it.

7.4.10 Variants — type associative contexts

So far we have looked only at shared data structures with a single invariant type. However, a
context may be defined to have several (perhaps many) types, the operations on such contexts
being type associative. Given the type

type M context chocolate
stream money

which describes a shared data structure whose components are a stream of type “money”,
and a bag of type “chocolate” representing a simple vending machine. The process

let choc := 0 -> chocolate
let coin := 0 -> money
let vm =M

{ wvm 7% coin
vm ! choc
vm 7* coin
vm ! choc
stop

b

serves two customers and then Stops. Examples like this derive from the work of C.A.R.Hoare.
Here the example illustrates a context that has two types. In fact this is simply a shorthand
for two distinct contexts, the appropriate context is selected for each operation by the type
of the variable or expression used.

This feature of contexts allows very sophisticated construction of shared data structures.

7.4.11 Manipulating contexts

A context type may itself be a context and thus be manipulated by interaction;i.e., a context
may be copied (by Read or Write) or moved (by Get or Put).
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7.4.12 Automatic termination of subordinates

The scope of a context terminates as specified; i.e., the context terminates when the process
the specification precedes terminates. Yet we have seen that a subordinate process may
continue beyond the termination of the creating process, and thus beyond the termination of
a context scope the process defines. Is the scope of the context maintained in the subordinate?

Bag and singleton contexts are deemed to terminate with the termination of the scope for
which they are defined; thus if a subordinate attempts to interact with such a context it will
terminate automatically. The same applies to subordinates on output to a stream component
of a context.

Stream inputs are treated as an exception to the above because of the directional nature
of streams. Subordinate inputs from a stream will only cause the automatic termination of
the subordinate if the stream context has terminated and is not ready.

7.5 Composition

Compositions form processes into sequential or parallel form. Simple sequences and parallel
forms have been mentioned. Recall,

e a sequence combines processes sequentially,

e a cooperation combines processes in parallel form such that subsequent processes
continue only when all the processes in the composition have terminated, and

e a subordination composes processes in a parallel form concurrent to the subsequent
processes; i.e., the parallel processes are “created” and the principal (i.e. the creating)
process continues.

7.5.1 Conditional processes

Fase provides a guarded process form that allows the construction of conditional processes.

A Test is the principal form of conditional process, we saw briefly in the introduction to this
chapter. It consists of processes “guarded” by boolean expressions. The process associated
with the first true guard is performed, or none of them are performed; i.e., the composition
behaves like Stop if no process guard evaluates true.

test b: P;
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is P if b is true, and is Stop otherwise, whereas

test b: /P
c: Q)
d: R;

is Piff b, Q iff b A ¢, Rifft =b A —¢c Ad, and is Stop otherwise.
A default may be specified, so that

is Piff b, Q iff =bA ¢, Rift =b A —c Ad, and is S otherwise.

A Selection is a special form of conditional process similar to conventional “case” con-
structions; 1.e.,
select s

now R
T O v

is Piff s=a, Q iff s=y, Riff s =z, and is Stop otherwise. Similarly

select s

O

T
Y
z:
else S

is Piff s=a, Q iff s=y, Riff s =z, and is S otherwise.
A While is a recursive form of conditional process and is simply defined as

while 6P = (—b) : skip

{ test b:{P while 0P}
and
{ P
do Puntil b = while (—b)P
}
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7.5.2 Nondeterministic choice

Nondeterminism is introduced into a program by the nondeterministic selection of values from
a bag context. The programmer may also introduce nondeterminism via the use of an explicit
construct of nondeterministic choice. The choice

choice k?v: P
[T Q;
is the sequence
{ kM

P}

if the input k7v can be satisfied (we say “is ready”), or is the sequence

[Tv

Q }
if the input [7v is ready. If both inputs are ready then the choice behaves like only one of the
possible sequences — which one is nondeterministic. If neither choice is ready the composition

behaves like Stop until one or more possible sequences become ready and a choice can be made.
A default may be specified as for Test; i.e.,

choice k7v: P

[Tv:Q
else R;

is R iff neither of the inputs is initially ready.

Full nondeterminism can be introduced by the construction

choice |P
19

?

in this case the components |P and |() are always ready. This construction is particularly
useful in applications that contain two or more implementations of the same behavior and
the compiler or run time system may choose which one of them to use; such applications can
reasonably be expected to choose the most efficient functioning component, indeed

choice |P = P.
|stop
)
Complex nondeterministic constructions are easily built using choice and they should be

treated with care. For example, in the above case P and () may both start with an output
(recall, an output is always ready). The programmer may expect that during the course
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of a program both outputs will occur. This is not the case. Since choice selection is fully
nondeterministic an implementation may choose to implement P and not bother with (), or
vice versa. Similarly, an implementation may always prefer to select the input k7v over {7v,
illustrated in the earlier example, when both are ready.

This issue is often referred to as “fairness”; i.e., that a choice should prefer the selection
of the least frequently instanced process. Such choices can be constructed by using boolean
guards; i.e.,

choice a <=bla+ +
b<=alb++
)
implements a fair choice between its components; where initially ¢ = 6. A false boolean guard
excludes the component from the choice; so that, even though the first component may always
be chosen when a = b, it is excluded from the choice on the subsequent instance allowing the
second component to be performed.

The programmer is also cautioned of the distinction

choice k?v:P # choice | { kv
7v:Q ro}

; {1
Q }

?

where the selection on the right is independent of the readiness of the inputs; and for the
same reason
choice | { kv # choice | { kM
P} P}
Tv:Q | {1
; Q }
A choice that includes
|skip

or
b|skip

is invalid. It is also worth noting that

choice |P
else Q;

is always P.
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7.6 Resources

The construction of reusable resource processes is an essential requirement in any system.
Resources may manage specific, specialized, aspects of a system such as a printer, database
or, perhaps, a vector processor.

Utilization of resources by specific processes demands, in fact, close synchronization. This
synchronization provides claim /release mechanisms and ensures that responses issued by the
resource return to the correct process.

Such resources have two forms. Statically reusable resources require management that
ensures that their use is pro rata. Virtual resources behave like the resource but are actu-
ally either simulations of the behavior of the real resource, utilizing the real resource when
available, or provide additional access to the real resource.

A statically reusable resource is usually one whose simulated behavior is not useful or
whose shared access is either undesirable or impossible, for example, a vector processor. Such
a resource must synchronize with the using process, act upon the data provided in a prescribed
way and perhaps return a result.

A virtual resource is a process, whose behavior may be a delegation of usage of the real
resource, or may provide additional access to a real resource. A print spooler common to most
operating systems may be said to be a virtual resource. A database system that manifests
processes providing additional access on demand may also be considered a virtual resource.

7.6.1 Combinations

Combinations provide the essential ingredients of resource access, and subordinate processes
provide the dynamic process creation required for the dynamic creation of virtual resources.

A call behaves like an output to a context followed by a get; i.e., the call
Kle?x v

behaves like the sequence
{ Kle
K7T*v }

A resource behaves like a get from a context followed by a process and a subsequent
output; i.e., the resource
resource K7%v : Ple
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behaves like the sequence
{ KTz
P(x)
Kle }

In addition these combinations provide a guarantee that the output from a resource will
satisfy the get of the call that supplied the input data.

resource K7"x!f(x)

is a convenient abbreviation defined for a common form of combination that uses functions
in place of procedures. It is equivalent to the combination

resource K7z :y := f(a)ly.

The reader will note a strong similarity to concepts of remote procedure call; indeed,
combinations are sophisticated mechanisms providing similar functionality.

A call that first behaves like a put to a context followed by a get; i.e., the call
Klsa?*ax

behaves like the sequence
{ KPIv
K7*v }

allows the exchange of data between the resource and the call to be implemented as exchange
by reference.

A resource that finishes with a put completes the exchange; i.e.,
resource K7x : Plx

behaves like the sequence
{ KTz
P(x)
Kl*z }

Combinations can prove extremely effective where exchange by reference of non—trivial data
structures is a benefit.
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7.7 Placement

Contexts and subordinates can be explicitly placed on the nodes of a machine. A directive
let k:=con nat a

allocates the context k on node n at address a. This provides important support for embedded
systems and in particular allows a singleton to be identified with a memory mapped device.
An implementation may provide for the specification of several nodes by using a table type,

SO
let k:=con [0,1,3]

allocates the context & and distributes its implementation over nodes 0, 1, and 3.
//on @: P;

and,

//on i for n: P(i);
allows subordinate processes to be explicitly placed on remote nodes of a machine, where a
node is regarded as a part of the machine with a common address space; regardless of the
number of processors that share that space. Cooperations are required to be instanced on a
single node. Thus
[/on i:||j for n: P(y);

can be used to describe the parallel execution of P on a remote SIMD node (7).

Explicit placement is provided as a first order feature of the language to provide support
primarily for automatic source-to-source transformation. An implementation of Fase may
provide such optimizations for each target implementation to map a program to available

resources. Higher level languages that target Fase may choose to use the same optimizers or
introduce placement directives explicitly.

7.8 Undetermined values, invalidity and divergence

Processes that include expressions (assignment, Write and guarded processes) behave like
Stop if the value of the associated expression is undetermined (denoted by the symbol L).
The following paragraphs define the meaning of undetermined values.

An undetermined value is the result of an expression that is invalid. An invalid expres-
sion is one that has

e a typographical syntax error,
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e a type incompatibility,

e a use of an unspecified name!®,

e a value not included in the range expressible by a type!!!? or

a function that diverges or deadlocks'®.

Divergence is a racing process; e.g.,
while true: skip

A divergent process behaves like an infinite number of internal actions.

Where these actions are hidden this divergence will often take the form of live lock, where
some set of processes interact infinitely between themselves.

Deadlock isa stopped process; e.g., a process that infinitely waits for an input to be satisfied.

An observer is unable to distinguish between deadlock and divergence since the divergent
process will never interact with the observer. Nor is it possible for the observer to detect the
fact.

Divergence is discussed in detail in [Ros86b], and to a lesser degree in [Ros86a].

7.8.1 Detectibility of undetermined values

Detectability of undetermined values is a pragmatic concern. The degree of successtul detec-
tion is entirely dependent on the sophistication of an implementation.

Invalid expressions are usually detectable. A parser will detect typographical errors, usage
checking will detect type incompatibility and unspecified variable names. Run time exception
handling is often required to detect values not defined for the range of a type, for example in
the case of arithmetic overflow or division by zero.

It is impossible to detect an undetermined value that results from the divergence of a
function since even a privileged observer, i.e. one able to “peek inside” the process, sees
progress. The observer cannot discount therefore that the process might yet terminate or
interact.

1Tncluding the use of a name in scope but which is not specified for use in a parallel construction; i.e., use
of a free variable in a parallel construction.

1 This statement encompasses arithmetic overflow, underflow, division by zero etc..

12The IEEE/ANSI 754 floating point definition provides values specified for the behavior of floating point
operations (such as Not-A-Number). These values are considered wvalid for the purposes of this definition, and
are represented in an implementation of the language by a compatible set of predefined constants.

13A function can only deadlock or diverge internally.
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7.9 Exception handling

Where undetermined values can be detected it is often desirable to define alternative behavior.
Such detectable instances at run time are called exceptions and can often be predicted by
programmer concern.

To allow the programmer to express such concern Fase provides for the definition of
alternative behavior. The sequential process

{ on stop K

P }

performs F if P should stop in a way that is detectable. £ and P share the same scope and
thus have access to exactly the same free environment. The behavior of P up to the Stop
action is not discarded and will be reflected in changes to that environment. Consider the
example

{ on stop write(signal, "Expression error on %"(node))

X=m*xc+y

b

or

{ on stop fptrap()

test e = NalN : stop else skip
+



Chapter 8

Definition of Ease

8.1 About the definition

The definition of Fase is constructed through the use of several interrelated models which
constitute the semiotic definition of the language.

These models are respectively syntactic, semantic and pragmatic in nature. The syntactic
model defines valid syntactic constructions of the language. The semantic model defines the
meaning! of syntactic constructions. The pragmatic model provides a measure of performance
cost and makes statements that help the programmer to make consistent and efficient use of
the language.

e the syntactic model is defined by a BNF grammar and a set of validity rules.

e the semantic model is defined here by a set of simple informal statements and more
formally by a CSP description.

e the pragmatic model consists of a set of informal statements designed to help the
programmer make consistent and efficient use of the language.

8.1.1 Syntax

The BNF grammar which characterizes Fase and is presented in the following sections does
not, indeed cannot, fully characterize all valid the syntactic constructions of the language
since it is unable make statements which capture such things as

e A name used in an expression is only valid if the name has been specified.

IMore accurately, describes the behavior represented by the syntactic constructions.

123
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Therefore, the BNF characterization of the language syntax is accompanied by a set of validity
rules which constrain the possible syntactic constructions defined by the BNF notation.

The BNF context free grammar used to characterize the syntax (and presented in full in
the appendix) of the language presented here generates a LR parser from YACC or Bison
without the use of precedence rules and with no reduction conflicts.

Modified BNF

The modified BNF? definitions specify a context free grammar which describes the syntax of

the language.

In the following modified BNF

means, a textual sequence of n or more item.

<”D item)

means, a textual sequence of n or more item separated by commas.

A circle (o) represents newline. Thus

means, a textual sequence of n or more item separated by newlines.

means, a construction i1s a sequence, or a lest, or a selection, or a combination or a choice,

construction =

sequence
test
selection
combination
chotce

repetition

or a repetition. It is equivalent to

construction

construction

construction

construction

construction =

construction =

sequence
test
selection
combination
chotce

repetition

?Backus Naur Form.

CHAPTER 8. DEFINITION OF EASE

(, oitem)
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Keywords are not case sensitive in the language, but appear in the definition in upper case
and boxed to distinguish them. With the exception of newlines all symbols of the language
appear boxed. For example, in the definition

test = |TEST| (, o conditional) T‘

| |TEST| (, o conditional) |ELSE| process D

conditional = boolean D process

| boolean o process
| test

TEST and ELSE are keywords, “o” represents a newline, symbols are highlighted in boxes;
e.g., “.”7 marks the end of a test construction. When keywords and symbols appear in the

accompanying text and mathematics they appear in a typewriter font.

The vertical bar which appears along the left side of a modified BNF definition is a loose
grouping construct only, whose primary purpose is to distinguish such definitions from the
main body of text.

8.1.2 Validity statements

In addition to the BNF syntactic descriptions validity rules define valid sentences in the
language; i.e., the validity statement

example

Validity 1 (of assignment) An assignment is valid only if the type of the variable and
the expression are the same.

constrains the syntax of assignment to values of the same type.

8.1.3 Equivalence statements

The meaning of some syntactic descriptions are defined equivalent to more primitive syntactic
components; i.e., the equivalence
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example

Equivalence 1 The assignment
v+ +

where v is a scalar variable of integer or float type is an abbreviation defined by

v++ = vi=v+1

defines the meaning of v 4+ + in terms of a more primitive assignment.

8.1.4 Context free grammar

The following definition includes a complete context free grammar; a version of this grammar
is suitable for use with YACC? or Bison parser generators.

The complete grammar appears in the appendix and includes precise specifications for
the appearance of line breaks in a program.

8.2 Fase pragmatics

This section introduces aspects of the language and how they relate to the programmer.

8.2.1 The process model

A process is a behavior pattern which consists of an action or combination of actions in local
scopes.

8.2.2 Machine and process

A machine* is a device which provides the resource required to manifest the behavior of a
program.

A program is a collection of processes combined to express the behavioral description of
some application.

Resource includes the physical manifestation of the machine and the exact implementation
of the language described in the following sections.

3Although use with YACC may require that you rebuild your version of YACC with larger table space.
4Such as a general purpose or specialized computer or robot.
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Aspects of a machine’s physical resource are finite. A program may behave incorrectly if
the machine provides inadequate resource. To contribute to the correct behavior of a program,
more than adequate resource must be guaranteed during the interval of its manifestation.

An application consists of some composite of algorithms. An application may have tem-
poral requirements which cannot be met by the available resource, though a program can
complete its manifestation. Such instances demonstrate an inadequacy in the specification of
the machine.

A process is the expression of an algorithm or some component of an algorithm.

8.2.3 Contexts and interaction
A context is a distributed data structure, which has a well defined scope. The components of
a context are some well defined type.

Write and Read operations copy values to and from a context.

Put and Get operations move value representations (variables and contexts) to and from
a context.

Entities moved by put and get can be considered distinct. In implementation this enables
data which exists in a shared address space to be passed from one process to another by
reference.

Interaction decouples the sender and receiver of a value.

Groups of processes construct, creating and modifying, data structures distributed among
them. Groups of processes interact uniformly via contexts.

8.2.4 Expressing concurrency
Programs are expressed in parallel form to
e enable simple elucidation of the disjoint components of the program, or to

e to introduce some particular performance semantics.

Algorithmic decomposition

A program can be expressed as the component, interacting, algorithms of an application.
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Performance semantics

Performance semantics derive from the use of a construction in anticipation that such use will
benefit performance of an algorithm.

Performance semantics are introduced to a program in three forms

1. Overlapping interaction and computation.
2. Computation decomposition.

3. Priority.

The use of the first form, overlapping interaction and computation, derives from an under-
standing that interaction on the particular structure is not an instantaneous operation (e.g.,
it is known to be on a remote node in a distributed system) and there exists computation
which has no dependency on the data involved in the interaction.

The use of the second form, computation decomposition, derives from an understanding
that concurrent computation can be divided and distributed across available resource and that
there exists no direct dependency between each component of the decomposition. Indirect
dependencies, such as those in a pipeline, are expressed as interactions in one or more contexts.

The use of the third form, priority, derives from a requirement that interactions on some
data structures be completed in preference to interactions on others.

Programs dependent on performance semantics will behave differently according to the
architecture and resource of a particular machine.

The performance semantics of a program can be altered by program transformation.

Cooperation and subordination

Concurrency can be expressed as either cooperative or subordinate. Cooperation parallelism
is characterized by parallel operations on shared local data. Subordinate parallelism, is char-
acterized by subordinate operations on globally (i.e. some broader locality) shared data.

These two forms are pragmatically distinct and they require separate syntactic construc-
tions to express their semantics.

Cooperative parallelism is manifest as concurrency between processes which share a com-
mon address space. Such processes are commonly implemented on uniprocessor or shared
memory multiprocessors.

Subordinate parallelism is manifest as concurrent management of resources, and con-
currency between processes not sharing local data dependency, acting upon global, perhaps
distributed, data.
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Automatic release and speculative processing

Subordinate processes terminate if they attempt to interact with a context whose scope has
terminated or whose value has been output. This provides two powerful pragmatics:

e automatic release of allocated resources, and

e speculative computation.

8.2.5 The pragmatics of the parallel composition

Parallel composition involves a pragmatic consideration since there will be sequences existent
which possess complete independence from those specified (perhaps the execution of some
other program, perhaps the power supply of a machine). The pragmatic demands that these
sequences are “well behaved”; i.e., they do not, under any circumstance, affect the behavior
of the parallel®.

8.2.6 Resources

The construction of and interaction with resources has special requirements.

A combination provides guaranteed call reply semantics via some context. Access to
system resources is provided by use of combinations.

Resources are either statically reusable or virtualized. The pragmatic distinction between
the two types carries a performance semantic. Static resources synchronize the behavior of
the actual resource with the calling process. Virtual resources provide resource response to
a process whilst the actual resource may be busy, and the actual resource behavior may be

delayed.

8.2.7 Failure and error handling

Detectable errors and failures may be gathered in a global signal context. Global error
handlers can be simply specified to act on instances of error data.

Local error handlers are built using special sequence constructions.

>Clearly this is not an assurance against the “acts of some god” or, indeed, errant programs in the same
system but it is a pragmatic which the programmer must accept.
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8.2.8 Definitions and instances

A definition provides an algebraic abstraction whose meaning is defined in an instance of the
name defined.

8.2.9 Allocation

An allocation allocates memory of the type specified.

8.2.10 Typing

All typing information can be detected by a translator at the time of translation. Typing is
name equivalent.

8.2.11 Expressions

The type of an expression is determined in it’s instance. For example, 1 + 2 defines an
expression. Let ¢ be a variable of integer type, then in the instance

=142

the expression 1 4+ 2 has the value 3 and is of type integer. Thus, let r be a variable of float
type, then in the instance

ri=1+2
the expression 1 4 2 has the value 3 and is of type float.

8.2.12 Procedures

Procedures name processes. A procedure is defined by textual substitution of the process
named.

A procedure may be translated by either substitution of its textual translation, or where
it is used more than once in a sequential construction or cooperation, as a closed subroutine.

8.2.13 Lambda expressions (functions)

Functions name lambda expressions. A function is defined by textual substitution of the
lambda expression named.

Lambda expressions do not produce side effects. Lambda expressions which use subordi-
nation, interaction or choice internally are nondeterministic.
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8.2.14 Modules

Modules are defined by textual substitution. The names specified in the hide portion of a
module are given a canonical form, that is, they are renamed to unknown names which do
not conflict with names in the current or subsequent scope.

8.2.15 Stylistic conventions

Programs must be written clearly, with useful supporting comments.

A program may be considered invalid if its lay out is ambiguous or the associated com-
ments vague.

Automatic generation of Fase is also required to follow these pragmatics.

8.2.16 Alien language processes

Processes written in a conventional language may take the place of any process in Fase,
provided they meet the rules for parallel processes.

Such processes may perform interaction, using variants of interactions which are seman-
tically equivalent to those defined by Fase.

Alien languages which exist in the Fase abstract system, are modified to comply with
Fase reference semantics. Aspects of the alien language which cannot be defined in terms
of the Fase reference semantics must be omitted from the implementation or constrained to
meet the requirements of Fase semantics.

Alien languages may be extended to include constructors and interaction operations which
are semantically equivalent to those specified by the Fase reference specification. Names of
keywords are implementation specific; however, the Fase aspects of the implementation must
be some semantic subset of the Fase definition. Supersets must be defined to be algebraically
equivalent to the reference semantics. Types and type definition must have defined equivalence
to the Fase reference semantics.

8.3 Fase syntax and semantics

The following sections define the language syntax supplemented by semantic statements. Fase
constructions have semantics compatible with CSP mathematics (as defined in[Hoa85]) for
similar constructions — a CSP definition of the Fase interaction model is given separately in

CSP.
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The syntax is described using a modified BNF® plus additional validity rules which cover
typing and usage requirements.

8.3.1 Actions

action = assignment | interaction

| skip | stop

Stop and Skip

skip = |SKIP

stop = |STOP

Assignment

assignment = variable|:=|expression

vartable = element
An assignment assigns the value of the expression to the variable.

Validity 8.1 (of assignment) An assignment is valid only if the type of the variable and
the expression are the same.

Abbreviations for increment and decrement

assignment = variable |++

| variable |--

Equivalence 8.1 The assignment
v+ +

where v is a scalar variable of integer or float type is an abbreviation defined by”

v+4+ def vi=v+1

5Backus-Naur Form.
"Note that literals are polymorphic.
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Equivalence 8.2 The assignment
v _

where v is a scalar variable of integer or float type is an abbreviation defined by

def

v—— vi=v—1

Interaction

interaction = input | output

input = read | get

output = write | put

read = context |7 |variable

write = contexl | ! | expression

get = context | 7x|reference

put = context | 'x|reference

context = element

reference = name

A read assigns a value from the context to the variable.
A write assigns the value of the expression to the context.

A get binds a value in the context to the name, removes the binding from the context
(and thereby the value).

A put binds the value of the name to the specified context, removes the binding from the
name. The value of the name is subsequently undefined.

Validity 8.2 (of interaction) An interaction is valid only if the type of the name, variable
or expression is a member of the type set defined for the context.

Abbreviations for read and write

The behavior of a write k ! ¢ where k is a context, and e is an expression, is equivalent to the
behavior of an assignment k := e (given the relevant type characteristics).
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Equally, the behavior of a read & 7 v where £ is a context, and v is a variable, is equivalent
to the behavior of an assignment v := k.

In practice the validity rules only allow a context of invariant type to appear in an
assignment since there is no variant first class data type.

The following equivalences therefore define useful abbreviations.

Equivalence 8.3 An assignment k := e where k is a context of invariant type, and e is an

expression of that type, is an abbreviation equivalent to a write in the context k. Thus
bime Y Lte

Equivalence 8.4 An assignment v := elk] where v is a variable and k is a context of in-

variant type which appears in the expression e, is an abbreviation equivalent to a read from

the context k to a temporary variable of the type defined by the context and a subsequent

._ o J{ kT
vi=elk] - { vi=clt] }

where t is a temporary variable of a type compatible with the invariant type of k. A context

assignment. Thus

may only appear once in such an expression.

Thus an assignment k := e[k'] where k is a context of invariant type, and k' is a context
of invariant type which appears in the expression ¢ is defined by

o [ K w [ K7
ki=elk] 2 { bemelt] ) Lo { el )

where t is a temporary variable of a type compatible with the invariant type of &'.

Abbreviations for sequences of similar actions

read = context variable)
write = context expression)

get = context |7x|(,|, | name)

put = context |'*|(,|,|name)

Equivalence 8.5 A sequence of interactions on the same context and of the same operation
can be abbreviated. Let x be an interaction operator such that x € {,!*,7,7*}. Let k be a
context and a, b and ¢ be compatible expressions, variables or names, then
» { kxa
kxabc = kExb
kxc }
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8.3.2 Constructions
Processes

process = action | construction

Sequential construction

construction = sequence
| test
| selection
| combination
| choice
Sequence

sequence = (, 0 process)

A sequence performs each of its components sequentially.

Test

test = |TEST| (, o conditional) D

| |TEST| (, o conditional)

ELSE | process D

conditional = boolean D process

| boolean o process
| test

A test is the sequential composition of guarded processes called conditionals. A condi-
tional is a process guarded by a boolean expression.

Conditionals are tested in sequence; if the guard is true the associated process is per-
formed, if the guard is false the subsequent conditional is tested. If there is no subsequent
conditional the construction behaves like stop or the default component if one exists.

A test which includes an ELSE specifies a default component process, which is performed
if no conditional is performed.
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Selection
selection = |SELECT| selector B (, o option) '
| | SELECT | selector o (, o option) '
| | SELECT | selector D (, o option)
ELSE | process D
| | SELECT | selector o (, o option)
ELSE | process D
selector = expression
option = match_list B process
| match_list o process
match_list = <1D expression)

A selection i1s a sequential composition of options; options are processes guarded by a
match list.

The value of the selector is used to select an option.

Each expression of a match list must be type compatible with the type of the selector.
All the expressions used in the match lists of a selection must be distinct®.

A selection which includes an ELSE specifies a default component process.

Equivalence 8.6 Let s be an expression, €" be an expression list (i.e., match list) with n
components, 1 be an index, and P be a process, then®

SELECT s : " P; ' TEST i FOR n : (s =€) P;
Let Q) be a process, then
SELECT s: €"P def TEST ¢ FORn : (s =¢')P
ELSE (); ELSE Q;
Let €™ be an expression list with m components, then
TEST
SELECT s: €"P TEST ¢ FOR n : (s = ¢') P;
. def .
e™(Q); TEST ¢ FOR m : (s = €')Q;
)

8This requirement allows selection to be efficiently implemented by table look up.
9There is a forward reference here to replication.
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and
TEST

SELECT s: €"P TEST ¢ FOR n : (s = ¢') P;

TEST ¢ FOR m : (s = €')Q;
ELSE R

Combination

combination = call | reply

call = contextT‘expression 7% | name

name | 7x

| context | !*

name

name [:J

RESOURCE| context | 7%

reply =

process

T‘ ETPresSSIon

RESOURCE| context | 7%

name o

process

-71 name

RESOURCE

context | 7%

name [:J

process

%

name

RESOURCE

context

? %

name o

process

Ik | name

A combination synchronizes two processes interacting via a common context.
A call behaves like an output and get in sequence.

A reply behaves like a get, process and output in sequence.

Validity 8.3 The process associated with the reply is invalid if it contains references of a call
reply type to the context associated with the combination.

The behavior of a combination is given a more formal description in the following section’s
CSP semantics.
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Equivalence 8.7 A convenient abbreviation is

RESOURCE c¥z'f(z) ¥ RESOURCE ¢¥z 1y = f(x)ly

Choice

choice

alternative

de fault

determined

nondetermained

time

CHOICE

CHOICE

de fault J

determined
boolean D determined

boolean o determined

(, o alternative) D

(, o alternative)

nondetermained

booleannondetermained

choice

ELSE | process
ELSE || AFTER
ELSE || AFTER

input

time B Process

time o process

Z| process

input o process

reply

|I| process

ETPresSSIon

A choice is the composition of a number of alternative processes. A choice performs one,
and only one, of its ready alternatives. A nondeterministic choice is made between ready

components.

A nondetermined alternative is always ready.

The readiness of a determined alternative is determined by an input guard. An input

guard is ready if the input can be satisfied.
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An alternative guarded by a boolean is excluded from the choice if the boolean is false.

A selected determined alternative behaves like the input and the associated process in
sequence.

If no alternative is ready the choice behaves like Stop until an alternative is ready.

A choice may include a default process. This process is chosen if no other component of
the choice is ready.

A choice which includes an ELSE AFTER time default specifies a default component process.
A time 1s a float expression which represents a period of time which limits the continuation
of a choice; 1.0 = one millisecond. If none of the alternatives is ready within the specified
time, the default process is performed.

Equivalence 8.8 In choice

def

ELSE P ELSE AFTER O: P

Validity 8.4 A choice is invalid if one of its alternatives is
|SKIP.

The readiness of an alternative that is itself a choice is determined by its alternative
components which may include a default; i.e.,

CHOICE A CHOICE A
CHOICE B ELSE P(); % B
ELSE Q(); ELSE CHOICE |P()|Q();;

Concurrent construction

construction = cooperation

| subordination

Concurrent constructions cause their components to be performed simultaneously.

Cooperating parallel processes

cooperation = (jassociate) D

assoctate = || || process

The components of a cooperation start simultaneously and continue together; a coopera-
tion terminates when all the components of the cooperation have terminated.

Validity 8.5 A cooperation is invalid if it contains references to free variables (elements
other than contexts).
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Subordinate processes

subordination = (,subordinate) E|

subordinate = |//|process

The components of a subordination start simultaneously and continue independently; a
subordination terminates when all the components of the subordination have started.

Validity 8.6 A subordinate is invalid if
1. it contains references to free variables (elements other than contexts), or

2. reference is made to a free context on the right side of an interaction.

Otherwise all constant, procedure and function names free in the subordinate are valid, and
remain valid in the scope of the subordinate, if they were valid at the point of subordination.

A subordinate process automatically terminates if it attempts to interact with a bag or
singleton context whose scope has terminated or whose value has been output. An output to a
stream context whose scope has similarly terminated will cause the subordinate to terminate.

An input from a stream context will cause a subordinate to terminate if the stream has

terminated and is “empty”1°.

Repetition
construction = repetition
repetition = |WHILE| boolean B process

| |WHILE| boolean o process

| |DO| process |UNTIL | boolean

A repetition is defined by
TEST b{P WHILE bP}

WHILE bP (~ b)skip
and
{ P
DO P UNTIL b & WHILE (~ b)P

}

10T reat this with some care. In streams which have multiple contributors data will almost certainly be lost
where one of the contributors is itself a subordinate.
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Replication

Sequential replication

sequence = |{|replicator Bprocess

re liCGtOT O TOCESS
| [{|rep p

test = |TEST| replicator B conditional '
| |TEST | replicator o conditional
choice = |CHOICE|replicator D alternative '

| |CHOICE | replicator o alternative

replicator = mname |FOR| count

| name |FOR| count | FROM | base

| name |FOR| count | FROM | base |BY | step

base = cxpression
count = expression
step = expression

In the following, let n be a name, ¢ be a count, b be a base, and s be a step.

A replicator
n FOR ¢ FROM b BY s

specifies a set of ¢ names n = (s *1¢ + b) each with a distinct scope and value such that each
value is the result of s %2 + b, where 7 is the set of integer literals in the range 0..c — 1. The
type of n is derived from the type of the expression s i+ b; i.e., it may be an integer (signed
or unsigned) or float*!.

Equivalence 8.9 Abbreviated replicators mean

n FOR ¢ FROM b | n FOR ¢ FROM b BY 1

nFORce ¢ 1 FOR ¢ FROM O

Equivalence 8.10 The meaning of a sequential replication is defined by

(iFORc: P()} < {P(0) P(1) ... Ple—1)}

11Gee the definition of expressions for validity.
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where 1 is a name specified by the replication. The process P is replicated ¢ times. The scope
of © for each replication is the associated replication of the process P.

TEST i FOR ¢ : C(i); % TEST C(0) C(1) ... Clc—1);

where ¢ is a name specified by the replication. The conditional C' is replicated ¢ times. The
scope of © for each replication is the associated replication of the conditional C'.

CHOICE i FOR c: A(i); “ CHOICE A(0) A(1) ... A(c—1);

where © is a name specified by the replication. The alternative A is replicated ¢ times. The
scope of 1 for each replication is the associated replication of the alternative A.

Abbreviations of sequential replications

test = |TEST|replicator j conditional

ELSE | process E

| |TEST | replicator o conditional
ELSE | process E
choice = |CHOICE| replicator D alternative
default | ;

| |CHOICE| replicator o alternative

de fault J

Equivalence 8.11 The following are valid abbreviations of test and choice replications.

TEST
TEST i FOR ¢ : C'(7) ELSE P(); ¥ TEST ¢ FOR ¢ : C(i);
ELSE P();
and
] CHOICE
CHOICE i FOR ¢ : A(i) ELSE P(); ¥ CHOICE i FOR ¢ : A(i);
ELSE P();
Concurrent replication
associate = | Il |replicator B process

| | Il | replicator o process

subordinate = |// | replicator Bprocess

| |// | replicator o process
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Equivalence 8.12 The meaning of a concurrent replication is defined by
. . def
||t FOR ¢: P(¢) = ||[P(O)||P(1)...]|P(c—1)

. . def
//it FOR ¢: P(i) = [/P(0)//P(1)...//P(c—1)
where © is a name specified by the replication, the type of 1 is derived as before and the value is

in the interval 0..c— 1. The process P is replicated ¢ times. The scope of v for each replication
is the associated replication of the process P.

A cooperation with no components terminates immediately.

li FOR 0 : P(i) < ||skip

A subordination with no components terminates immediately.

de

//iFORO: P(i) 2 //skip

Placement
subordinate = |//|placementprocess
| | // | replicator D placementprocess
placement = |ON nodeD
| |0N | node o
node = expression

Placement provides directives to the implementation specifying the node on which a
subordination should be placed. An implementation may choose to ignore these directives.
The value and type of the node expression is implementation dependent.

On stop alternative sequence (error handling)

sequence = ON| |STOP | process o

(o 0 process) m

An On Stop behaves like the first process if the sequence behaves like stop. Changes made
to the environment by the sequence preceding the Stop are maintained.
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8.3.3 Types

type = primative type
| array_type
| tuple_type

primztive _type = |BOOL

| integer_type
| |UNSIGNED| integer type

| float type

integer type = |INT

| | INTS

| | INT16

| | INT32

| | INT64

float type = |FLOAT32

| |FLOAT64

| |FLOAT128

The interpretation of values is defined by a data type.

Boolean types

A value of type BOOL is either true or false.

Integer types
A value of integer type INT is a signed integer in the range
=N (2N -1

where NV is the number of bits natural to the particular implementation.

A value of integer type INTN is a signed integer in the range

—oN= (N )
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where N is the number of bits used to represent the type.

A value of unsigned integer type is an integer in the range
0..2%

where N is the number of bits used to represent the type.

Float types

Floating point numbers use the ANSI/IEEE Standard 754-1985 representation.

A value of type FLOAT32 is represented using a sign bit, an 8 bit exponent and a 23 bit
fraction. A value is positive if the sign bit is 0 and negative if the sign bit is 1. Let m be the
magnitude, f be the fraction and e represent the exponent, then

m=2"2"%x1.f if 0<eande<255
m=2"1%%x0.f ife=0and f<>0
m =10 tfe=0and f=0

Similarly, a value of type FLOAT64 is represented using a sign bit, an 11 bit exponent and a
52 bit fraction. A value is positive if the sign bit is 0 and negative if the sign bit is 1. Let m
be the magnitude, f be the fraction and e represent the exponent, then

m =218 5 1.f if 0<eande <2047
m=2"124%0.f ife=0and f<>0
m =10 tfe=0and f=0

Rounding and truncation

The rounding of floating point numbers occur in arithmetic expression evaluation, in explicit
type conversions, and also when literals are converted to the IEEE representation.

All floating point issues defer to the ANSI/IEEE Standard 754-1985, representation and

operations.

Array types

array_lype = ETPresSSIon type

An array type is a homogeneous ordered group of components of the same type. The size
of the group is specified by the associate expression, which must be of integer type.

Validity 8.7 Let ¢ be an expression and t be a type, then the type [e]t is valid iff e > 0.
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array_type = wnteger_type | :: count type

count = expression

A counted array type is a count component of an integer type, followed by an array
type. The size of the sequence is bounded to be not greater than the value specified by the
associated count expression.

Validity 8.8 Let e be an expression, I an integer type and t be some type, then the lype
I 2 [e]t is valid iff e > 0.

Strings and characters

integer _type = |CHAR

array_type = |STRING

Equivalence 8.13

CHAR u UNSIGNED INT8

STRING u UNSIGNED INTS8::[256]CHAR

Tuple types

tuple_type = QD typ€>

A tuple type is a heterogenous ordered group of components of some type.

Type deduction

type = |TYPE||OQF | expression

| |TYPE || OF | context

The type TYPE OF expression is the type of the associated expression.
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8.3.4 Element

An element enables the selection of components of arrays and tuples.

subscript ﬂ

base| . .)

element = element

| element

]
|
| element | (.. | limit]]
[
|

| element | [|base |FOR
| element | [| base
| name

subscript = expression

base = expression

limat = expression

count = expression

Let N be the name of an element, then the type of that element is the type specified in
the allocation of N.

In the following, let s, b, [, and ¢ be a subscript, base, limit, and count respectively,
and let £ be an array of type [n]7, where n is the size of the array and 7 is the type of its
components.

An element F[s] selects the s component of the array £ and is of type 7.

An element FE[b FOR |, selects a segment (several contiguous components) of the array
E, and is of type []T.

Equivalence 8.14

B Y B0

Eb.) Y Ebn—1 Y EbFoRn—b+1]

Validity 8.9

1. A subscript, base, limit, or count is valid iff the subscript, base, limit, or count expression
is of integer type.

2. The element E[s] is valid iff 0 < s < n.
3. The element F[b..1] is valid iff 0 < b <[ < n.
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4. The element E[b FOR ¢ is valid iff 0 < b and 1 < ¢ < n'?,

element = tuple

tuple = <2D tuple_component>

tuple_component = element | B

A tuple is a heterogenous ordered group of elements.

A tuple component selects the field of a tuple.

In the following, let £ and D be elements of type 7 and # respectively. Let T be a tuple.
The element (F, D) is a tuple of type (7,0).

The element (£, _) is a tuple of type (7,w), where w is an undefined type (i.e. compatible
with any type).
An element T[s] selects the st component of the tuple, and is the type of the selected

component.

An element T'[b FOR ], selects a segment of the tuple T, and is a tuple with the type of
the selected components.

element = table
table = <2D table_component>
table_component | element

A table is a homogenous ordered group of elements of the same type.

A table component selects the field of a table.

In the following, let E' and E? be elements of type 7. Let 1" be a table.

The element [E', E?] is an array of type [2]7.

An element T'[s] selects the s component of the table, and is of the type 7.

An element T'[b FOR ], selects a segment of the table E, and is an array of type [c|T.

These principles are trivially extended for all tuples and tables with more than two more
components.

An element has a value and a type. The value of an element may be changed by assignment
or input. The initial value of an element is defined by its declaration.

Let e and ¢’ be expressions, then:

IZNote this definition does not allow elements with zero component arrays, counted arrays are provided for
this purpose.
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Let v be a variable of type ¢, then the assignment v := e is valid iff e is of type ¢, the
value of v is replaced by the value of e.

Let v be a variable of type [n]t, and s be a subscript of integer type, then the assignment
v[s] := e is valid iff ¢ is of type ¢, the value of the component v[s] is replaced by the value of
e.

Let v be a variable of type [n]¢, and b..l be an interval, then the assignment v[b..[] := ¢
is valid iff e is of type [n']t, where n' = [ — b+ 1, the value of each component of v[b..[] is
replaced by the value of the respective component of e.

Let v be a variable of type [n]t, and b FOR ¢ be an interval, then the assignment v[b FOR ¢] :=
e is valid iff e is of type [c]t, the value of each component of v[b FOR ¢] is replaced by the value
of the respective component of e.

Let v be a variable of type ¢ :: [n]t’, then the assignment v := e is valid iff e is of type
t:: [n]t’; the value of v is replaced by the value of e.

Let v be a variable of type ¢ :: [n]t’, and ¢ :: e be an expression where ¢ is an integer and
e is an expression of type [m]t’; then the assignment v := ¢ :: e is valid iff n > ¢ < m, the
value of v is replaced by the value of ¢ :: €[0 FOR c|.

Let ¢ be an integer variable, and v be a variable of type [n]¢’, then the assignment ¢ :: v := ¢
is valid iff e is of type ¢ :: [m]t’, where m < n, the value of ¢ is replaced by the size component
of e, and then the value of v[0 FOR ¢] is replaced by the first ¢ components of the associated
array in e.

Let ¢ and ¢ be integer variables, and v be a variable of type [n]t, then the assignment
¢ :v:=c eisvalid iff e is of type [m]t, where m < n, the value of ¢ is replaced by the
value of ¢, and then the value of v[0 FOR ¢ is replaced by [0 FOR ¢].

Let v be a variable of type (¢,t’), then the assignment v := e is valid iff e is of type (¢,7),
the value of each component in v is replaced by the value of the respective component of e.

Let (v,v') be a tuple of type (¢,t'), and (e, ¢’) be an expression of type (¢,%'), then the
assignment (v,v’) := (e, €’), assigns the value of each component of (v,v’) is replaced by the
value of the respective component of (e, e’), such that v := e and o' := ¢’

Let (v,_) be a tuple of type (¢,u), where u is undefined, and (e, ¢’) be an expression of
type (¢,t'), then the assignment (v, _) := (e, €’), is valid. The value of each component of (v, _)
is replaced by the value of the respective component of (e, €’), except where the component
is undefined, such that v :=e.

It follows that these principles hold for all tuples; a tuple can have two or more compo-
nents, and zero or more of those components may be undefined.
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8.3.5 Expressions

An expression has a value and a type. All expressions have a type which can be deduced by
the compiler, although the type need not be explicitly stated where a type can be directly
implied.

expression = element
| table

table = <1D e:z;pression>

Let T' be a table [e%, ¢!, .., "], where each e denotes an expression of type ¢, then T is an
array of type [n]t, where the value of each component is the value of the respective expression
e. T'is invalid iff any one of the components of 1" is of some type other than 7.

Let e and €’ be expressions of type ¢ and #’ respectively, then the value of (e, €’) is a tuple
of type (¢,t'), where the value of each component is the value of e and ¢’ respectively.

Let e be an expression of type ¢, then the value of (e, _) is a tuple of type (¢,t'), where ¢ is
undefined, the value of each component is the value of ¢ and an undefined value respectively.

Let (e,-) be a tuple of type (f,u), where u is undefined, and (v,v’) be an element of type
(t,1"), then the assignment (v,v) := (e, ), is valid. The value of each component of (v,v’) is
replaced by the value of the respective component of (e,_), except where the component is
undefined, such that v :=e.

These principles hold for all tuples; a tuple can have two or more components, and zero
or more of those components may be undefined.

expression = monadic operand
| operand dyadic operand

operand = expression

| expression

Both operands of a dyadic must be of the same type, the result is of the same type as the
operands. All operands must have a defined value.
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dyadic = arithmetic
| relation
| logical
| bitwise
arithmetic = |+ | |/\|:‘|7‘|W
relation qg<><<>
logical = |AND|||OR|||XOR
bitwise = /N[N =><|]>>]]]<<
The arithmetic operators are
+ addition
—| subtraction
A power
* multiplication
/ division
%| remainder

Arithmetic operators perform an arithmetic operation upon operands of the same integer or
real data type. The result is a value of a type defined by the type of the operands.

The relation operators are

= equality

> greater than

< less than

>=| greater than or equal
<=| less than or equal

<>| not equal

Relation operators perform a relational operation upon operands of the same data type (i.e.
all types except contexts). The result is a value of boolean type. The relational operators are
defined for non-scalar types. Non-scalar types are equal if all the components of the type are
equal. A non-scalar type is greater or lesser than another according to the value of the first
non—equal component. Non-scalar operands must be of the same type (which implies also
the same length).
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The logical operators are

AND| logical and

OR logical or

XO0R| logical exclusive or

Logical operators perform a logical operation upon operands of the boolean type. The result
is a value of boolean type.

The bitwise operators are

/\ bitwise and
\/ bitwise or

> bitwise exclusive or

>>|  shift right

<<| shift left

Bitwise operators perform an operation on the bit pattern of a value of integer type. The
result is a value of an integer type defined by the operands.

monadic = Mminus
| complement
| negation
menus = |-
plus = |+
complement = |~
negation = |NOT

The expression —x has the value 0 — z.
The expression +x has the value 0 + .

The expression ~ x is the complement of x; # must be an integer and the result is a value
of the same integer type.

The expression NOTb is the negation of the boolean b. The result is boolean.
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Expression evaluation

Expressions are evaluated left to right, dependent on operator priority. The priority is defined
in the accompanying grammar.

Literals

‘ expression = literal

literal = char
| string
| integer
| float
| | TRUE

FALSE

A literal is an expression (it has a value and type).

char = character
string = n <Ocharacter>m

A char is an expression of the predefined type CHAR, a character is a member of the
printable ASCII defined set or a special character.

A string is an expression of the predefined type STRING.

integer = (,digt)

| (digit)

| base@ (,degit)
float = (,digtt) . | ( digtt)

| ((degit) <1digit> exponent

exponent = (,degit)

[ [- | digit)

The literals TRUE and FALSE represent the boolean values true and false respectively.

The type of an integer literal is INT, unless the type of an associated operand or element
constrains it to a value of another integer type.
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The type of a float literal is FLOAT32, unless the type of an associated operand or element
constrains it to a value of another float type.

Let [ be an integer literal, e an expression of integer type I, and A a valid dyadic, then
in the expression ¢Al the literal [ is constrained to be of type I.

Let [ be an integer literal, and v a variable of integer type I, then in the assignment v :={
the literal [ is constrained to be of type I, excepting if the assignment is in a declaration then
[ is the default type INT.

Let [ be a float literal, ¢ an expression of float type £, and A a valid dyadic, then in the
expression eAl the literal [ is constrained to be of type F.

Let [ be a float literal, v a variable of float type F', then in the assignment v := [ the
literal [ is constrained to be of type F', excepting if the assignment is in a declaration then [
is the default type FLOAT32.

Let [ and I’ be integer literals, and A a valid dyadic, then the expression (Al is also an
integer literal.

Let [ and [’ be float literals, and A a valid dyadic, then the expression (Al is also a float
literal.

Let [ be an integer literal, and ¢ a valid monadic, then the expression ¢/ is also an integer
literal.

Let [ be a float literal, and ¢ a valid monadic, then the expression ¢/ is also a float literal.

Conditional expressions

expression = | IF booleanDeajpression ELSE | expression

Let b be a boolean, let e and ¢’ be expressions then the conditional expression
IFb : e ELSE ¢

is the value of e if the value of b is true, is the value of ¢’ if the value of b is false.

Merge expressions

expression = String <1D e:z;pression>

Let S be a string. A string of the form S(€° ...e"), is a merge expression where each
instance of the special character % in S is replaced by a string which represents the respective
value of e, if e is a number, or the string if e is a string.
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The format of numbers merged with a string in this way can be specified by the special
character sequences % fd or % fd.d or % fd.dEd, where d is an integer value representing the
number of components to add to the string, and f is either r, 1 or ¢, and indicates, right, left
or centre alignment respectively.

String concatenation
ELPression = concatlenation

concatenation = <1 string)

The expression s\t concatenates the strings s and ¢; i.e.,
“hello”\ “ world” = “hello world”
and

“hello”™\

“ world”

= “hello world”

8.3.6 Type constraint, assertion and casting

A type constraint constrains the type of an expression to a specified type. If the value is not
that specified then the value is coerced to a value of the type.

expression = constraint

constraint = expression |=>|type

| expression |=>||ROUND | type

| expression |=> || TRUNC| type

Let e be an expression and ¢ be a type, then a constraint ¢ — > ¢ constrains the value of
the expression e to be the type t. The value of e is converted to a value of the compliant C.

Conversions from integer to floating point values (and vice versa) can specify whether
the result of the conversion is to be rounded or truncated. By default such conversions are
rounded; i.e., the value is rounded to the nearest value of the specified type. Where two
values are equally near the value is rounded to the nearest even number. A truncated value
is rounded toward zero.

A boolean value can only be constrained to a boolean type.

Tuples and arrays can only be constrained to tuples and arrays with an equal number of
components.
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element = eclement |=>| compliant

expression = expression |=>|compliant

compliant = type

| | 01| type

A compliance e => (' is defined by

d
e=>(C Lo e

and is valid iff
TYPEQF ¢ = ('

A compliance e => []C' is defined by
e =>[|C Y.

and is valid iff e is an array with components of type C'.

A compliance (type assertion) causes the associated action to stop if the compliance is
not compatible.

expression = cast

cast = expression |>| | type

A cast forces a value to be the type specified but makes no alteration to the bit pattern
use to represent the value of the expression’s defined type.

The bit size of the cast type must be equal to the bit size of the original type. In particular
tuples and arrays can be cast provided this constraint is met.

8.3.7 Keywords and names

Keywords are distinct and may not be used as names. Keywords are not case sensitive.

Names may be any length, include any of the following characters but must begin with a
letter.

letter = a..z| A.Z
digit = 0.9

symbol = _ |’

Names are case sensitive.
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8.3.8 Scope

Names in Fase may strictly have only one meaning in any particular scope. Therefore,
subsequent specification of a name already specified gives that name a new meaning for the
scope of the specification, and hides the old meaning of the name for the duration of its scope.

Process = spect fication_block B scope
scope = process
| conditional
| option
| alternative
spect frcation_block = ( speci fication)
spect frcation = definition
| declaration

Associated with each name specified is a region of the program in which the name is valid,
called the scope of the name. The scope of a name is the speci fication block in which it is
specified and the action, construction, conditional, option or alternative which immediately
follows the spect fication block.

A name may not be specified twice in the same speci fication block.

8.3.9 Declaration

declaration = |LET| (, spect fier)

Constants

specifier = name B expression

constant = name

A constant specifier declares a name whose value and type is that of the associated
expression.

Validity 8.10 o A name specified in a constant declaration may only appear in expres-
sions.

o The specifier is invalid if an element that appears in the expression is assigned to in the
scope of the name.
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Renaming

specifier = name |RENAME| element

| name |RENAME | context

An renaming specifier declares a name which renames the associated element or context.
An element or context may be renamed only once in a specification block.

Variables and contexts

allocation = name|:=|expression

| name | :=|context type_name

| name | :=|context type_name |ON| node

| name | :=|context type_name |ON| node |AT| address
spect frer = allocation
address = expression

An allocation specifies a name which is assigned the value and type of the associated
expression, or specifies a name which is assigned the type of the associated context type
name and the value empty!?.

A context may be specified to reside on a particular node in a machine, and optionally
at a specific address. The value of the node and address expressions are implementation
dependent.

Abbreviation of variable and context declarations

allocation = (|, | name) | :=|type
| (|, | name) | :=| expression
LET 2%, .., o™ = 7 Y OLET =7 =

where 7 is a type or expression.

I3An empty context.
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Enumeration

enumeration = |ENUM <1ﬂ name)

| |ENUM || FROM | base <ID name)

base = expression

declaration = enumeration

An enumeration specifies an enumerated set of constants, and is defined by

def

ENUM ° .. ¢ LET=0..c"=n—1

and ,
ENUMFROMs & .. " < LET®=s. " =s+n—1

where the type of ¢ is the type of s.

8.3.10 Definitions

Type definition

definition = |TYPE|type_name |IS|type

type_name = name

type = type_name

A type definition defines a name for the specified type. A variable, context, or expression
whose type is defined by a type definition are of the same type if their type has been defined
in the same definition.

All expression operators remain defined for values of the named type as for values of the
base type.
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Context

definition = |TYPE|{type_name

bag = bag_type

| priority bag_type
bag_type = type

| singleton

| stream

| type |REPLY | type

stngleton = |SINGLE|type

stream = |STREAM|{ype
preority = |LO
| |HI

| |ILO| expression

| |HI | expression

CONTEXT

| | [| expression stngleton
| | [ expression |1 | stream

CHAPTER 8. DEFINITION OF EASE

<1m bag)

A context definition specifies a name for a context type.

The type components of a context must be distinct types.

Outputs to a context stream are ordered such that inputs are satisfied by one of the least

recently output values!?.

An output to a context singleton adds the value to the context, or replaces the previous
value of the singleton if a value is existent.

An output context[i]le places the value of the expression e in the context at subscript ¢,

or replaces the previous value of the singleton if a value is existent.

A priority HI is a higher priority than a priority LO. An expression associated with a
priority is some signed integer value'®. The greater value signifies a higher priority. Interac-
tions on components with higher priority will be satisfied in preference to those interactions
on components with lower priority. Those bag types not explicitly given a priority are priority

L0 by default.

141f & single process is performing output to a context stream inputs will be satisfied in strict order.
15 An implementation may choose to reserve positive values for subsystem use.
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Procedure definition

Procedures are defined by textual substitution of the process they name!®. Typing of proce-
dure parameters is polymorphic or type assertive.

definition = |PROCEDURE| proc_name <OD pformal )

body
body = process
pformal = name

| compliant name

| |VAL| name

| |VAL | compliant name

A procedure de finition names a process.

instance = proc_name <OD actual >
actual = element

| expression

| context
process = instance

Let B be the body of a procedure then given the definition

PROCEDURE P()
B

then an instance is exactly the substitution of the body; i.e.,
ro ¥ p.

Let n be a name which appears in the body B, and let + be an actual, then given the

definition
PROCEDURE P(n)

B
an instance is a substitution of the body with the name specified as a formal renamed; i.e.,

P(z) ¥ LET n RENAME z : B.

16This definition represents a change to the definition of the July 1990 Yale Report. This version is has a
better algebra for recursion and utilizes the introduction of RENAME
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Alternatively a formal may be specified to be the value of the actual; i.e., given the

definition
PROCEDURE P(VAL n)

B
and instance takes the value of the actual; i.e.,

P(x) Y IETn=2:B

A compliant restricts the type of an actual to that specified by the compliant. Let (' be
a type compliant, then given the definition

PROCEDURE P(C' n)
B

an instance of P is valid only if the actual is of the type specified by the compliant; i.e.,

Plz) ¥ LETnRENAME @ => C': B.

Similarly for actuals specified to be values; i.e., given the definition

PROCEDURE P(VAL (' n)
B

a similar type assertion compliance is applied

Plz) ¥ LETn=a =>C: B.

The full range of compliant assertion can be use. Thus let [JC be a type compliant and let z°
be an array type actual with e components, then given the definition

PROCEDURE P([]C' n)
B

an instance will accept an array with any number of components of type (' i.e.,

P(zf) ¥ LET n RENAME A° => [|C': B

Recursive sequences
A recursive reference must be the last process in the sequential construction which forms

the procedure. A new instance of the procedure is instantiated. This form of recursion is
commonly called “tail recursion”; i.e., given the recursive procedure definition

PROCEDUREP()

{ B
P}
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an instance of P is o
P = { B
P() }

and so on. Similarly
PROCEDUREP(n)

{ B
P

is

A recursive sequence is a terminal extension of a procedure.

Recursion in parallel

The terminating characteristic of recursive sequences is hidden by subordination. This per-
mits the recursive instance to form a self-replication of the procedure in parallel to the first
instance; i.e., a procedure

PROCEDUREP( )
{ B
//P();
B’ }
18 5
P < /PO
B/

}

and so on.

A recursive reference may not occur in a cooperation.

Function definition

Functions are side effect free and polymorphic.
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definition = |FUNCTION| fn_name <OD fformal )

fexpression

f formal = name

| compliant name

fexpression = |=|expression

| |=| expression |WHERE | process

A = |VAL <OD fformal )| : fexpression

A_expression = spect fieation _block | ( fe:z;pression

expression = fn_name <OD expression >

| lambda_expression

The type and value of a function expression
=e
is the type and value of the expression e, and is valid iff the names in e are constants.

The type and value of a function expression,
= ¢ WHERE P()

is the type and value of the expression e after the associated process P() has been performed,
and is valid iff the names in e are either constants or names specified in the initial specification
block of P(). P() may not contain references to free variables or references to a free context.

Let £ be a function expression. The lambda definition
VAL n :(€)

defines a function expression where n defines a constant name which appears free in & the
value and type of which is determined in an instance of the expression (called a lambda
expression) defined by the definition.

Let € be a function expression, and e be an expression, then the value of the lambda
expression,
LETn=e: (&)

is the value of £ where each instance of the name n in € is substituted for the value of the
expression e. The substitution of €¢’s value is valid iff the type TYPE OF ¢ is compatible with
each instance of n in €£.

Let £ be a function expression. The lambda definition

VAL Cn : (€)
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defines a function expression where n is a name which appears in £. A lambda expression
LETn=e=>C:(§)
is a valid instant of the definition. The type of e is asserted!” that of the compliant used in

the definition.

A lambda definition is given a name in a function definition. The instance of a function
is defined by substitution of the corresponding lambda expression.

Let € be a function expression, v be a result type compatible variable, e, x and y be
expressions, and C' a compliant, then given the function definition

FUNCTION f()€
an instance of f is
def
vi=f() = v:=(E)
A function definition names a lambda definition; i.e.,

FUNCTION f(n)€ “ VAL n : ().

An instance of this function is

v:= f(e) u v:=LETn=¢: ()

and so on for functions with multiple arguments; i.e.,

FUNCTION f(a,b)€ < VAL a VAL b : (€)

then

vi= flx,y) | v:=LETa=2LET b=y : ()

and functions whose arguments are compliant, given

FUNCTION f(Cn) € “ vaL Cn : (€)

then
v:= f(e) = v:=LETn=e=>C:(&)
given
FUNCTION f(Ca,Cb) € “ VAL Ca VAL Cb : (€)
then

v:= f(z,y) o v:=LETa=2=>CLETb=y =>C:(£).

1"Not coerced; i.e., it is an error if e is not of type C.
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Recursive function expressions

fexpression = |=|recursive

| |=|recursive |WHERE | process

recursive = |IF|boolean expression |ELSE|tazl

| |IF | boolean tail |ELSE| expression

| |IF | boolean tail |ELSE| tazl

tael = recurstve

| |IRECURSE <1D fformal )

Recursive function expressions allow the construction of tail recursive functions, such that

an instance of
FUNCTION f(z) = IF b ¢ ELSE RECURSE(x + 1)

is e if b is true, f(x 4+ 1) otherwise. Similarly an instance of

FUNCTION f(z) = IF b e ELSE RECURSE(x 4 1)
WHERE P

is e if b is true after P, f(x + 1) otherwise.

8.3.11 Other recursive definitions

Recursive definitions (e.g. mutual recursion) other than those specified for procedure and
lambda are invalid — held for later review.

8.3.12 Comments

comment = |/*x|text|*/

The text between two comment symbols is ignored by the compiler. Nested comments
should be permitted by a compiler.
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8.3.13 Modules

definition = |MODULE | name mbody |END MODULE
mbody = show hude

| hide show

| show
show = | SHOW | spect fication_block
hude = |HIDE| speci fication_block
specification = moduleanstance
module anstance = |USE | name

A module is defined by substitution of it’s body.

When instanced, all the names specified in the hide portion of the module definition are
given a canonical form; i.e., they are given distinct unknown names, names which do not exist
in the current or subsequent scope.

The mbody of a module cannot contain references to free names.
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Chapter 9

CSP

9.1 Communicating processes

My review of generalized communication as a programming model forces me to draw a re-
markable conclusion given today’s art in programming high performance machines; i.e., com-
munication is an unnecessary distinction, simply too mechanistic for practical utilization, and
too little facility for expression in the large.

It is assignment, and not communication, that is the fundamental notion. This in itself
is not new, theory has often seen it this way (e.g., assignment as a single indivisible event is
common in both CCS [Mil89] and CSP [Hoa85]) even if programmers haven’t. It expresses
the changing environment, and this changing environment characterizes the progress of an
algorithmic solution (i.e., a computer program).

Communication is simply a mechanism of assignment; i.e., a variable receives a value
output by an expression, but to make this distinction is to revel in the mechanism. An
assignment is simply a single indivisible event — a respecification of a name’s value.

Let us consider communication then in the light of these remarks.

We must call to mind that in providing effective engineering tools for parallel programming
we must be concerned with the classic problem of how to maintain consistency and avoid
conflict between an assignment to a variable and it’s intended usage.

We must first agree that assignment to local variables occurs only in strict and specified
sequence, as it has done these past years in conventional sequential programming. A commu-
nication then between concurrent processes (as is defined in CSP) is simply the assignment
of a value yielded in one process to a variable existent in another. A single event engaged by
two processes simultaneously.

From this we must observe that point-to-point communication imposes two particular
constraints on these “non—local” assignments. Communications are both hidden and synchro-

169
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nized; i.e.,

e since the variable to which the assignment is being made is private (local) to the receiv-
ing process the event is “visible” only to processes subsequent to it; i.e., hidden from
concurrent processes,

e the event requires the synchronization of the two processes involved in the interaction.

This is the very basis of the point-to-point communication mechanism. However, while
this is an essential mechanism in the mathematics of process behavior these are undesirable
constraints on the programming model for two primary reasons.

1. the hidden nature of a communication means that to share information between several
processes many such events must be specified by the programmer allowing information
to propagate,

2. the forced wait of outputting processes creates greater opportunities for deadlock since
it forbids any subsequent interaction by the process which may release a deadlock state?!.

It might at first seem that the obvious solution to our problem is to remove the hidden
nature of variables that would be assigned to by communication. Making their value visible
to all processes. Yet we must be careful since this could simply bring us full circle and present
us with the greater set of problems communication was conceptually deemed to overcome in
the first place.

We have seen that communication as a concept is simply a particular form of assignment.
It is a solution that arose in response to problems in concurrent programming and mirrors
mechanisms found in hardware. It was a natural first step from an engineering point of
view and remains important from a theoretical one. However, it has proven deficient by the
reasoning outlined here and in the earlier sections.

What can we learn from our experience with communication that will point us in the
right direction?

Assignment to local variables causes us no concern since we live in the certain knowledge
that other assignment to the variable either precedes or is subsequent. Let us consider the
nature of such a variable for a moment.

We may regard each variable as itself being a process whose behavior is defined by the
sequence of assignments to it. If we exchange each assignment for the value it assigns we can,

'We must be prepared here to accept a wait by inputting processes since the programmer has designated
this instant for the respecification of the associated variable — to continue beyond this instant will leave the
environment in a partially specified state and render it’s composition with subsequent events meaningless.
Lazy evaluation is an issue which belongs in another paradigm or as an implementation detail; I ignore it
here.
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in turn, consider a variable to be a set of values, totally ordered by the originating sequence.
An environment consisting of many local variables can therefore be seen as a family of sets.
Each set “interleaved” with the others according to the specified sequence and identified by
the variable name; i.e.,

T = 10
y:=2
T = {{10}, {10,32}, {10,32,54}}, o= 32
y={{21},{21,35}, {21,335, 35 }} . 3
Y i=93
T = 54
) 35.

where the left side of the equation defines the evolved environment specified by the sequence of
assignments on the right (each distinquished by the subscript value). Any of the assignments
in this example could be replaced by an appropriate point—to-point communication which is
an input to the variable.

What is characteristic of this view remains the single indivisible nature of an assignment,
its clear association with the value it assigns to the variable, and the notion of interleaving.

9.2 Shared data structures

Let us now, as we did for communication, try to characterize operations on shared data
structures. In the following discussion I shall generalize, much as I did when discussing
implementation.

A Write is an assignment of a value to an intermediary. This intermediary is, in fact, a
set of values identified by an event; each event is distinct though its value may not be. A
Get is defined as a deletion of a value from the set; thus its behavior is to synchronize on the
presence of a value (i.e., it cannot proceed if the set is empty) and, involves the assignment
of a value to a local variable.

Indeed, we can choose to view this intermediary as a process, a process that is eager to
satisfy inputs to it, and satisfies its outputs only when data is available to do so, thus we have
a mechanistic decomposition of the behavior of such an intermediary in a manner consistent
with our earlier deliberation.

Again we find it is the single indivisible assignment that is the fundamental notion. We
can choose to regard this intermediary, as we did local variables in the previous section, as a
process whose behavior is defined by the operations upon it. In our earlier example we say
the sequence in which assignments occurred provides a total order on the values, however
here the operations may occur in concurrent processes. What may we say about their order?

Let us take two concurrent processes, one that writes six values and one of that consumes
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six values.
write(lo) || get(x)
write(2y)  get(y)
write(32)  get(x)
write(3s)  get(y)
write(by)  get(x)
write(3s)  get(y)

such that, the environment is described

T = {{a}v {avb}v {avbv C}},
y = {{d}, {d, e}, {d,e, f}} {a,be,dye, f} = {10,21,32,33,34,55}.

In this equation the set {1q, 21, 32, 33, 34, 55 } represents the values held by the intermediary,
variables are represented as before.

The operations have a characteristic we have seen before. Each event with the intermedi-
ary is single and indivisible. The behavior of the intermediary process is thus defined by an
interleaving of the operations upon it. However, this cannot be an arbitrary interleaving, for
we have the behavior of the intermediary to take into account.

We shall undertake a systematic interleaving of the operations such that they observe the
following relation. By definition we shall permit no Get operation to precede a concurrent
Write operation, and no Write operation to precede a Get to which it is subsequent (in a
sequence).

The previous paragraph defines a relation in the interleaving between the operations
on the intermediary that is a partial order on the whole set of operations acting upon it

(figure 9.1).

Thus, the interleaving orders the operations on an intermediary such that Get opera-
tions are considered to return a value assigned to the intermediary by one of the preceding
Write operations; i.e., we can systematically “walk” along the interleaved form associating
Write/Get pairs where the Write defines the value returned by the Get operation.

Any single execution of such a program will, in effect, manifest a total order, which is but
one ordering of the possible interleaving the partial order permits®.

We can describe this interleaving further by extending our partial order relation. First
by observing that two Gets in the same sequence maintain their order with respect to each
other in an interleaving.

The ordering of Write operations in the interleaving is a little more difficult to observe.
Writes may not preserve their order with respect to each other in a sequence since they by def-
inition terminate immediately and are thus unordered when associated with the intermediary
(as above).

2Those familiar with CSP will recognize this interleaved semantic form as CSP traces.
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get(2) get(y)

write(3) write(2) write(1)

Figure 9.1: Partial order diagram for the interacting sequences:

write(1)]] write(2) || get(y)
get(x) Write(3)

The relation is
o No Get may precede a concurrent Write, and

o no Write may precede a Get to which it is subsequent.
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get(y)
write(3) get(x)
write(1) write(2)

Figure 9.2: Extended partial order diagram to illustrate the interleaving of:

write(1)|| write(2)
get(z)

get(y)
write(3)

The extended relation is
o No Get may precede a concurrent Write,
e no Write may precede a Get to which it is subsequent (in a sequence),
o (iets preserve their respective order in sequence, and

o an wnitial Write precedes subsequent Writes only if the number of Gets at the start of
each sequence is equal to or greater than the number of Writes in the initial set.

However, a Write in the initial set of Writes (i.e., those first in the sequences that act
upon the intermediary) precedes Writes not in the initial set if the number of Get operations
at the start of each sequence is equal to or greater than the number of Writes in the initial
set. This much should be clear since such will require the association of all the Writes in
the initial set with Get operations before the subsequent Write regardless of which Get is
satisfied. (illustrated in figures 9.2 and 9.3).

In figure 9.3 it is worth noting that a further ordering between Writes is guaranteed by
the interleaving in this case; i.e., each Write precedes those subsequent to it in the same
sequence. However a general relation to express this order is complex, and dependent on
the undertaking of all possible interleavings since we must establish that such a Write must
precede a Get operation which is subsequent to it in the sequence, whatever the result of
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Figure 9.3: A further illustration of the extended partial order relation
The diagram describes the interleaving of

write(1) || get(a)
get(b) write(2)
write(3)  get(c)
get(d) write(4)
write(5)  get(e)
get(f) write(6)
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the preceding interleaving. Since we cannot determine this a priori in any single step of the
interleaving (because subsequent interleaving may invalidate the relation) it is a manifestation
not a part of the general partial order relation.

I have not mentioned Read operations in the discussion. The behavior of read operations
can simply be modeled by the substitution of each Read for a sequence consisting of a Get
then Write operation.

What is characteristic of the view presented here is, again, the single indivisible nature of
an assignment, its clear association with the value it assigns to the intermediary or variable,
and the notion of interleaving which allows us to view the behavior of an intermediary as
events with a partial order.

I have laid the foundation for an understanding of a formal semantic description of the
Fase model. In the definition that follows I use CSP interleaving and traces as the formal
basis for the model but first, for those unfamiliar with CSP I present a brief overview.

9.3 A brief overview of CSP

In the first report that presented Fase published at Yale University, I deferred all detailed
semantic issues to CSP, much as had been done with Occam, indicating how the semantics
of the Fase model could be expressed in CSP. Hoare’s book on CSP is a remarkable piece of
work but it took me several years before I began to understand the depth and insight held in
it. In considering the problem of how to formalize the semantics of Fase and considering the
audience for it I balked at the thought that other engineers would have to dig to the depths
I had before they could understand the model I was presenting.

I made several attempts to express the semantics in a simpler form; an educational —
and chastising — experience. Coming up with a whole new solution to behavioral semantics
is a) akin to reinventing the wheel and, b) requires depth of knowledge and experience of
the kind manifestly held by Prof.C.A.R.Hoare. Thus it is that I gladly return to the path of
righteousness and recognise that my initial intuition was both expedient and correct.

In the following section I introduce CSP and in the subsequent section present the se-
mantics of the Fase model in it. This may puzzle the reader a little who has not followed
earlier discussion since CSP may be regarded as the bastion of message passing.

Hoare repeatedly claims CSP is a programming language in the conventional sense; if this
1s so it is several decades ahead of its time in that role. Occam was an attempt to bring CSP
into the realm of engineering — early. As a programming tool it is subject to all the foregoing
criticism against generalized message passing. In Fase | have maintained a dependence on the
rigorous mathematical foundations of CSP but provided a simpler model as an engineering
solution; usable by the average engineer and efficient to implement.

In the following semantics an Fase context is a subordinate process shared by the processes
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interacting with it. Concurrency between these processes is thus described using the CSP
interleaved form; since Fase processes interact only via contexts this form is perfect for our
needs.

Thus CSP is viewed here as a mathematical foundation for programming. The concepts
of event found within CSP are fundamental to program behavior in the truest sense.

This thesis argues against generalized message passing as a high level programming model
and my above salutation to CSP in no way does harm to that argument nor does my argument
do harm to CSP; indeed, they are complementary tools.

A complete description of CSP can be found in [Hoa85]. The following is a brief, incom-
plete, precise based on that work and should provide enough understanding to follow the later
semantic description. The omissions avoid unnecessary distractions and are not required to
understand the later notation.

9.3.1 Events, alphabets and processes

In CSP we are first asked to invent a set of distinct names that describe the possible events in
which a process is prepared to engage. This set of names is called the alphabet of a process.

A simple vending machine can be described by two possible events

e coin — the insertion of a coin, and

e choc — the delivery of a chocolate.

Each name describes an event; there may be many instances of each event in a trace of
given process. In a conventional sense these names differ from procedural abstractions in
that they represent events that concurrently composed processes having the event in their
alphabet must perform simultaneously.

The alphabet of a process is denoted by the symbol a; i.e.,
aVMS ={coin, choc}.

A process with the alphabet aV M S that never does anything is called STOP_aVMS.
This describes a broken vending machine; even though it is equipped with the ability to
instance one of the events in aV M S, it never does so.

A process

coin — VMS

behaves like the event coin and then like VM S said, “coin then VM S”. This prefiz describes
the evolving behavior of a process with an alphabet aV M .S, thus

a(coin — VMS) =aVMS.
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A vending machine that consumes a single coin then breaks is described by

coin — STOPQVMs.

Recursion is used extensively in CSP as a notational convenience; e.g.,
VMS = (coin — (choc — VMS))

defines a simple vending machine that serves chocolate endlessly. This is, in fact, an abbre-
viation of a more formal recursive definition

VMS = uX : {coin}, choc.(coin — (choc — X)).
This definition introduces a label and binds the alphabet to it; said, “VMS is the process X
with the alphabet {coin, choc} that behaves like coin then choc then X7.

So far we have the tools to describe the sequential behavior of processes, a choice
(z = Ply — Q)

is a process whose behavior is dependent on the first event to occur; said, “x then P choice y
then Q7. Let & and y be distinct events, then if the first event is # the behavior of the process
is

x — P,

if the first event is y the behavior of the process is

y— Q

The alphabet of a choice is consistent with what we have seen so far:

a(r — Ply — Q) = aP = aQ).

At this point we can relate alphabets to conventional programming language experience:
the alphabet of a process is analogous to the set of names in a scope, i.e., it is the environment.
We see from the above equation that the components of a choice share the same scope, as we
would expect.

A vending machine that accepts a coin and then returns either a chocolate or a toffee is
defined
VMCT = coin — (choc — VMCT |toffee — VMCT)

The type of choice described here is known as deterministic choice since the first event
is determined either by the environment or is known at the moment it occurs; e.g., a user of
the above vending machine inserts a coin and then may take either a chocolate or toffee, and
thus the first event in the choice is known.
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Non—deterministic choice is a selection between processes in which the choice event is
unknown, denoted

PO

said, “P or ()7; this process behaves either like P or like () and the environment has no
control or knowledge of the choice made.

Generalized choice, denoted
PlQ

combines the features of deterministic choice and non—deterministic choice. If the first action
is a possible first action of P then P is selected, if the first action is possible for both P and
() then the choice between them is non-deterministic. The Fase choice construct has the
generalized form; i.e., it is possible to describe all these choice forms.

9.3.2 Traces

The behavior of a process is recorded as a trace; a record of the behavior witnessed by
an imaginary observer. Even though the witness may see simultaneous events (in parallel
processes) they are recorded in sequence; the order the witness chooses to note such events is
unimportant.

A trace
< coin, choc >

denotes the two events coin followed by choc, and
<>

denotes an empty trace; the trace of a process that has yet to engage in any of its possible
events. A possible trace of the first four events of VMCT is

< coin, toffee, coin, choc >

Several useful operations are defined on traces. Concatenation is denoted
Mt

for example
< coin, toffee >"< coin, choc >=< coin, toffee, coin, choc >
concatenates two traces.

Restriction limits the observable trace to a specified set of events; i.e.,

< coin, toffee, coin, choc > [{toffee} =< toffee > .
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Generally,
t[A

is the trace of events in ¢ specified by the set of events A.

Each event in a nonempty trace is identified by a subscription and in particular the first
event in the nonempty trace s is so. The remainder of a trace from which the first event is
removed is denoted s'; i.e.,

<T,Y, 2 >p=2

and,
<z, Y,z >'=< Y,z > .

The set of all finite traces formed by a set of events A is denoted

A * .

The length of a trace is denoted
#t
ie
#<a,y,x>=3.

A trace s is said to be a prefix of the trace t if there exists a set u such that
s"u=1.
This defines an ordering relation s < ¢; i.e.,
<z,y ><< T, Y, T,w >,

<x,y ><< z,y,r>=1T = 2.

The < relation is a partial ordering with the empty trace as the least element. If s is any
subset of ¢ (including a prefix) we say
sin .

If s is a trace of P then
P/s

said, “P after s”, is the behavior of P after the trace s has occurred.
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9.3.3 Parallel processes

If two processes composed in parallel

Pl@

have intersecting alphabets they interact; i.e., events that occur in both processes require
simultaneous participation.

A greedy customer (page 66, [Hoa85]) will take chocolate or toffee from a vending machine
without paying; however, the customer pays a coin for chocolate if given no other option; i.e.,

GRCUST = (toffee — GRCUST
|choc — GRCUST
|coin — choc — GRCUST)

The parallel composition of our greedy customer and a vending machine (VMCT, defined
earlier) is

GRCUST||VMCT.

The first event that each process is ready to participate in simultaneously is the event coin
after which the greedy customer selects chocolate. The vending machine is only prepared to
participate in the event toffee after payment; hence the customer only gets what is paid for

(TANSTAAFL!).

In the above case both processes have the same alphabet; i.e.,
{coin, choc, toffee}.
Consider two processes with disjoint alphabets
P = (up — down — P)

and

Q = (right — left — Q
lleft — right — Q)

In the parallel composition

Pl@

there is no common event; the events of the parallel processes can be considered as an arbitrary
interleaving. To consider such processes in this way makes no difference to our reasoning and
we do not have to juggle with notions of “true concurrency”.

The interleaving operator composes parallel processes with the same alphabet; i.e., in

PllIQ.aP = aQ

3“There Ain’t No Such Thing As A Free Lunch” — Robert Heinlein.
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the events of P and () are interleaved. If both processes can instance an event only one of
them does so; which one is non—deterministic; e.g., a vending machine that will accept up to
two coins before dispensing up to two chocolates (page 120, [Hoa83]) is

VMS|[|VMS.

A consequence of what we have seen so far is
VMS||VMS =VMS.

The composition of two processes with the same alphabet behaves as one since each process
must participate in each event. The alphabets of two processes can be made disjoint by
appending a unique label to every event in the alphabet; i.e.,

left : VMS||right : VMS

are two distinct processes; vending machines standing side by side.

9.3.4 Communication
A communication is an event
c.v

where ¢ identifies a channel on which the communication takes place and v identifies the
message passed. A process

(clv = P) = (c.o— P)
is “output v then P7”; the first event is the communication c.v. Similarly,
(cte — P(x)) = (cv — P)

is “input a value x then P(x)”; the first event is the communication c.v.

9.3.5 Subordination

A subordinate process is a process whose alphabet is contained in a principal process; i.e.,
aP Ca@)

In the parallel composition of these processes each action of P can occur only when () permits
it, while () can independently act on those events not in the alpabet of P. As such, P serves
as a slave to ().

The composition

Pl/Q
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is the parallel composition of the principal ) with a subordinate process P. The alphabet of
P must be some subset of the alphabet of (), and that subset is hidden in the composition
from the view of external processes, so that

a(P//Q) = (aQ — aP)
It is useful to be able to identify the subordinate explicitly from within a principal so all
interactions with it are clearly identified, thus

m: P/]Q
where m identifies actions in P. Each interaction is a triple
m.c.v

where am.c(m : P) = ac(P) and v € ac(P), where ¢(P) is the set of communications in P.
() communicates with P on channels with the compound name, say, m.c or m.d where P uses
the simple names ¢ and d for the corresponding communication.

9.3.6 Conditional

A conditional
P4bpQ

is P is b is true and () otherwise.

The reader should now have enough understanding of CSP to understand the following
semantics. For complete details of the notation used in this section see [Hoa85].

9.4 A CSP semantics of the Fase model

In the following section I provide the behavioral semantics of the FKase model; contexts,
interaction operations and process constructions. A context is described as a CSP subordinate
process.

9.4.1 Singleton semantics

awrite = aread = aget

SINGLETON = write?z — SINGLE,

where SINGLE, = (write?y — SINGLE,
lread!z — SINGLE,
|get!z — SINGLETON)

Initially a singleton is only prepared to accept a write action then either a write, read or get.
A write will change the value, a read will return the value, a get returns the value and then
causes the singleton to return to an empty state.
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9.4.2 Stream semantics

awrite = aread = aget
STREAM = STR«~
where STR.s = write?e — STR .
and STRc sns = (write?y — STRcpsnsncys
[read!z — STRysns
|get!lz — STRy)

where s is a trace. In the above traces are used to keep track of the values in the stream. <>
is the empty trace, < x >" s is the trace whose first component is # and whose remainder is
s, < x >"s" <y > is the trace whose first component is x, whose last component is y, and
whose remainder is again s.

The initial action of a stream will be a write, a read returns the least recent value in the
trace but does not change the trace state, a get behaves like a read but deletes the least recent
value from a trace. A stream with an empty trace will only accept a write action.

9.4.3 Bag semantics

awrite = aread = aget
BAG = [[i>ot : STORE
where STORE = write?z —
pX. (readlz — X
|getla — SKIP)

Bags are described as an infinite set of processes each of which will accept a single write and
then either a read or get; these return the value given by the write. A read is simply recursive.
The process terminates after satisfying exactly one get.

9.4.4 Context usage

A context named ¢ in CSP is defined for a single process P by

¢ : SINGLETON//P

i.e., a context is a subordinate process (in the CSP sense).

A context shared by multiple processes must share its channels. In CSP we define this
requirement by interleaving; e.g.,

¢: SINGLETON//(P|||Q).

Interactions by P and () with the context will be arbitrarily interleaved.
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9.4.5 Interaction operators

The following illustrates the definitions of Fase actions (Fase on the left with the CSP
implementation on the right) for singleton and stream contexts. Functional notation is used
to avoid confusion with the actual Fase syntax.

read(c,v) = cread?v
write(c,e) = c.writele
get(c,v) = ecgetlo
put(e, v) = (c.writele; v:=undefined)

where ¢ identifies a context and “undefined” is an arbitrary value of the type.

The following again illustrates the Fase syntax on the left with the CSP implementation
on the right for bag contexts.

read(c,v) = [i>oc.t.read?v

write(c,e) = [;>oc.i.writele

get(e,v) = [izoc.i.get?v

put(c,v) = [i>o(c.i.writele; vi=undefined)

Interactions on bags make an arbitrary choice from the ready processes which comprise the

bag.

9.4.6 Shared resources — combinations

Call reply resources are said to block on the pending input. In fact, whether they block on
the pending input or the output makes no difference to the behavior. We will find that by
keeping the output data locally until a receiver is ready (as for point to point communication)
gives an advantage both in implementation and in semantic description. As a result resources
may be simply described and turn out to look just like CSP resources; except that both ends
of the exchange are well defined.

An Fase resource syntax
RESOURCE (¢, f(x))

is an abbreviation for the sequence
get(cv l’); Y= f(l'), Write(cv y)
or
get(cv l’); Y= f(l'), pu‘t(c, y)
where the type of the components of ¢ guarantee that the write will satisfy the input of a

corresponding call sequence.
y := call(e, x)
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Which, in turn is an abbreviation for
write(c,x);get(c,y)
or
put(c, z); get(c,y)

Given the CSP definition
RES = resource Tz!f(x),

then
RESOURCE (c, f(z)) = RES

where

RESOURCE (c, f(z)) =

get(cv l’); Yy = f(l'), Write(cv y)
and,

RESOURCE (¢, f(x)) = (RES;y = undefined)

where

RESOURCE (c, f(2)) =

get(c, x);y == f(x); put(c,y).
RES takes a little liberty with CSP syntax but the meaning is obvious. Once again a resource
is a CSP subordinate,

c¢:RES//P
and call semantics are thus straight forward:
x:=call(c,e) = cresourcelelx
where
x:=call(c,e) = write(c, z);get(c,y)
and,
x:=call(c,e) = ecresourcelz?y;
(x := undefined 4 « # y [ SKIP).

where

x:=call(c,e) = put(c,x);get(c,y)

9.4.7 Parallel semantics

In the following, Fase parallel composition is defined to be equivalent to the CSP interleaved
parallel construction. The notation on the left of the equations is Fase the notation on the

right is CSP.

Cooperation

{IPIQ: RY = ((PIIQ): R)
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is the sequential composition of a parallel construction with subsequent processes (represented

by R). Subordination
{//p1jQ: R} = (PlIQIIR)

is the parallel composition of a parallel construction with subsequent processes.

The interleaving form of the parallel construction may be used since Fase processes do not
interact directly but rather interact indirectly via what are, in CSP, subordinate processes;
i.e., Contexts, the Fase shared data structures.

It is important to note that in Fase all variables are accessible only to the sequential
process for which they are specified. As a result the alphabets (the possible events in a
process) of Fase processes are completely disjoint.
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Chapter 10

Ease Implementation

Simple variations on queues provide full support for Fase model implementations. In the
following discussion the focus is on the implementation of context structures since these are
the unique components of the model. The primary issue is one of data distribution and
placement.

CSP is used throughout to describe the implementation of Fase context structures. In
CSP the behavior of a queue is simply

awrite = aread = aget
QUEUE = QUE_
where QUE_ = write?z — QUE__J
and QUE_ o,
= (write?y — QUE_,on pun,
lread!z — QUE_ o4,
|get!lz — QUE,)

Initially, and while the queue is empty, it is prepared only to accept a value and record it.
While values remain in the queue it is prepared to continue accepting and recording values,
or return the last value recorded, or return the last value and remove it from the record.

10.1 The implementation of Bags and Streams

The only distinction between QUEUE and STREAM (defined in the previous section) is
the ordering of the recorded sequence; QUEUE is a last—in—first—out (LIFO) buffer while
STREAM is first-in—first—out (FIFO). If y is the input and z is the pending output, then
STREAM stores < x >" s < y > and QUEUE stores < y >"< « >" s (for similar CSP
examples see [Hoa85]).

Since the ordering of values present in Bags is nondeterministic it is perfectly valid for
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an implementation to choose to impose any order of its own; thus an implementation may

choose to implement BAG either by STREAM or QUEUE for example.

By using BAG the programmer has simply stated that there is no dependency in the
algorithm on the order of context values. It would be improper for a programmer to introduce
such dependency based upon an understanding of a particular implementation.

STREAM guarantees the order of values and must therefore be implemented as described
in the semantics as a FIFO buffer.

How are STREAMs implemented in a distributed memory environment? To maintain
order consistency there should be a single process implementing STREAM; i.e., the STREAM
data remains on a single node. Each remote process accessing the Stream must therefore be
represented in the STREAM implementation. A distributed implementation of Streams where
the Stream structure itself is distributed presents consistency problems since the contributed
order must be maintained, while strategies to manage such consistency are possible, they are
likely to prove so expensive as to invalidate their usefulness.

There are demands in these implementations on the machine architecture and run time
system that we should just recap. A node in the sense used here is a machine with a common
address space; regardless of the number of processors that share that space. Thus a node may
execute some number of processes all of which may be accessing a single context. The run
time system must provide a scheduling mechanism; usually a “threads” package (UNIX Fork is
likely to provide too large an overhead), or hardware support as found on the transputer. The
run time system support for communication between nodes, for the implementation described
here, enables point-to—point process connection; i.e., a process on one node connected to a
process on another node. Such mechanisms are becoming available in hardware and are avail-
able today in run time systems such as Express, PVM and P4 [Par83, PVM, P4]. With this
support STREAM can be implemented on a distributed machine directly by the description
given in the semantics as a FIFO queue.

BAG contexts have no defined order, and so the order consistency problem associated with
implementing the distributed structure of a Stream does not exist. It is therefore less difficult
to implement a distributed BAG structure. An implementation may choose to avoid data
replication! to avoid consistency complications, alternatively an implementation may choose
to replicate data to increase accessibility. The increased accessibility provided by replication
may be particularly desirable in distributed network computing where node interconnection
bandwidth is low, and also in process optimization where analysis or compiler directives
identify the structure as infrequently changed. Several strategies to manage replication exist
and a reasonable discussion of these can be found in [Bal89]. A replication strategy suitable
for Fase implementations is outline in the following paragraphs.

Before considering the detail of a BAG implementation recall the semantics. We find BAG
is an infinite set of processes each of which will accept a single Write and then either a Read or
Get, terminating on Get. Actions upon elements in this infinite set make a arbitrary selection

! Maintaining multiple copies of a single data item.
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between them. This description will, in fact, be difficult and costly to implement directly.
Therefore, based on the assertion that an implementation may choose to implement BAG
with any actual ordering, either QUEUE or STREAM are perfectly valid implementations.
Generally, an implementation can be reasonably expected to select an implementation strategy
for BAG that is efficient on the architecture of the machine — taking advantage of the
nondeterministic ordering semantics.

How can a Bag context structure then be implemented on a distributed memory machine?
Consider the simple example of implementing a distributed BAG on a machine with just two
nodes, without replication. The context implementation at each node behaves as

TWIN; = NODE_.~
where NODE_
= (i.write?z — NODE_,>
li.readrq — (i.write?x — i.readlz — NODE.,-
lrget?e — ireadls — NODE ;)
li.getrq — (i.write?z — i.getls — NODE.s)
lrget?r — i.getly — NODE.+))
and NODE s
= (i.write?y — NODE,snsncys
[i.readrq — i.read!ls — NODE_ <4
li.getrq — i.get!ls — NODE;
[rget!lz — NODE;)

Initially, and while empty, TWIN is prepared to accept a value and record it, a Read request,
or a Get request. Following an input request TWIN either accepts a value from the local
processes or accepts a value from the other member of the pair on the neighbouring node.
Thus a written value is initially placed on the local node and stays until required to satisfy a
non—local input; at which point the value “migrates” to its neighbour. The composition

¢ (TWING|TWINy)//(Psl||Q1)

illustrates usage of the Bag context ¢, implemented by the pair (T'WINo||TWINy). Process
P; on a node identified by + = 0 and a process (J; on a node identified by : = 1 denote the
processes on the two nodes that use the context. Within Fy and (), Fase interaction operators
behave as

read(c,v) = (readreq;c.i.read?v)
write(c,e) = ca.writele

get(e,v) = (getreq; c.i.get?v)

put(e, v) = (c..writele; vi=undefined)

The interaction between the two nodes (i.e., each instance of TWIN) is described by the
“rget” event. A read request to an “empty” local Bag will be fulfilled by a value either
from a subsequent Write on the local node or a value existing or subsequently written on the
neighbour.
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Local processes are decoupled by explicit Read or Get requests; i.e., in the interleaving
of local processes (implemented perhaps by the scheduling lists mentioned in chapter 3) one
process may have a request outstanding — between the request event and the satisfaction of
the input local events continue to occur. In particular, allowing the read to be satisfied by a
local write or put.

10.1.1 Reference exchange

Recall that, though not explicitly shown here, the definition of Get and Put actions allow
their implementation by reference exchange. Reference exchange should however be avoided
when the components of a context are types implemented by only a few bytes. The trade
offs are system dependent, with cache characteristics likely to have particular effect, however
generally it will be inefficient to implement contexts of scalars by reference exchange (since
pointers are around the size of the data item this should be obvious). In such cases an
implementation may, for efficiency reasons, choose to implement Put as Write; the fact that
the variable used in the Put remains the same value subsequently is an incidental fact that
the programmer should ignore since other implementations are at perfect liberty to assign the
variable some arbitrary value. In all cases implementations should provide an error message
or warning indicating usage of an undefined value, be it initial usage of a variable declared
undefined or a variable used after a Put action upon it. It is an error to use an undefined
value in an expression.

10.1.2 Replication

The implementation described above has a high bandwidth cost in a case where a single value
is written and processes on each node proceed to Read repeatedly, possibly resulting in the
value “bouncing” between the two nodes. In such cases replication will prove desirable.

Replication presents state and (in the case of Streams) order consistency problems and it
becomes necessary to clearly identify the duplicate values and synchronization cross depen-
dencies. The cost of replication is thus greater complexity of implementation and additional
overhead for consistency protocol, in whatever form that may be. An implementor using repli-
cation should be convinced that the semantics of the model are maintained for, as we shall
see, cross dependency between interactions on different contexts present subtle difficulties.
However, simple and useful demand driven replication strategies can be conceived.

Consider the simplest case of replication between the nodes of the TWIN machine studied
above. Replication can be greatly simplified for Bags. Regardless of the number of values
written at a node a copying neighbour need acquire only a single value. Value selection in Bags
is nondetermininistic and process interaction is indirect and nonsynchronized, this makes it
permissible for the process on one node to continue reading a copy of a value deleted from
another provided that value is not used to satisfy a Get; in other words an arbitrary number
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of Reads in one process may be interleaved before a Get in another, though, as we shall see,
cross dependencies must be accounted for.

Once a copy of a remote value has been acquired we must be careful to ensure local Write
and Get operations continue to be satisfied. If a local write occurs the copied value is no
longer required, and to maintain consistency a copy must not satisfy a Get. This behavior is
implemented by the choice

DUP = (i.writele — NODE,~
li.getrq — (i.write?z — i.getls — NODE.
[rget?e — i.get!ls — NODE.,)
li.readrq — i.readly — DUP)

where y is the copied value. The context

o accepts a value from a local process and subsequently disregards the copy, or

o accepts a Get request and satisfies the Get either with a value written locally or one
from the neighbour, the copy is ignored since it may no longer be valid (i.e., it may have
satisfied a Get on the neighbour), or

e satisfy any number of Reads with the value of the copy.

Since the processes using the context on each node are entirely disjoint there is no se-
quentialization of operations in them by definition (except, as we shall see shortly, by cross
dependency). Thus even though the node that supplied the copy may be empty the copy
continues to satisfy Read actions. It would clearly be an error to permit the empty node to
take a copy of the copy in return and we do not permit it. We can now see the complete
implementation, TWIN is replaced by

RTWIN; = NODFE.
where NODE_.+
= (i.write?z — NODE_,>
i.readrq — (rcopy?ly —
li.readrq — (reopy?y — DUP
li.write?e — ireadls — NODE )
li.getrq — (i.write?z — i.getls — NODE.s)
[rget?e — i.get!ls — NODE.,)

)

and NODE_ sns
= (L.write?y — NODE,sasncys
[i.readrq — i.read!ls — NODE_ <4
li.getrq — i.get!ls — NODE;
[rget!lz — NODE;,
[rcopyla — NODE ;5 n5)



194 CHAPTER 10. EASE IMPLEMENTATION

Now reconsider the implementation of Streams, this time with replication: while the
Stream structure itself is maintained on a single node replication is a valid strategy where
high Read frequency exists on a node; recall that a node may have many processes reading the
value. The ordering characteristics of Streams guarantee that a process will not input a value
output earlier than a previous value input by that process. This permits us to implement Read
by copy buffering, so that a sequence of Reads will read the same value continuously unless
that process performs a get. This strategy is justified because of the nature of interleaving,
since we may choose to interleave all the Read operations before a parallel Get. Read and

Get on STREAM are then implemented

read(c,v) = (v:=y 4 buffered p c?y;v :=y);
buffered := true

get(c,v) = buffered := false; c¢?v

where “buffered” is initially false, and y is the buffer. An implementation should be careful
not to use replication where the read frequency on a node does not demand it. A node may
have many processes that perform a read on a single context, or a single process; a copy
penalty will be unnecessarily incurred if low frequency reads are buffered.

Unfortunately, these implementations with replication as described are not valid in all
circumstances since they do not allow for a state consistency problem caused by cross depen-
dencies. This problem can be illustrated by considering the following sequences of interactions
upon two contexts ¢ and k,

(¢: (BAGT STREAM)||k : (BAGT STREAM)//D

D = ( (cwritel0; c.get?v; k10)]||
(c.read?x; k.read?y; cread?z) )

this process contains a certain deadlock that, given our implementation of replication, will
not occur. This might be considered a good thing but the semantics are being broken and
thus, we assume, the intention of the programmer ignored. The deadlock should certainly
occur with c.read?z, though it may occur with c.read?z. The traces are

< c.writel0, c.getTv >

< c.writell, c.read?z, c.get v, k.writel0, k.read?y >

in both cases the Get c.get?v removes the value in ¢ and since ¢ is now empty the subsequent
read operations on ¢ cannot occur, our implementation may safely ignore the first trace
above since a valid trace remains possible, and the buffering permits this. Unfortunately the
buffering will also permit the instance of c.read?z to complete allowing a trace

< c.writel0, e.read?z, c.get?v,
k.writel0, k.read?y, c.read?z >
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and this is not a trace of the process. This example contains a cross dependency caused by
the interaction upon the context £ that causes the two processes to synchronize, illustrating
that the interactions on a context cannot be looked at in isolation.

Managing this inconsistency is straight forward but potentially expensive. The problem
can be settled by simply invalidating a context buffer when the risk of a cross dependency
exists. A simple strategy is to invalidate the buffer before the next Read action in a sequence
if that action is upon a different context. This can easily be detected by the compiler which
can insert the appropriate invalidation instructions.

This implementation of demand driven replication (in fact, simple cache buffering) applies
to all cases where a node directly communicates with the context structure but is not itself
a part of that structure; e.g., in the case of actions upon Streams. The implementation of
these interactions simply requires that the “buffer” flag is invalidated before a Read if the
previous Read was on some other context. An invalidation event must be introduced for Bag
implementation in DUP to allow the buffer to be invalidated.

This strategy is a blanket one; buffers are invalidated even if no cross dependency exists,
further, it is not useful in processes where Reads occur in sequence alternately on two contexts.
Alternate Reads will invalidate the buffer in turn; introducing the overhead of invalidation
and buffering with none of the benefits. Solving this problem demands greater complexity in
analysis. So far invalidation of buffers can be identified with minimum effort by the compiler,
which needs only to determine if the previous input was on a different context. A compiler
may thus choose not to replicate on a node where sequences of alternate Reads occur, but to
improve the efficiency the compiler must determine the full cross dependency risk and this
demands complete deadlock analysis.

Deadlock analysis is useful to the programmer as well as the compiler. A compiler may
well (perhaps should) choose to ignore potential deadlock traces of a process behavior in favor
of other non—deadlocking traces. If a compiler does aid the programmer in this way it should
issue warnings since some other implementations may choose to do otherwise. Automatic
deadlock analysis is a continuing subject of research and early work looks promising, Fase
compilers should provide such analysis as a debugging aid and it is hoped a simple strategy,
currently being researched and under development, will prove successful.

10.1.3 Bags on more than two distributed memory nodes

So far I have considered the implementation of Streams and Bags on a two node machine
only. What about machines with more than two nodes? Obviously, given the run time
system requirements, STREAM can be implemented directly on multiple nodes, with or
without replication, the operations are simply distributed in the natural way (recall a run
time system, such as Express, provides the internodal connectivity required).

An implementation can choose to implement Bags similarly by extending the direct events
in the TWIN pair, or may extend TWIN by enhancing the rget communication event. The
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rget communication can be enhanced simply by replication of the communication over the
number of nodes implementing the Bag, possibly by local broadcast. In the first case a Bag is
implemented by a combination of the two strategies; several closely coupled nodes implement
the Bag structure and more distant nodes directly communicate with an implementing node,
possibly using the data buffering replication described above.

10.2 The implementation of Singletons

The distinguishing characteristic of Singletons is that they are identities. Each Singleton has
only a single value and arrays of Singletons are identified by subscription. While writes replace
the previous value, the Singleton possesses an “empty” state that represents the initial state
and the state subsequent to a Get.

A simple optimization is immediately observable: if there are no Gets present in the scope
of a Singleton then there is no need to track the post—-Get empty state after the Singleton has
been initialized. This can greatly simplify the Singleton context implementation — especially
when dealing with large, potentially distributed, matrices. In such cases the Singleton can
simply be represented by memory and conventional load and store operations and in the
distributed case the Singleton may be simply read or written to by a remote node without
synchronization; the distributed implementation builds a process associated with the context
to perform remote reads and writes.

In the case where Singletons are acted upon by Get an implementation using a queue
(semaphore) for each is required and the behavior is exactly that defined for SINGLETON in
the previous chapter.

The demand driven replication strategy given above may also be used for Singletons.

10.3 Type associative contexts

The context implementation discussed in the previous sections are of contexts of a single type.
What about contexts of multiple type and the promised type associativity?

In fact, all type associative contexts are decomposed at compile time into their constituent
parts and thus are implemented as in the foregoing sections. This decomposition is simple
and straight forward, the compiler in effect decomposes the context into a set of new contexts
identified by the name and type. Interactions on the context are then checked to be of a
defined type and attributed to the appropriate implementation structure.
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10.4 Placement

10.4.1 Manual placement

Fase provides direct placement directives for both process and data to serve optimizers and
decomposition tools with differing strategies. In Fase the first stage of an Fase compiler may
transform a program without placement directives into one with such directives, or it may
rewrite existing directives.

Whether the placement directives are added explicitly by the programmer or generated
automatically, a program with directives is the final form compiled for a machine with more
than one node. A program with no directives will be compiled for a single node; recall that
such a node may still be a large parallel machine with common memory.

10.4.2 Automatic placement

Strong locality enables effective automatic placement of distributed data structures and pro-
cesses on a distributed memory machine. Particular placement is very target dependent and
optimizing stages for compilers need to be developed for each architecture and application
domain to support all existing and new programming models and languages.

However, these automatic strategies are very specialized, generally targeted to a specific
machine architecture or application, and it is difficult to see a general purpose placement
strategy for large programs and general development. Therefore, current compilers provide
manual placement support to allow the programmer to guide the compiler. The strong locality
expressed by Fase contexts, along with side effect free programming, provides a significant
guide to compilers.

10.4.3 Fine grain data parallelism.

Like most other languages with a strong process model Fase is well suited to the expression of
fine grain data parallel applications as well as the coarser grain MIMD style. Such expressions
are very target dependent and are preferably generated by an optimizer from a more general
form.

10.5 Program transformation

It is apparent that any parallel processing model that seeks to be general purpose and widely
adopted must ensure that it can generate programs that execute efficiently regardless of the
architecture and available resources. In particular, the implementation of process interaction
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models should not incur a noticeable overhead over native methodologies for a given architec-
ture. These overheads can arise in the implementation of process scheduling and the excessive
introduction of copy operations. Only some part of this efficiency can be solved by improving
the general efficiency of the model itself and designing the model so as to simplify the task of
identifying opportunities for efficient optimization. Ultimately however, a program may need
to be “specialized” for the target and not literally translated.

Such program specialization can be achieved by program transformation. Program trans-
formation techniques allow programs to be transformed from a general form into a special
form while maintaining the behavioral semantics of the program. The prerequisite for effective
transformation is that the language should have a strong mathematical basis. CSP provides
that mathematical basis for Fase.
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Future work and directions

11.1 Prototype compilers

As of writing, three prototype compilers are in existence. My own is a full implementation
of the language with a focus on performance efficiency. Current indications are that Fase
programs compiled with this compiler will be faster than the equivalent C programs for
sequential code; this is especially interesting since both programs use the same C compiler to
generate the final code. The research is still in the primary stages but the work looks very
promising and statistical experimentation has begun.

For the curious, the gains are simply accounted for. The Fase compiler generates code
that no human programmer would consider by taking a view that a C compiler architecture
represents a universal machine, the gains come from in-line code generation, minimizing the
use of automatics, and a general storage strategy that determines run time storage require-
ments in most cases and allows space reuse. Stack frames usage is limited to standard C
library function calls. In addition the reuse strategy greatly improves data temporal and
spatial locality and thus improves cache performance. Research and development of these
techniques has been constrained by available funding but I hope to continue this research in
future work. It is true that with effective analysis the equivalent C program can take advan-
tage of such efficiencies also. However, it is in the nature of C that such analysis is difficult,
while Fase is defined in such a way that the analysis is simply not required — primarily
because effects are well defined. A good compiler strategy enables the direct generation of
efficient code.

Work is also in progress on scheduling overhead elimination (static scheduling) and dead
lock detection. Scheduling overhead (context switch) can prove significant on uniprocessors
and it is important that Fase compilers should generate code with competitive performance
in such environments'. Static scheduling simply “cuts and pastes” the parallel processes in a

!Even with scheduling overhead I hope to do well since the compiler trades off the benefits mentioned in
the previous paragraph;i.e., I trade procedure context switch for process context switch.
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program; i.e., a static scheduler produces a valid interleaving of the program. Static scheduling
is not possible where the number of process creations are unknown to the compiler, so such
scheduling is restricted to those programs that use constants in replicators and avoid process
creation within repetitions, but this is an important class of program, typically embedded
system and real time programs.

Two other implementations exist to my knowledge. John Redman, of the University
of Western Australia, has also implemented the full language and this implementation is de-
scribed in his Honours dissertation “An Implementation of the Fase Programming Language”
[Red91], which I'm pleased to relate won an IBM award as best Honours project. John’s work
is impressive. He uses the pSystem library, a run time system that provides process (threads)
support from the University of Waterloo (USA). John’s compiler is derived from a Joyce—
Linda compiler originally written by Chris McDonald. This compiler also uses C as a target
and runs on a uniprocessor workstation.

One brief aside, John mentions in his report the introduction of a LIFO queue as a first
class characteristic for Contexts; this may seem an obvious requirement but is unnecessary.
While stacks are an important programming structure I contented that they are less usetul
for describing data exchange and shared data characteristics, it a stack were used for data
exchange then it seems apparent that the ordering characteristic of the data is unimportant
and thus the requirement is well met by the Bag characteristic. Shared stacks may, of course,
be implemented as resources (an example is given in the appendix).

The second implementation is also in Australia at Monash. Tim MacKenzie has imple-
mented C—with—Fase. This compiler also targets C and also uses the Waterloo University
pSystem. This implementation is most interesting because it implements a distributed sys-
tem over a network of workstations, and also produces the first published results from an Fase
code. This shows close to linear speed up for the restriction mapping problem over 15 DEC
5000 workstations, much as you might expect. Unfortunately, this tells us nothing about the
effectiveness of the model since any model would do for the size program run. Much work
needs to be done but early results are promising.

On another brief aside, MacKenzie also introduces a primitive “empty” that returns the
ready state of a context (and not, as the name suggests, the empty state), this provides the
support required to implement Choice like constructions in C-with—Fase. 1 have avoided plac-
ing a choice construct in C—with—Fase until more experience is gained with implementation;
a ready primitive is a reasonable intermediate solution and at low level is essential, however
I am sure to prefer a higher level construction in the end. Non—deterministic constructions
are notoriously difficult to implement correctly (even the transputer implementation of ALT is
flawed[BaGoJoKa88]), they are also full of subtle pitfalls in use — whilst I have no hesitation
introducing them to the full language based on the strong process model and CSP semantics,
I hesitate to do so to C—with—Fase until further research is complete.

Choice implementation has not been described in any detail. Briefly, in current imple-
mentation a determined choice selects data that is available in the local address space, if none
of the inputs is ready the choice is descheduled and other processes are allowed to continue.
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A choice does not commit to an input unless the data is available or becomes available. This
means that “readiness” implies there must be a concurrent process with access to the local
address space prepared to write the data at some point or there must be a default process.
Implementation mechanisms to allow the full generality of choice on networked machines are
not widely available.

The implementations of Fase 1 have considered so far are all non—preemptive; i.e., pro-
cesses are not interrupt driven. This approach derives from a general philosophy I adopt that
says that in embedded system, real time, applications urgent processing will be provided by
the appropriate hardware; i.e., in my design I will provide transducers with processors. This
provides a simpler approach to building real time systems, the additional cost of a processor
is minimal and to a degree offset by the reduced software costs — I simply must guarantee
that the processing latency is shorter than my required response bandwidth and I do that
by providing a processor fast enough. For example, a conventional workstation can be built
as a multiprocessor machine without interrupts, interacting according to data dependencies.
The keyboard would have an appropriate processor, the visual display also, with applications
being driven on yet others. In reality such machines are built today — but they are inter-
rupt driven?. This issue is beyond the scope of this thesis and I shall say no more than this
paragraph on the subject.

11.2 Future directions

Future research must now include applications development. There are several issues here.
It will not be interesting to simply demonstrate the effects of parallelism in the new model,
though it will be comforting to confirm that they exist in the new model as they do in existing
parallel programming models. It will be interesting to place the new model in head to head
experiments with the models criticized in this thesis. This is, in fact, a demanding issue
to handle fairly. It is simply not simply enough to compare published results, or to run two
implementations head to head; there are simply too many implementation variables. To make
a fair scientific comparison we must be certain that we are comparing like with like. To meet
this demand the models must use the same basic implementation technique and same code
generator. To this end the current FKase compiler can be extended with message passing
primitives and a Linda preprocessor, then some time is required to develop equivalent and
fair applications. Only then, can a clear assessment of the performance advantages of the
model be made and at this point in time the problem does not seem approachable.

Performance advantage does provide a direct measure of the model but it is, to some
degree, the less interesting one. For many applications, depending on granularity and scale,
the performance advantage will not be significant. It is far more important in future research
to develop an understanding of the semiotic issues here. Does the model live up to its name?

?Rethinking of virtual memory and program security requires program validation and thus a closer rela-
tionship between compiler and operating system.
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Does it really Fase the construction of parallel programs? Is it an effective engineering
tool? The answers to these later questions lie outside of my research and entirely in the
hands of the engineering community, but the semiotic issues, those that address the effect
programming languages have on the behavior of engineers, are likely to be a rich source of new
understanding. This understanding will enable us to design new and more effective models
for programming high performance machines — and ultimately it is this overall effectiveness
that is important.
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Conclusion

The goal of this thesis has been to develop a model and language to ease the development of
parallel programs, driven by observations of deficiencies in existing models that distract the
engineer. These were identified in the introduction to the thesis primarily as the distraction
of data distribution in generalized message passing, and the distraction of loose contrivance
in value associative matching of Linda.

The solution to such distractions is to adopt a data space abstraction that hides distri-
bution complexity and expresses locality directly, allowing the engineer to focus on algorithm
development and data locality. The solution presented, Fase contexts, is based on shared
data structures with particular characteristics identified from experience to be those com-
monly used by application developers.

The goal has also been to identify a model that can make a reasonable claim to architecture
independence; i.e., a model that provides not only program portability but also uniformity of
performance across various machine architectures. Generalized message passing is not uniform
since nontrivial message structures become copy operations when moved from a distributed
system to a shared memory system. Linda is not uniform since tuple space optimizations
have radically different effects and only implied data locality. However, it is worth noting
that Linda itself is moving in the direction of Fase with the refinement of multiple tuple
space concepts.

The solution presented here to these problems is to provide a mechanism that encapsu-
lates exchange by reference for nontrivial data structures but whose semantics are valid for
copies between disjoint address spaces; allowing efficient implementation on both shared and
distributed memory architectures. This solution is provided by simple, symmetric operations
upon Contexts that provide a strong expression of locality. This goal also limits the choice
of data structure characteristics given to Contexts and operations upon them; e.g., giving a
Context a set type and a “test for presence” operator would considerably complicate imple-
mentation (requiring search operations) and uniformity of the language. The implementation
of such structures is best left to the engineer or to library support.
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Secondary goals have been satisfied in the design of the full language. Occam was based
on the sound mathematical principles of CSP but was deficient as an engineering tool in a
number of ways over and above the problems associated with generalized message passing.
In the design of Fase I have attempted to answer some of the frustrations early Occam
programmers found; though I have maintained the same mathematical basis. Some of this is
simply (though importantly) syntactic but there are other things too: the principal solutions
are to the typing system, data structure handling, support for embedded systems, real time,
and resources.

In concluding I address why these goals are more generally important and how the solu-
tions presented here help. I answer the published concerns of Hennessy and Patterson [Hen90]
that summarize the problems this thesis addresses.

In considering how difficult it is to program parallel machines Hennessy and Patterson
put the problem well:

“Why should it be so much harder to develop MIMD programs than sequential
programs? One reason is that it is hard to write MIMD programs that achieve
close to linear speed up as the number of processors dedicated to the task increases.
... think of the communication overhead for a task done by a committee .... While
n people may have the potential to finish any task n times faster, the communi-
cation overhead for the group can prevent it from achieving this .... (Imagine the
communication overhead going from 10 people to 1,000 people to 1,000,000).”

—J L Hennessy & D A Patterson
Computer Architecture: A Quantitive Approach, page 575.

It remains to be seen if Fase can make a valid contribution to reducing this complexity
— only application experience can really tell us. It is the pragmatic judgement of engineers
that decide, not reasoning, no matter how well conceived. I have argued that Fase reduces
complexity in parallel programming by removing the complication of message passing; indi-
vidual processes focus on the data they share, not on the processes that share that data and
thus locality occurs naturally.

I make a contention that has relevance here since it is an underlying assumption in the
thesis: programming with parallel composition is simpler than programming with only sequen-
tial composition. Sequential programmers are preoccupied with interleaving the activities of
a program and object oriented approaches have developed as a result of the need to address
this problem. The evolution from the object oriented model to process models is not an
unreasonable projection.

Hennessy and Patterson continue:

“Another reason for the difficulty in writing parallel programs is how much the
programmer must know about the hardware. On a uniprocessor, the high level
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language programmer writes his program ignoring the underlying machine or-
ganization — that’s the job of the compiler. For a multiprocessor today, the
programmer had better know the underlying hardware and organization if he is
to write fast and scalable programs. This intimacy also makes portable parallel
programs rare.”

—J L Hennessy & D A Patterson
Computer Architecture: A Quantitive Approach, page 575.

This is an important observation, one that has driven a significant effort into the de-
velopment of automatic translation of conventional programs into efficient forms for parallel
machines. But the uniprocessor programmer has had it easy these past years. The nature of
the beast has been tolerant of an unreasonable dependence on global structures and tolerance
of side effects. New models of programming must evolve that express identifiable locality and
are side effect free; Fase provides both these characteristics. In addition, the Fase model
abstracts away from the underlying hardware memory architecture assisting the compiler in
its efforts to achieve portable parallel programs with efficient implementation.

It must ultimately become the job of the compiler to provide the efficient placement
of data and processes enabling fast scalable programs to be written without regard to the
underlying hardware. This task can be significantly aided by the language and interaction
model — though neither can provide a direct solution to it since it is dependent on the
hardware architecture.

Again, Hennessy and Patterson:

“The real issues for future machines are these: Do problems and algorithms with
sufficient parallelism exist? And can people be trained or compilers be written to
exploit such parallelism?”

—J L Hennessy & D A Patterson
Computer Architecture: A Quantitive Approach, page 579.

The first question is beyond the scope of this thesis, though observation of the natural world
and existing applications suggests that even if there is some limit to parallelism in specific
problems and algorithms the elaborate parallel composition of these remains useful.

However, it is the second part of this question that this thesis addresses directly. Training
the engineering population requires significant investment, as far as possible engineers need
familiar tools and, specifically, programmers prefer familiar notations. Occam met resistance
as much for its idiosyncratic notation as it did for its introduction of parallelism. It is not
parallelism that is complex, rather it has been the complexity of process interaction that has
presented a hurdle. In Fase this complexity is significantly reduced and a familiar notational
style maintained. Compilers are greatly assisted in their task by the side effect free nature of
the language and the Context abstraction.

Hennessy and Patterson elaborate:
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“Compilers of the future have two challenges on machines for the future:

1. Lay out of data to reduce memory hierarchy and communication overhead,
and

2. Exploitation of parallelism.”

—J L Hennessy & D A Patterson
Computer Architecture: A Quantitive Approach, page 581.

The first of these is addressed by increasing the degree of data locality in programs, the second
is provided for by the nature of Context structures, side effect free expressions and functions
(that permit a compiler the easy identification of fine grain parallelism) and explicit parallel
constructions.

Finally, a type secure language with a strong mathematical basis that does not intrude
upon the engineer is generally desirable, allowing for the application of formal methods when
necessary and simplifying the task of program transformation.
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Appendix A

Programs in Ease

A.1 Conway’s game of life.

The following example is a reworking of the classic Conway game of life. This version is based
on the Occam version found in Jones and Goldsmith “Programming in Occam 2”[JoGo88].
A comparison (though space does not permit the repetition of the Occam version here) is
worthwhile since it illustrates just how badly Occam programs are affected by data distribution
issues though in fairness it must be observed that the Occam version is a systolic program.
The FEase version differs in a number of significant ways. The primary difference is in how
the main data structure, is conceived.

The game of life is a classic and simple simulation of an evolutionary system based upon a
rule set. The rule set in this case applies to a 2D matrix of infinite size where each “cell” of the
matrix has one of two states called “alive” and “dead”. The cell evolves through a sequence
of generations with its state determined by its own state and that of its eight neighbours.
The rules are

1. if the cell is alive and less than two neighbours are alive then the cell becomes dead,
2. if the cell is alive and two or three neighbours are alive then the cell remains alive,
3. if the cell is alive and more than three neighbours are alive then the cell becomes dead,

4. if the cell is dead and three neighbours are alive the cell becomes alive.

These rules respectively represent cell states of starvation, stability, overcrowding, and birth.
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let
let

let
let
let

let
let

APPENDIX A. PROGRAMS IN EASE

array’width = 256 /* cells across the board */
array’height = 256 /* cells down the board  */
radius =1 /* ’sphere of influence’ */
diameter = 2 * radius + 1

neighbours = diameter * diameter - 1

alive = true
dead not alive

type BOARD context [array’width] [array’height]single BOOL
let board := BOARD

let

pause := INT’SINGLE’CONTEXT

procedure next’state (x, y, nx, ny)

let living := 0
let neighbours’state := _ -> BOOL
{
{ i for neighbours /* count the number living */
board[nx[i]] [ny[il] ? neighbours’state

test neighbours’state = alive : living ++
neighbours’state = dead : skip ;

test /* death from isolation */
living < 2 : board[x][y] ! dead
/* cell is stable */

living = 2 : skip
/* stable if alive, birth if dead */
living = 3 : board[x][y] ! alive

/* death from overcrowding */
living > 3 : board[x][y] ! dead ;
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procedure cell(x, y)

217

array’width
array’width
array’height
array’height

let left = (x - 1 + array’width) %

let right = (x + 1) h

let up =(y+ 1) h

let down = (y - 1 + array’height)

let nx = [right, x, left, left, left, x, right, right]
let ny = [down, down, down, y, up, up, up, yJ

let running := true

let any := _ -> INT

{

board[x] [y] ! dead

while running

{
next’state(x, y, nx, ny)
screen[x] [y] := board[x] [y]
pause 7 any

¥
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procedure edit’board ()

/* start cursor in mid screen */
let x array’width / 2
let y array’height / 2

let editing := true
let key

-> char

if a <= b : a else b
if a >= b : a else b

function min (a, b)
function max (a, b)

while editing
{

screen ! (move, x, y)
keyboard 7 key

select key
/* change state */
b b
{
board[x] [y] 7 state
board[x] [y] ! not state
+
/* move up if possible */
W, W
y := max(y-1, 0)
/* move down if possible */
)D)’ )d)
y := min(y+1, array’height-1)
/* move right if possible */

’R?, ’r’
x := min(x+1, array’width-1)
/* move left if possible */
Ly, ’1?
x := max(x-1, 0)
/* quit */
)Q)’ )q)

editing := false
/* ignore other input */
else skip ;

PROGRAMS IN EASE
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procedure control()

let key = _ -> char
let running := true
let any =0
while running
{
keyboard 7 key
pause ! any
select key
)E)’ )e)

{pause 7* any
edit’board()
pause ! any

b

)Q)’ )q)
running := false
else skip ;

: /* body of program */

{ screen ! clear
edit’board()

Il control()
Il x for array’width
Il y for array’height
cell(x, y);;

The rules of the game of life determine the state of the whole matrix for each generation
since the evolution is synchronized by barriers of cooperation and deterministic global struc-
tures evolve in the form of identifiable patterns, illustrating how a few simple local rules can
control the evolution of global structures. Several patterns are well known, passing through
cycles of growth and decay, or even endless growth. In the version of the simulation pre-
sented here an non—synchronized evolution can be expressed by replacing the cooperation
with subordination, so that the main program becomes
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{ screen ! clear
edit’board()

// x for array’width
// y for array’height
cell(x, y);;

control()

¥

The implementation represents the matrix as a singleton context of boolean components.

The loop that reads the neighbouring states is described in sequence. All sharing of data
must be expressed by context. The Occam version of this program[JoGo88] uses a construct

PAR d = 0 FOR neighbours
link[nx[d]] [ny[d]][d] ? state.of.neighbour([d]

to express parallel input (the extra subscript is required to identify the input) into an
array of booleans. How can we express parallel input in Fase? We can rewrite next’state
to allow parallel input by using a local context to describe the shared data, thus it becomes

procedure next’state (x, y, nx, ny)
/* with parallel input */
let count := INT’SINGLE
let living := _ -> INT

{ count ! O
Il i for neighbours /* count the number living */
let neighbours’state := _ -> BOOL :

{ board[nx[i]][ny[i]] 7 neighbours’state
test neighbours’state = alive : inc(count)

neighbours’state = dead : skip ;
b
count 7* living
test /* death from isolation */

living < 2 : board[x][y] ! dead
/* cell is stable */

living = 2 : skip
/* stable if alive, birth if dead */
living = 3 : board[x][y] ! alive

/* death from overcrowding */
living > 3 : board[x][y] ! dead ;

where inc(c) has the behavior
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procedure inc(c)
let count := _ -> INT :
{ ¢ ?x count
count ++
¢ ! count .

An implementation that is able to use read-modify—write instructions will use such library
routines to allow this behavior to be implemented as read-modify—write.

A.2 Stream exchange sort

In an application not all algorithms need to be parallel. The elegance of programming with a
process model over conventional programming comes from the useful composition of processes.

This example illustrates a single, sequential process, acting upon a Stream context. The
program is an implementation of simple sort by exchange, but this example servers as an
illustration of resource use and the passing of contexts as first class data structures.

type STRING’STREAM context stream string
type FILE’STORE context STRING’STREAM reply STRING’STREAM

let file’system := FILE’STORE
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procedure exchange’sort (STRING’STREAM strings)
/* sort a non-empty string context */

let s := _ -> STRING

let t := _ -> STRING

let swaps := true

let end’marker = "A unique string"

{ while swaps
{ strings ! end’marker

strings 7* s
strings 7*x t

swaps := false

enum s’, t’
let last := ¢’

while s <> end’marker and t <> end’marker
test s < t : { strings !x s
strings 7* s
test last = s’ : swaps := true
else last := s8’;

t <s : { strings !x ¢t
strings 7* t

test last = t’ : swaps := true
last = 8’ : last := t’;
b
s =1t : test last = t’ : { strings !x s
strings 7* s
b
last = s’ : { strings !'* t
strings 7*x t
Y

/* leave end marker *afterx last "sorted" item */
end’marker : { strings !* s
strings '* t }
t = end’marker : { strings !* t
strings '* s }

test s

b
strings 7* s

¥
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|| users()

I
let file := STRING’STREAM
while true
resource file’system 7* file
exchange’sort (file)
¥ file

The exchange sort algorithm is more popularly called “bubble sort”. A complete descrip-
tion of the algorithm, its weakness and implementation, can be found in Dromey [Dromey].

A.3 A shared stack

I mentioned in the discussion on future directions the question of LIFO characteristics for
shared data; i.e., stacks do not have useful characteristics for data exchange or data sharing
since use of stacks implies a lack of ordering interest in such circumstances and Bag meets
that requirement. None—the—less, stacks are important for many algorithms and can be
implemented conventionally or as resources.

We begin by defining the types involved

type VALUE is ... /* type of values stacked */
type STATE is BOOL

type STACK’RESOURCE context
/* push */ VALUE reply STATE |
/* pop */ STATE reply VALUE

STACK’RESOURCE is an associative type consisting of a value and state. We define a stack
resource as

let stack := STACK’RESOURCE

We must now defined Push and Pop operation on the stack, but since this is a shared
resource we define a few extra desirable features. Firstly, the stack should

e refuse Push if there is no space available, and

o refuse Pop if there are no values present.

In the implementation that follows I provide the Pop operation with the ability to block
Push. This will permit a process to Pop several items from the stack while preventing other
processes from Pushing values onto the stack.
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let ok = true

let state := ok

let stack’store -> [max’size]VALUE

let stack’pointer := 0
let value = VALUE
let running = true

while running
choice

/* push */

state:

resource stack 7* value

test stack’pointer < max’size-1
{ stack’pointer ++
stack’store [stack’pointer]

value
+
else { state := NOT ok
stack’pointer ++
stack’store [stack’pointer]
rs
% state
/* pop */
stack’pointer <> O:
resource stack 7* state
test stack’pointer > 1
{ value := stack’store [stack’pointer]

value

stack’pointer --

+
else { value := stack’store [stack’pointer]
stack’pointer --
state := ok
rs
' value
/* shut down command */
quit ? running : skip

The resource process is constructed as a loop composed of a choice with three components:
a Push resource, a Pop resource, and a quit instruction.

The Push resource is guarded by a boolean state, initially true and set to false if the
current Push operation fills the stack. This value is returned to the user process and indicates
that the resource may not accept subsequent values

The Pop resource is guarded by a boolean expression that allows a Pop to occur only if a
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value exists on the stack. The Pop operation is allowed to specify a state value that may block
subsequent Pushes and permits a process to remove several values from a stack without new
values being Pushed. This feature is not useful unless a certain discipline is observed between
the processes wishing to use it, since several Popping processes will interfere with each other
(it is useful where there are many Pushers and a single Popper). Popping processes are not
permitted to block out Push operations when the stack is empty.

A user process might call the stack by

procedure push (v)
let stack’condition := _ -> STATE :

{ stack !'* v 7* stack’condition
etc...

+
procedure pop (v)
stack ! true 7x v

The stack type associativity will select the correct resource. Finally, a controller can shut
down the stack by

quit ! false.

A.4 The sieve of Eratosthenes

This example is an implementation of the well known “Sieve of Eratosthenes”. The object of
the program is to sum all the primes from the first prime 2 to LIMIT.

I begin by defining a context type stream called “ordered”. A stream of integers. Contexts
of this type will connect processes in a pipeline.

type ORDERED context stream INT
In addition a singleton type is required to hold the final summation.
type ONE context single INT

The algorithm is well known. Briefly, a stream of candidate prime numbers is passed
through a pipeline of filters. The first number in the stream is a new prime. Each filter looks
for numbers which are not multiples of the prime the filter represents — such numbers are
potentially prime and are passed on to the next filter in the pipeline. The implementation
for such a filter is
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procedure filter (pipe, sum, sigma)
let next := ordered

let prime, candidate := _ -> INT
{
pipe 7% prime
pipe 7* candidate
test (primex*prime) < LIMIT
{ let new’sum = sum + prime :
// filter (next, new’sum, sigma);
while candidate <> NULL
test (candidate ) prime)=0 : pipe ?* candidate
else {next !'* candidate
pipe 7* candidatel};
next ! NULL
b
else let result := sum + prime :
{ while candidate <> NULL
{ result := result + candidate
pipe 7% candidate
b

sigma ! result

};

A filter process begins by allocating a context next. This will be used to pass data to the
next stage in the pipeline. A new pipeline stage, a copy of the filter process itself, is created
as required.

Next a procedure which writes into the head of the pipe a sequence of odd numbers.

procedure source(pipe)

{ {i for LIMIT/2-1 from 3 by 2 : pipe ! i}
pipe ! NULL

+

Two is considered a “found” prime. The final program can be expressed by

-> INT

let sum _
let pipe := ordered

{
//filter(pipe, 2, sigma) //source(pipe) ;
sigma 7 sum
printf("Sum of primes: %d.\n", sum) }
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Here there are three processes. The two subordinate processes, the first stage filter process
and the source process writing odd numbers. The creating process waits and presents the
final result.

A.5 Common cores

Operations on matrices are among the most compute intensive components of High Perfor-
mance Computing applications. The expression of large shared matrices is straight forward,
simply

type matrix context single [N] [N]FLOAT64

let a, b, ¢ := matrix

defines an N by N matrix. The following paragraphs illustrate how the core of a matrix
multiply and Gauss/Jordan computation on such a matrix can be simply expressed.

A.5.1 Matrix multiply

The common sequential core of a matrix multiplication is

{1ifor N
{j for N
{k for N
clil[j] := c[il[j] + alillk] * bl[k]1[j]
T

The parallel core can be expressed as

// i for N
// j for N
{k for N
clil[j] := cl[il[j] + alillk] * bl[k]1[j]
}is
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and this is algebraically equivalent to

// i for N

// j for N

{k for N
let tmpO, tmpl, tmp2, tmp3 := _ -> FLOAT64:
{
c[i][j] ? tmpO
alil[k] ? tmp1
b[k][j] 7 tmp2

-~

tmp3 := tmpO + tmpl * tmp2

c[il[j] ' tmp3
+
Y5

the order of the read operations preceding the computation is unimportant since read
operations are side effect free; we cannot write these inputs as being in parallel since parallel
processes may not write to free variables, however, an implementation can derive the dis-
jointness of the temporaries from the abbreviated construction and will, in fact, implement
parallel inputs where advantageous to do so.

A.5.2 Gauss-Jordan

A similar approach applies to the common Gauss/Jordan core. The sequential core is

{1iforN
{j for N
{ k for N
test 1 <> j
aljllk] := aljlk]-(aljllil*alil[k])/ali] [i]
else skip ;

31}

Similarly the parallel core can be expressed

{1iforN
Il j for N
Il k¥ for N+1
test 1 <> j
aljllk] := aljllk]-(aljllil*alil[k])/ali][i]
else skip ;

i3t
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A.6 Farming: master/worker

The farming paradigm is well established now as a method of work scheduling among some
number of processes. A Farmer, often called the “master” has some number of similar tasks
to perform makes them available to a force of workers able to perform them. Generally this
paradigm is suited to applications with the form

{1iforn

answer[i] := worker(task[i])
+

where the controlling loop represents the Farmer and worker, predictably, represents the
worker.

This can be written with Fase by first establishing a context to contain a pool of tasks.
For the purposes of illustration we shall implement a Farmer worker process that determines
the sum and the largest element of a matrix. A task is simply a row of the matrix.

type TASK is [N]INT

Now we define the Bag context type to hold the tasks as
type TASK’BAG context TASK

A further context is required to collect the results.

type SUM is INT
type LARGEST is INT

type ANSWERS context
SuM |
LARGEST

The results context is an associative context that collects all the answers.

Again for the purposes of illustration, I show the Farmer process acting as a resource
receiving a matrix which it then places as rows along with the appointed tasks into the task

bag.
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procedure farmer (environment)

let matrix := _ -> [N][NJINT
let sum = _ -> SUM

let total = 0 -> SUM

let big := _ -> LARGEST
let biggest := _ -> LARGEST
let work = TASK’BAG

let results := ANSWERS

let quit = BOOL’SINGLE

Il
resource environment 7* matrix
let m = matrix :
Il 1 for N /* output rows */
work ! m[i]
[[{{ i for N /* read in sums and accumulate */
answers 7% sum

total := total + sum
+
print ! "Matrix sum = %4\n"(total)

b
| |{answers 7* biggest

{ i for N-1 /* find largest among the large */
answers 7 big
biggest := if big > biggest : big else biggest

b

print ! "Matrix biggest = /\n'"(biggest)

quit ! false

Y

' matrix

Il i for a’good’number’of’workers
worker ()

The Farmer itself consists of a number of parallel processes, the two primary processes
are the resource and the creation of workers. The resource consists of

e a process to output the rows of the matrix in parallel,
e a process to accumulate the summation by the workers, and

e a process to select the largest of the large values found by the workers.
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The constant definition let m = matrix allows the matrix to be acted upon in parallel as a
read only value; recall that free variables may not appear in parallel processes, however, it is
possible to provide read only access in cooperations to variables in this way (though the same
constant definition preceding a subordination will, of course, result in a copy of the matrix
being made). When the work is complete the matrix is returned to the sender.

The Farmer creates some number of processes determined by the environment constant
a’good’number’of ’workers

Implementation note: it should be obvious in the above that a compiler does not have
to work very hard to see that the output of the matrix in the write work ' m[i] can be
implemented under some circumstances without copying the matrix since m is a constant. If
the compiler now finds (as it will) that these components are only read by all concurrent
processes in the scope a simple optimization can be made and the matrix itself need never
be copied. I mention this to illustrate the simplicity in detecting such optimizations in an
environment free of side effects and to point out to implementors that optimization should
still be pursued.

The worker process simply acts as

procedure worker ()

let row := _ -> [N]INT

let sum := 0 -> SUM

let big := _ -> LARGEST
= true

let going :

while going
choice
work 7x row
let row = row -> [N]SUM :
{{1ifor N : sum := sum + row[i]}
results ! sum
big := rowl[0]
{ i for N-1 from 1
big := if row[i] > big : row[i] else big }
results ! big
+
quite 7 going : skip
The worker simply takes up a row and places the sum and largest values in the answer
context.

For the optimization mentioned in the previous implementation note the compiler must
simply determine that the base type of row is the same as [N]SUM.
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Appendix B

A YACC/Bison grammar

Al

hx
/%

/* Yacc/Bison grammar for
Ease - a language for programming concurrent systems.

Version Beta.09
Copyright (C) 1991, 1992 Steven Ericsson Zenith.
Copyright (C) 1992 Science Frontiers, International.

This program is free software; you can redistribute it and/or modify
1t under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

Terminals */

Y%union {

struct symbol *sym;
struct list *¥list;
char *value;

233
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/* name */
%token NAME

/* keywords and key symbols */

%token BECOMES READ WRITE GET PUT /*
%token SEQUENCE TEST SELECT RESOURCE CHOICE
%token ELSE AFTER ON STOP

%token COOPERATE SUBORDINATE /
%token WHILE DO UNTIL

%token FOR FROM BY

%token INCREMENT DECREMENT /¥ ++ —= %/
%token STOP SKIP

7Tk Ik ox/

*

/7 %/

/* expression symbols */

%token MUL DIV REM EXP VESEIVAS SR Y
%token SUB ADD /* - + %/
%token EQ NE GT LT GE LE /¥ = <> > < >= <= %/
Ytoken AND OR XOR

%token BITAND BITOR BITXOR /x I\ \/ >< %/
Ytoken RSHIFT LSHIFT /% >> << %/

Ytoken COMPLEMENT NOT /* = x/

%token TEXT CHARACTER NUMBER

%token TRUE FALSE

%token IF SIZE OF

%token OPENTO CLOSETO TO /x (o.o00) L. ox/
Ytoken COERCE ASSERT CAST /* => => >| x/

/* declarators and types */

htoken LET VAL RENAME TYPE ENUM IS AT

/token COUNTED /x o ox/
htoken CONTEXT STREAM SINGLE LO HI REPLY

htoken PROCEDURE FUNCTION WHERE

htoken BOOL

htoken INT INT8 INT16 INT32 INT64 INT128

htoken FLOAT32 FLOAT64 FLOAT128 CHAR STRING
htoken UNSIGNED TRUNC ROUND

/* modules */
%token MODULE END SHOW HIDE USE

/* linebreak points */
#token NEWLINE
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hstart program

hh
/* processes */
program: . process

process: action

construction

instance

specification_block ’:’ ... process

error_handler

error_handler: /* Handles grammatical errors:
disgards process or finds next semicolon */
eIrror process
error ’;’

action: assignment
| interaction
| STOP
| SKIP

construction:

sequence

test
selection
combination
choice
cooperation
subordination

repetition

assignment:
element BECOMES expression
| element INCREMENT
| element DECREMENT

b
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element READ element_list

element WRITE expression_list

element GET reference_list

element PUT reference_list

236
interaction:
input

| output

input: read
| get

output: write
| put

read:

write:

get:

put:

reference: NAME

b

reference_list:

reference

| reference ’,’ . reference_list

b

element_list:

sequence:

b

element

element ’,°

SEQUENCE .
SEQUENCE .
SEQUENCE .
SEQUENCE .

. element_list

)})

subsequence ’}’

replicator .. subsequence ’}’

ON STOP . process .. subsequence ’}’



subsequence:

process .

| process ...

b

test: TEST .
| TEST .
| TEST .

default: ’;°
| ELSE .

conditional_body

subsequence

default
conditional_body default

replicator .. conditional .

process . ’;’

conditional .

| conditional ... conditional_body

b

conditional:

expression .. process

| test

b

selection:
SELECT

default

selector .. option_body default

selector: expression

b

option_body:

option .
| option ... option_body
option: match_list .. process
match_list:
expression

| expression ’,’ . match_list
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combination:
call
| reply
call: write GET reference

| put GET reference

reply: RESOURCE . get . WRITE expression
| RESOURCE . get .. process . WRITE expression
| RESOURCE . get .. process . PUT reference

choice: CHOICE . default_choice
| CHOICE . alternative_body default_choice
| CHOICE . replicator .. alternative . default_choice

default_choice:
) )

) )

| ELSE . process . ’;
| ELSE . AFTER time .. process . ’;’

b

alternative_body:
alternative .
| alternative ... alternative_body

b

alternative:

input .. process

boolean .. input .. process
reply

boolean .. reply

>|? . process

boolean ’|’ . process

choice

time: float



cooperation:
cooperate . ’;’
| cooperate . cooperation

b

cooperate:
COOPERATE . process

| COOPERATE . replicator .. process

b

subordination:
subordinate . ’;’
| subordinate . subordination

b

subordinate:
SUBORDINATE . process
| SUBORDINATE . replicator ..
/* Process placement */

process

| SUBORDINATE . ON node .. process

| SUBORDINATE . ON replicator ..

repetition:
WHILE boolean .. process

| DO . process . UNTIL boolean

b

replicator:
replicant FOR . count
| replicant FOR . count FROM .
| replicant FOR . count FROM .

b

replicant:
NAME

instance:
procid ’(’ argument_list ’)’

process

base
base BY step

239



240 APPENDIX B. A YACC/BISON GRAMMAR

/* specifications */
specification_block:
specification
| specification specification_block

b

specification:
declaration .
| definition

b

definition:
procedure
| function
| typedef
| module

declaration:
LET specifier
| ENUM name_list
| ENUM FROM base . name_list
| USE modulid

b

specifier:
NAME EQ expression
| name_list BECOMES allocation
| NAME RENAME element

b

allocation:
expression
| expression ON node

node: integer
| integer AT integer

name_list:
NAME
| NAME ’,’ . name_list
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procedure:
PROCEDURE procid ’(’ pformal_list ’)’ . process .

procid: NAME

pformal_list:
/* EMPTY */
| pformal
| pformal ’,’ . pformal_list

b

pformal: NAME
| compliant NAME
| VAL NAME
| VAL compliant NAME

b

function:
FUNCTION funcid ’(’ fformal_list ’)’ . function_expression

funcid: NAME

function_expression:
EQ . expression .
| EQ . expression . WHERE . process .

b

fformal_list:
/* EMPTY */
| fformal
| fformal ’,’ . fformal_list

b

fformal: NAME
| compliant NAME

b



242 APPENDIX B. A YACC/BISON GRAMMAR

compliant:
type
| )[) )] )type

b

/* modules */
module: MODULE modulid ... module_body END MODULE

modulid: NAME

module_body:
show hide
| hide show

b

show: SHOW . specification_block
hide: HIDE . specification_block
/* types */
type: primitive_type
| tuple_type
| array_type
| integer_type ’[’ limit ’]’ COUNTED type
| typeid
I

TYPE OF expression

b

typedef: TYPE typeid IS type
| TYPE typeid CONTEXT . bag_list

typeid: NAME

bag_list: bag
| bag_list ’|’ . bag

b
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bag: bag_type
| priority .. bag_type

unordered
| singleton
| stream
| exchange

unordered:
type ;

singleton:
SINGLE type
| >[’ integer ’]’ . singleton
| >[’ integer ’]’ . stream

b

stream: STREAM type

exchange: type REPLY type

b

priority:
LO
| HI
| LO integer
| HI integer

primitive_type:
BOOL
| integer_type
| UNSIGNED integer_type
| float_type

integer_type:
INT
| CHAR
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INTS
INT16
INT32
INT64
INT128

float_type:
FLOAT32
| FLOAT64
| FLOAT128

b

array_type:
»[’ integer ]’ . type
| STRING

b

tuple_type:
»(? type ’,’ . type_list ’)’

type_list:
type
| type ’,’ . type_list

b

/* elements and expressions */
literal: CHARACTER

| string
| NUMBER
| TRUE

| FALSE
|

) )

b

string:  TEXT
| TEXT ’\\’ ... string

tuple: >(’ expression ’,’ . expression_list ’)’



table:

element:

lambda:

’[’ expression_list ’]’

NAME

tuple

table

element ’[’ . subscript ’]’
element ’[’ . base CLOSETO
element OPENTO limit ’]°

element ’[’ . base FOR . count ’]’
element [’ . base TO . limit ’]°

NAME ° (° argument_list ’)’
lambda_binding . ’(’ . function_expression ’)’

argument_list:

b

/* EMPTY */
expression_list

lambda_binding:

merge:

primary:

monadic:

b

declaration . ’:’
declaration . lambda_binding

string ’(’ expression_list ’)’

literal

merge

element

lambda

>(’ expression . ’)’

primary

ADD primary

SUB primary

NOT primary
COMPLEMENT primary

245



246 APPENDIX B. A YACC/BISON GRAMMAR

| SIZE OF element

b

exponent: monadic
| monadic EXP . exponent

b

multiplicative:
exponent
| multiplicative MUL . exponent
| multiplicative DIV . exponent
| multiplicative REM . exponent

b

additive: multiplicative
| additive ADD . multiplicative
| additive SUB . multiplicative

b

shift: additive
| shift LSHIFT . additive
| shift RSHIFT . additive

relational:

shift

relational LT . shift
relational GT . shift
relational LE . shift
relational GE . shift

equality: relational
| equality EQ . relational
| equality NE . relational

bitwise: equality
| bitwise BITAND . equality
| bitwise BITOR . equality
| bitwise BITXOR . equality



logical: bitwise
| logical AND . bitwise
| logical OR . bitwise
| logical XOR . bitwise

b

constraint:

logical

logical COERCE type
logical COERCE TRUNC type
logical COERCE ROUND type
logical ASSERT type
logical CAST type

expression:
constraint

| IF boolean .. expression . ELSE .

b

expression_list:
expression
| expression ’,’ . expression_list

b

/* semantic limiters */
subscript:integer

b

base: . integer
count: . integer
limit: . integer
step: integer

boolean: expression

expression
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integer: expression
;

float: expression
;

/* Newlines and colon */
/* EMPTY */
|

b

NEWLINE
. NEWLINE

"
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A FLEX lexer

/* Ease Compiler - Copyright (C) 1991, 1992 Steven Ericsson Zenith

A flex specified lexer for

Ease - a language for programming concurrent systems

Copyright (C) 1991, 1992 Steven Ericsson Zenith.

Copyright (C) 1992 Science Frontiers, International.
#HPCO1 Computer Science Project.

This lexer accompanies the grammar "ease.y".
Version Beta .09 April 1992.

*/
Al

#include <stdio.h>

#include "ease_tab.h" /* bison generated definitions */
#include "ease.h"

#include "version.h"

int lineno = 1;

hx

Name [a-zA-Z] [0-9a-zA-Z_’]x*

Whitespace [ \t]+

Newline [\n\f\r]

Integer [0-9]*|"#"[0-9A-Fa-f]*

Float [0-9]+("."[0-9]+)?[eE] [+-]17[0-9]+ | [0-9]+"."[0-9]*
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Text
Characte

hh
||/*||
{Whitesp

{Newline

test
select
resource
choice
else
after
on
while
do
until
for
from

by

and
or
Xor
not
true
false
if
size
of

let
val
rename
type
enum
is

VAW TITVNT ) #\
r 0 | )\\ )

comment () ;

acelt ;

+ {

++lineno;
return(NEWLINE) ;

return(TEST) ;
return(SELECT) ;
return(RESOURCE) ;
return(CHOICE) ;
return(ELSE) ;
return(AFTER) ;
return(0ON);
return(WHILE) ;
return(D0);
return(UNTIL);
return(FOR) ;
return(FROM) ;
return(BY);

B e T T T N S S e s T

return(AND) ;
return(0OR);
return(X0R) ;
return(NOT) ;
return(TRUE) ;
return(FALSE);
return(IF);
return(SIZE);
return(0F);

B N W Y Y= ST ST ST SV

return(LET) ;
return(VAL) ;
return(RENAME) ;
return(TYPE) ;
return(ENUM) ;
return(IS);

R N s W W

O s s s = = S R S e e

i i =

s s e RS
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context
stream
single
1o

hi
reply

procedure
function
where

bool

int

int [8]
int[1][6]
int[3][2]
int[6][4]
int[1] [2] [8]

float[3][2]
float [6] [4]
float[1][2] [8]

string
char

module
end
show
hide
use

stop
skip

round
trunc

at

{Name}

N T s T

A

N N N e

A -

N N A

A

return(CONTEXT) ;
return(STREAM) ;
return(SINGLE) ;
return(L0);
return(HI);
return(REPLY);

return (PROCEDURE) ;
return(FUNCTION);
return(WHERE) ;

return(B0OOL) ;

return(INT);
return(INT8) ;
return(INT16);
return(INT32);
return(INT64);
return(INT128);

return(FLOAT32) ;
return(FLOAT64) ;
return(FLOAT128);

return(STRING) ;
return(CHAR) ;

return(MODULE) ;
return(END) ;
return(SHOW) ;
return(HIDE) ;
return(USE) ;

return(STOP) ;
return(SKIP) ;

return(ROUND) ;
return(TRUNC) ;

return(AT);
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yylval.value = (char *)strdup(yytext);
return(NAME) ;

{Integer} {
default_type

|lint|l ;

yylval.value = (char *)strdup(yytext);

return(NUMBER) ;

{Float} {
default_type = "float32";
yylval.value = (char *)strdup(yytext);
return(NUMBER) ;

{Text} {
default_type = "string";
yylval.value = (char *)strdup(yytext);
return(TEXT) ;
}{Character?} {
default_type = 'char";

yylval.value = (char *)strdup(yytext);
return (CHARACTER) ;

-

nn { return(SEQUENCE);
K return (COOPERATE) ;
ny { return(SUBORDINATE) ;

~
-

-

£
+
P

-

return (INCREMENT) ;
return (DECREMENT) ;

]
|

~

-

return(BECOMES) ;
return(GET) ;
return(PUT) ;
return(READ) ;
return(WRITE);

*
N N
R S =

return(EXP) ;
return(MUL) ;
return(DIV) ;
return(REM) ;

A n m A
s



|l+|l

Il<>|l

|l>|l
|l<|l

ny =1
ng="

||/\\||
||\\/||

Il><|l
Il>>|l
Il<<|l

||(..||
||..)||

n=sn
nosn

||>|

||}||

||(||
||)||

|||:||
||:|||

" | "
"non
b

A -

R N s T T

A An AN AN A S

~

return(SUB) ;
return(ADD) ;

return(EQ);
return(NE);
return(GT);
return(LT);
return(GE);
return(LE);

return(BITAND) ;
return(BITOR);
return(BITXOR) ;
return(RSHIFT) ;
return(LSHIFT) ;
return (COMPLEMENT) ;

return (0OPENTO) ;
return(CLOSETO) ;
return(T0);
return(ASSERT) ;
return(COERCE) ;
return(CAST) ;
return(COUNTED) ;
return(’}’);
return(’:’);

return(’;’);

return(’ (?);
return(’)’);

return(’ [’);
return(’]’);

return(’|’);
return(’,’);

return(’_’);

s
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"\ { return(’\\’); b
{
char m[40];
sprintf(m,"illegal character ’\\%o’", (int)yytext[0]);
yyerror(m) ;
t
<<EQF>> {
if (diagnose) printf("/* Lexer: end of file */\n");
yyterminate();
t
W

int comment ()
/* For now we won’t take care of nested comments or premature EOF

*/

{
char ¢ ;
while ((c = input()) !'= ’/’) {
if (c == ’\n’) ++lineno ;
while ((c = input()) !'= ’%’) if (¢ == ’\n’) lineno++ ;
+
+

yyerror(char *s)
{
printf("Ease %s: at line %d = %s (%s)\n",
EASE_VERSION, lineno, s, yytext);



Appendix D

C—with—Ease

D.1 (C-with-Fase definition

At the highest level a C—with—Fase program consists of a collection of processes which interact
via shared data structures.

The C language is enhanced by combining with the Fase process and process interaction
model.

Ease provides simple and symmetric operators (read and write, get and put), a well
defined process model. Constructions for both cooperative and subordinate concurrency and
a mechanism (combinations) for building statically reusable and virtual resources on parallel
and distributed machines.

The Ease keywords which appear in C programs begin with an escape character (generally
%) to distinguish them from the names used in the standard C function library.

D.1.1 Process definition

A process differs from a C function since it does not return a value and obeys the Fase rules
for parallel construction which place restrictions on the use of free variables and pointers.

A process is defined in a similar way to ANSI-C function definitions except where C
functions specify the type of the returned value, processes are distinguish from functions by
the keyword %process.
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definition = |process name {OD formal

body

body = compound_statement

process = name actual

Since the body of a process does not return a value the body is simply terminated by the use

of the C keyword return.

Names declared in a process definition may only appear in Fase process creation state-
ments.

D.1.2 Parallel construction

cooperation = |cooperate <1D process>
cooperate replicator processB

The processes in a cooperation start simultaneously and continue together. A cooperation

terminates when all the components of the cooperation have terminated.

A free variable can be assigned to in only one component of a cooperation. If a free variable
is assigned to, it can only appear in the assigning component. Otherwise, free variables can
appear in the expressions of all components.

A context can be output by only one component in a cooperation. If a context is output,
it can only appear in the outputting component. Otherwise, free contexts can appear in the
interactions of all components.

subordination = |subordinate| process
| | subordinate replicator processD

The components of a subordination start simultaneously and continue independently. A

subordination terminates when all the components of the subordination have started.

A subordinate process may not contain references to free variables in its scope. Subordi-
nate processes may not output a free context. A subordinate process terminates if it attempts
to interact with a context whose scope has terminated or whose value has been output.
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D.1.3 Replication

replicator = name |for

count

| name |for

| name |for

count = expression
base = cxpression
step = expression

count |from

base

count |from

base

by

step

D.1.4 Contexts — shared data structures

257

A context is a shared data structure, which may be an unordered bag, a stream or a singleton.
The type of data in a context is defined by equivalence to those in the reference language.

For C programmers the most significant thing to observe is that pointers may not be
used in contexts. C pointers are not meaningful things to exchange between processes since
subordinates may not share the same address space. However, cooperating processes may

share access to free pointers according to the rules for cooperation.

Indeed, put and get operations are designed to take care of data exchange by reference,

since they manipulate pointers where they may and copy data where they may not.

Types

The types used in Fase operations exclude pointers and unions. However, no restriction is

placed on the use of pointers within a process.

type = data_type

| | stream|type

| H expression ’:T type

| data_type |reply

data_type
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data _type = primeitive_type
| array_type
| tuple_type
primitive type = nteger_type

| |lunsigned|integer type

| |signed |integer _type

| float type

signed|integer_type = wnteger_type

The following equivalences define primitive types and syntax in C-with-Ease in terms of
equivalence to those specified in the reference language.

integer_type = int =INT
| |char =INTS8|UNSIGNED INTS!
| |short =INT16[INT32"
| |short int|=INT16|INT32
| |long =INT32[INT64"
| |long int| =INT32|INT64!
float type = float =FLOAT32
| |double| =FLOATG64

Those types marked by { are machine dependent. An implementation must state the true
equivalence.

array_lype = type ETPresSSIon

An array type is a homogeneous sequence of components of some type. The size of the
sequence is specified by the associate expression, which must be of integer type.

These arrays are directly equivalent to arrays in the reference language.

array_type = wnteger_type | :: count type

count = expression
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A counted array type is a count component of an integer type, followed by a homogeneous
sequence of components of some type. The size of the sequence is bounded to be not greater
than the value specified by the associated count expression.

Let e be an expression, [ an integer type and ¢ be some type, then the type [ :: [e]t is
valid iff e > 0.

tuple_type = |struct <2D type>

Tuple types are equivalent to structurally equivalent ANSI C standard structures.

Type definitions

A name defined by a C type definition is valid only if the types in the definition are structurally
compatible which those mentioned.

D.1.5 Context type definition

definition = |context|name type
| |context | name <1 type >
type = name

A context type definition defines a name for the specified context type. A context whose
type is defined by a type definition is of the same type if their type has been defined in the
same definition (i.e. name equivalence).

D.1.6 Context allocation

allocation = |share|type context D

| placement

context = name

An allocation specifies a name for a context.



260 APPENDIX D. C—WITH-EASE

placement = |share|type context |on| (,node )

| | share| type context |on|node |at | address

node = expression

address = expression

A placement allocates a context (which must be a singleton) on a node or group of nodes.

D.1.7 Interaction

interaction = input | output

input = read | get

output = write | put

read = |read T‘conte:pt s variable

write = |write ﬂconte:pt , e:z;pression

get = |get (| context |, name

put = |put (| context |, name

The interactions specified here are simple syntactic variants of those specified in the
reference language.

There are four simple, symmetric, operations on contexts. They are

e write (c, e) — copies the value of the expression e to the context c.

e read (c, v) — copies a value from the context ¢ to a variable v.

e put (c, n) — moves the value associated with the name n to the context c.

e get (¢, n) — moves a value from the context ¢ and binds it to the name n.

Write and read are copy operations. Put and get are binding operators.

The synchronization characteristics of the operations are similarly symmetric
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e get and read block if data is not existent

e write and put are non-blocking.

Consider how these operations change the state of a program.

Write changes the state of a context, leaving the local state unchanged. Read changes
the local state whilst leaving the context state unchanged.

Put changes both the context state and local state, i.e. subsequently the value associated
with the variable name used in the operation is undefined. Get also changes both the context
state and the local state, i.e. the value bound to the variable name used in the operation is
removed from the context.

D.1.8 Resource

The construction of and interaction with resources has special requirements. To enable the
simple and uniform view of resources in parallel and distributed environments, Ease provides
combinations.

combination = call | reply

call = |call m conte:z;tD e:z;pression name
reply = |resource contexl D name

reply| function

A combination provides guaranteed call reply semantics via some context. Access to
system resources is provided by use of combinations.

A call behaves like an output and get in sequence.
A reply behaves like a get, process and output in sequence.

The behavior of a combination is described as the synchronization of the calling process
and the resource process, where the output of the resource process in the call reply context
is guaranteed to satisfy the input of the corresponding call.

D.1.9 Scope

The scope of a context allocated in a process is from the point of allocation to the end of that
process. &



