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Abstract

In order to choose the best optimized version of a real Fortran program, we have to
compare the execution times of different optimized versions of the same Fortran program.
Since real scientific Fortran programs can run for hours on expensive machines, it’s useful
to perform a static analysis that accurately predicts running time.

In this paper, we propose to use our complexity model, which is composed of a library
of polynomial models of program performance and dynamically-derived program statistics,
to present running time predictions of Fortran programs. Then, a real example from the
PERFECT Club is presented in the PIPS programming environment.

1 Introduction

PIPS! is a source-to-source parallelizing compiler that transforms Fortran77 programs by re-
placing parallelizable nests of sequential DO loops with either Fortran90 vector instructions or
DOALL constructs. It is not targeted towards any particular supercomputer, although only
shared memory machines have been considered. The principal characteristics of PIPS are:

1. Interprocedural parallelization.
2. Interprocedural analysis

3. Relative efficiency

See [IJT91] for more information.

One part of the PIPS project is a performance tool to predict the complexity of a program.
This tool can be based on a variety of machine models which will allow us to predict the
performance of a program on different machines. There are several methods we can use to
predict the performance of a given algorithm or Fortran program.

1. The easiest way is to run it on the real parallel machine such as a Cray, Transputer or
CM-5, with varying number of processors and varying problem sizes. This is not the best
way, not only because it’s the most expensive one, but also we can not see the relationship
between the result and parameters.

LPIPS is French acronym which stands for Paralléliseur Interprocédural de Programmes Scientifiques, de-
veloped at Centre de Recherche en Informatique ( CRI ) de 1'Ecole Nationsle Supérieure des Mines de Paris
( ENSMP ).



2. The cheapest one is static evaluation, but it is not computable. As there is no way to

predict the outcome of a branch statement in static evaluation, we are forced to guess or
choose forced probabilities.

3. The most appropriate method should be a combination of the former two approachs to get
the best tradeoff. We call it “half static and half dynamic”. This method allows us to get
around static evaluation problems, while keeping the advantages of symbolic expressions
of complexity. The advantage of this method is that the profiling execution can run on
any machine.

Our goal is the “half-static and half-dynamic” model. For the time being, only the first step
has been done, that is, only a pure static evaluator has been implemented and only sequential
Foriran programs are taken into account.

In order to calculate how many times a loop body should be executed, the values of the loop
bound and increment are needed also. Hence, we have to make full use of preconditions on scalar
integer variables. If we fail to get exact values of loop bounds, we use the largest complexity
instead. We will get UNKNOWN_RANGE when no information is available. This is described
in [Bert].

2 Complexity Components

The complexity tool of the PIPS project is composed of two elements: a library of polynomial
mathematical models and counters which measure statistical information about each variable.

2.1 Polynomial

In our model, the complexity of every statement of Fortran program can be expressed as a
polynomial. To support this, a polynomial library has been created by several people.at CRI. It
is the component of the C3 library. It is made from monomes, which are made from vectors. The
vector library is the essential part of the C3 library. It has the same features as mathematical
polynomial. There is only a restriction on division, the divisor must be a monome or a constant.
Both developers and users are interested in this information.

2.2 Statistics

Although it is almost impossible to get the precise execution time of a given set of instructions,
we can expect a good approximation. The statistics counters contain three kinds of counters
to summarize the different sorts of information measured during the evaluation. This kind of
information is reserved for further development of this estimator.

2.2.1 Variable Statistics

1. symbolic : counts variables that appear explicitly and do not need to be evaluated. What
we need to know is its type.

2. guessed : counts variables that must be evaluated and whose value can be calculated.

3. bounded : counts variables that must be evaluated and whose value can not be calculated
exactly. In this case, we chose the worst case estimation.

4. unknown : counts variables which are totally unknown.



2.2.2 Range Statistics

1. profiled : counts the loop range whose range is measured with some profiling. ( not
implemented )

2. guessed : counts the loop range whose bound contains variables of the type symbolic and
gquessed.

3. bounded : counts the loop range whose bound contains variable of the type bounded.

4. unknown : counts the loop range which is totally unknown.

2.2.3 If Statistics
1. profiled : counts the test whose probability was measured ( not implemented ).

2. computed : counts the test whose probability was computed.

3. halfhalf : counts the test that we know nothing about and whose probability was supposed
to be fifty-fifty.

3 Target machine model

Each computer manufacturer has its own way to deal with numerical computations. As com-
puter technology advances, the supercomputer is getting more powerful. We need to know the
approximate cost for each operation, memory accesses, etc.

3.1 Cost Table .

In our complexity model, we divide the entire cost table into five separate parts, each is stored
under the COMPLEXITY_COST_DIR directory, namely operation, index, memory, transcend
and trigo.

Initially, we will test our system on a simple machine model. Later more accurate estimate
of instruction will be used.

Here we present the all-one tables for operation, which is the ideal complexity of the basic
operation. It is first step towards the real world.

# operation cost for basic operations

# int float double complex double-complex
+ 1 1 1 1 1
& i 1 1 i 1
* 1 i 1 1 1
/ :| i i 1 1
- 1 1 1 1 1
*k 1 1 1 1 1

In addition, we use similar cost tables for memory access, array element address computation
and transcendental functions which have the same format as the one above.



3.2 Machine Models Implemented

The simplest model has been chosen for a prototype implementation. The machine has one
ALU and one FPU, and they do not overlap. There is neither cache memory, nor a virtual
memory system. For the time being, the evaluator only processes sequential programs. Vector
processing is not taken into account. File inputs/outputs are modelled as a static constant cost,
as one Fortran intrinsic operator (static in the sense that it doesn’t depend on the environment
in the source code). More accurate estimates of these costs will be introduced later. In the case

of mathematical functions, a cost is defined for each type of argument: integer, floating-point,
double precision, complex numbers.

4 Complexity Algorithms

We initially started the evaluation of the complexity in terms of floating-point operations; then
it gradually appeared that integer operations can be equally important. Furthermore, memory
accesses can also be a real bottleneck. Hence, all of these are included in our analysis. Below
we describe how the polynomial library, the dynamically determined program statistics and the
machine model are combined to determine the complexity of a program.

4.1 Complexity of a variable

The cost of a variable depends upon its type. For each variable we can find the cost in the table
of memory cost.

4.2 Complexity of an operator

To know the cost of an operator, one must first know the types of its arguments to determine
which kind of operation performed. The cost of operation can then be derived from the operation
cost table.

4.3 Complexity of an expression

The evaluation of the cost of an expression is complicated by the use of overloading for most
arithmetic operators. To know the cost of an addition, for instance, one must first know the
type of its arguments. So we evaluate the expression bottom-up, beginning with the leaves of
the syntactic tree (constants, variables or function calls) where the type is known. The types
of sub-expressions are propagated towards the root. For example, IL x JL will have the cost 3
according to our current all-one cost table, one for each variable and one for the multiplication.

4.4 Complexity of a statement

We have different complexity for different types of statements.

4.4.1 Complexity of an assignment

In PIPS, the assignment operation is considered as a call. It can be viewed as ezpression =
ezpression, so the total complexity equals the sum of the two expressions. There is no explicit
charge for the assignment operation because the cost is already associated with the memory
access to the variable at the left-hand side. For example, the following assignment has the the
cost five, three variables and two operators.

d S (STAT)
JJ = I+J=2



4.4.2 Complexity of a Call

The complexity of a call is exactly the total complexity of the corresponding subroutine o
function. There is no extra charge for a call.

4.4.3 Complexity of a Structured IF
IF boolezpr THEN statir,. ELSE statgy,e ENDIF

This statement is structured if there is no GOTO jumping into or out of statsry. or statsase.-

Let us call p the probability that boolezpr is true and g the probability that it is false, p+ g== 1
We use the following probabilistic definition of the complexity:

C(IF...) = C(boolezpr) + p.C(statirye) + ¢.C(statsa.)

If the branch probability cannot be determined at compile-time, as a first approximation,

prior to run-time measures, we use the values p=g = 1;

4.4.4 Complexity of a Sequential DO

Suppose that we have a loop:

DO indez = lower, upper, increment
body
ENDDO

The evaluation of lower, upper, increment may involve function calls, whose complexity must
be added to the overall execution time. The complexity of the body may depend on the index,
so we must integrate it over the index rather than muliiply it by the range width. We hereafter
include in Cyoqy the complexity of the loop index test and index incrementation. Ideally, we
consider that Cyogy is the sum of complexity of loop body and complexity unit one.

upper
C(DO) = Clower + Cup;:m- + Cincrement + Z Cbody (1)
indez=lower
This formula applies if we are able to properly evaluate lower, upper and increment as
polynomials. The cost of the upper and lower bounds is the cost of evaluating each expression.
QOur experience shows Cincremen: 1s negligible because of register operation.
For the sequential loop as well as the parallel ones, the statistics of the loop are computed
by adding those of the expressions lower, upper, increment, and body.

4.4.5 Complexity of a Parallel DO

DOALL indez = lower, upper
body
ENDDO

The complexity of the parallel loop is equal to the complexity of its largest iteration:

C(DOALL...) = Cigper + Cupper + Chody (2)

lowerLindez Lupper

This maximum is impossible to find in the general case. But note that the best performance
is obtained when all iterations have the same duration, avoiding load imbalance. So when we
are unable to compute the maximum, we can approximate it with the complexity of the first
iteration.



4.5 Complexity of a block

statement,
statements

statement,

Once the control graph is computed, PIPS’ internal representation of programs guarantees
that there is no GOTO jumping in or out of the middle of a block, so that the n statements are
always executed sequentially. The complexity of the block is simply:

C(block) = Z C(statement;)

i=1

The statistics of the whole block is the sum of the statistics of its statements. PIPS detects only
loop parallelism (but not COBEGIN ... COEND or FORK, JOIN).

4.8 Complexity of an unstructured control flow graph

Any Fortran program, even those containing GOTOs, can be represented by a graph whose nodes
are structured or elementary instructions, and whose edges stand for jumps. Most nodes have
one outgoing edge, IF-GOTO-ELSE-GOTO nodes have two, and the computed and assigned GOTO
can have more. This graph is called a control flow graph ; PIPS’ internal representation is such
a graph. Moreover, small unstructured code fragments are encapsulated into one node in such
graphs and viewed from the rest of the program as if they were single, structured blocks of
instructions.

Let us now define the complexity of an unstructured program represented by its control flow
graph. Let {S1,S53,...,5.} be the set of the nodes, where S, is the entry node. We are sure
there is only one, because of the definition of the graph: if there were more than one entry point,
that would mean there would be GOTOs reaching from outside of the graph into the middle of it.

Let ¢1,¢2,...,¢cn be the complexities associated with S;,Ss,..., S,, and supposed known.
Let us call p;; the probability of going to node S; when you are in node S;. The probability of
going to some nodes, from node S, is 1, Finally, we require that E}'ﬂ pi; = 1. We'll at last
associate with each node S; the average complexity g; of the code still to be executed between
S; and the exit of the graph (g; is a sort of “global cost”). Our goal is the evaluation of gy, since
it is the average complexity of the code executed between the first node 5; and the exit node.

Here is a recursive definition of g;: the global cost of a node is its proper cost ¢; plus the sum
of the global costs of its successors g; weighted by the associated probabilities p;;.

gi=ci+ Z Pij-gj (3)

S; successor of S;

5 Current Status

We have said that, for the time being, only a pure static evaluator has been implemented and
only sequential Fortran programs are taken into account. In this section, we present the current
implementation and describe its important features.

5.1 Cost Table

We provide a way to choose the cost table desired, or to build a brand-new one if needed. For
example, if you only want floating-point operations to be accounted for, you can provide a new



COMPLEXITY_-COST._DIR, which is stored in the file properties.rc of the working directory.
An operation table of our fp-one model might look like this:

# operation - Unity cost for floating-point

# int float double complex double-complex
+ ] 1 0 0 0

s 0 1 0 0 0

* 0 1 0 0 0

/ 0 1 0 0 0

= 0 1 0 0 0

*k 0 1 0 0 0

5.2 TUnevaluated Variables

Sometimes, we need to keep some variables unevaluated, to let them appear in the complexity
output. These variables may be specified by the user. If the user doesn’t want several variables
to be evaluated, he can put these variable names into COMPLEXITY_PARAMETERS which is
stored in the file properties.rc of the working directory.

In addition, PIPS may identify variables which must remain unevaluated. If COMMON
variables appear in the module, that means they are assigned somewhere else. These variables
should be kept in the module’s complexity result.

5.3 Preconditions

PIPS uses preconditions, that is information available before the statement, to resolve analysis
problems. All the preconditions depend heavily upon the C3 libraries, especially upon the system
constraint library where we can get all the information we want about the preconditions. One
major source of precondition information is constants. An example can be seen in the following
program:

n =10
doi=1, n

enddo

In this loop, n is replaced automatically by 10. However, it is important to make sure that the
preconditions are up to date. Consider the following example:

n=£(..)
doi=1,n
enddo
n=g(..)

doi=1,n

enddo

Note that n has been changed between the two loops. We have to use different values for each
loop. If they are unknown, the two complexity results can not be added.



5.4 Simplifing Complexity Results

When a subroutine is called, maybe several formal parameters have been passed. The complex-
ity results should contain the formal parameters as output and at the same time, delete the
intermediate variable(s), which are local to the subroutine. Look at the following example:

10

subroutine subi(a,n)
real a(1000)
integer m,n
k=3=%n+ 2
de 10i =1, k

a(i) a(i) + 1.0
continue
return
end

For this example, the complexity result should contain n instead of k, for k is 2 private integer
and is not known by the outside world. We call such variables intermediate variables.

We'll point out that no matter how complex the function is , as long as k is a linear function
of n, the final complexity result always contains n as its component. Let us look at a more
complex example:

30
20
10

subroutine sub2(m)
integer m
do 10i=1,n
ii =i+ 1
do 20 j = ii, m + 2
faidy~2 ,
do 30 k = jj + 10, 100
t=1t%t+ 1.0
u=u+ 1.0
continue
continue
continue
return
end

There are three embedded loops here loop 10, loop 20 and loop 30 respectively. For the innermost
loop, its lower bound jj + 10 is dependent on the index of loop 20, which is determined by the
two indices of the outermost loop. Remember that we use a bottom-up method to accumulate
the complexity. Confined in this innermost loop, we can not know the relation between this loop
and outer loop. So we must obtain what we need in the innermost loop. Naturally preconditions
come into use,

We give the output of complexity result for this example in the following.

29%M"2 + 98%M + 1 (SUMMARY)
SUBROUTINE SUB2(M)

INTEGER M
20%M"2 + 98xM + 1 (DO)
DO 10 I =1, M 0002
3 (STAT)
II = I+1 0003
9*I~2 - 12%I.M + 3=M~2 - 84%I + T72#M + 135 (DO)
DO 20 J = 1T, M+2 0005



5§ (STAT)
J] = I+J-2 0006
5 -6*1 —- 6%] + 6*M + 70 (DO)
DO 30 K = JJ+2, M+10 0008
c 3 (STAT)
T = T+1.0 0009
c 3 (STAT)
U = TU+1.0 0010
¢ 0 (STAT)
30 CONTINUE 0011
c 0 (STAT)
20 CONTINUE 0012
C 0 (STAT)
10 CONTINUE 0013
C 0 (STAT)
RETURN
END

Our method is to put each induction variable into a hash table when encountering a loop,
and delete that induction variable when leaving the loop. This allows us to save a copy of
the variable, which has not been evaluated by the complexity program. So for the loop 30,
the complexity information contains only the outer loops’ induction variables i, j and formal
parameter m. For loop 20, the complexity result is given in terms of i and m, for loop 10, the
result contains merely the formal parameter m.

According to our complexity algorithm, shown in (1) of Section 4.4.4, the total complexity
for theloopis 2 + 2 + 0 + 6%( (M+10) - (JJ+2) + 1 ) which equals —-6%I - 6%J + 6%M +
70 when substituting JJ with the expression JJ = I+J-2 . Here 6 is loop body complexity, 1
is added because X is read each time in the loop, and 4 is the range complexity, that is, 2 for the
expression JJ+2 ( variable JJ and plus sign, each has one complexity unit.) and the same thing
for the expression M+10.

6 A Real Example

In this section, we execute our complexity program on a real Foriran program. We chose a
medium-sized one TFS.f from the PERFECT Club. See [Cybenko] for more information. It
has almost 2000 lines and its application area is fluid dynamics. In order to focus on the main
functions, we have gotten rid of the irrelevant routines, such as plotting a graph and timing. This
leaves 27 routines, and we succeeded in evaluating 23 of them. The benchmark was evaluated
using both the all-one and fp-one models. The results are shown in Table 1 and 2 respectively.

IL and JL are COMMON variables, so we must keep them in the complexity results. 12, J2,
112, JJ2, LPRNT and NRES are formal parameters passed by the coresponding callers. In the
routine ADDX, U.RANGE which is short for UNKNOWN_RANGE appears. This is due to the
variable J1, which serves as upper loop bound. It depends on the input, so we can not know it
at compile-time.

We choose one routine COLLC to present the entire complexity output using all-one cost
table:

c 60*I12.J2 + 94*IL.JL + 62*IL + 4%J2 + 56+JL + 103 (SUMMARY)
C NAME=COLLC

SUBROUTINE COLLC (I2,J2,V,VOL,II2,JJ2,WW,WR)
c COLLECTS RESIDUALS FOR THE NEXT MESH

COMMON/LIM/ IL,JL



Table 1: Complexity Results Using all-one

| Module | Complexity i
ADDX 159*12.J24-32*112.JJ2+95*IL.U_ RANGE+158*IL+11*J2+42*JJ2-4*U_RANGE+22
BCFAR ' 240*1L-101
BCWALL 253*1L-113
CIRCLE 21*IL.JL+IL+2
COLLC 60%12.J24+94*IL.JL+62*IL+4%J24+56*FL+103
COORD 13*IL4+-16*JL+7
CPLOT 36*IL+308
DFLUX 995*IL.JL-775%1L-553*J L+ 387
DFLUXC 459*IL.J1-326*1L-305*JL+197
EFLUX 490*IL.JL-445*IL-315*JL 4281
FORCF ' 87*IL-65
GRAPH 31*IL+32
GRID 32¥IL.JL+14*IL4+23*JL+14
INIT 33*12.J24+J2+1
INTPL 458.93
MESH 230
METRIC 52*IL.JL+14*12-52*IL-37*JL+39
PRNTFF | 93*12.J2.LPRNT"(-1)+186*12-91*I2.LPRNT"(-1) -93*12.LPRNT"(—1]+91*LPRNT'(-1)
PRNTXY 17T*IL.JL.LPRNT"(-1)4+2*IL.LPRNT"(-1)+4
PSMOO 400*IL.JL-416*IL-416*J L4478
RPLOT 3T*NRES+51
STEP 244*TL JL4-28%12-244*11-213*J 14222
XPAND 5*ILJL+45*IL4+T7T*JL+49

10



Table 2: Complexity Results Using fp-one

| Module | Complexity
ADDX 28%12.J2+2%112.J72+12*IL.U RANGE+43*IL-12*U_RANGE - 3/2
BCFAR ) 36*IL + 25*IL - 36
BCWALL 55*IL - 38
CIRCLE 5*IL.JL
COLLC 4*12.J2 + 10*IL.JL + 6*IL
COORD 4*IL + 5*JL + 4
CPLOT 8*IL
DFLUX 106*IL.JL - 96*IL - 83*JL + 78
DFLUXC 48*IL.JL - 34*IL - 34*JL + 23
EFLUX TO*IL.JL - 64*IL - 41*JL + 35
FORCF T 25%IL - 19
GRAPH 8*IL + 8
GRID 8*IL.JL + 2*IL + 4*JL
INIT 4%12.J2
INTPL 88
MESH 80
METRIC 8*IL.JL - 8*IL - 8*JL + 8 |
PRNTFF | 17*I2.J2.LPRNT"(-1)+34*12-17*I2.LPRNT"(-1) -17*32.LPRNT‘(-1)+17*LPRNT"(-l) :
PRNTXY 0 '
PSMOO 48*IL.JL - 56*IL - 56*JL + 78
RPLOT 13*NRES + 8
STEP 48*IL.JL - 48*IL - 48*JL + 48
XPAND 0

Il



COMMON/ADD/ DW(194,34,4)
COMMON/MGR/ KODE,MODE

DIMENSION W(I2,J2,4),VO0L(I2,J2),WWw(II2,J3J2,4),WR(II2,3]2,4)
c 60%I12.J2 + 94*IL.JL + 62%IL + 4%J2 + 56#JL + 103
c 3
IIL = II2-1
C 35+%IL.JL + 10%JL + 8
DD 10 N =1, 4
c 1
JJ =1
c 9%IL.JL + 5/2%JL + 1
DO 10 J = 2, JL, 2
C 3
J3 = 131+
c 1
IT =31
c 18#IL + 1
DO 10 I = 2, IL, 2
C 3
IT = I+
c 32
WR(II,JI,N) = DW(I,J,N)+DW(I+1,J,N)+DW(L,J+1,N)+DW(I+1
& ,J+1,H)
C 0
10 CONTINUE
c 60%I2.J2 + 4%J2 + 4
DO 20 N = 1, 4 '
c 15%I2.J2 + J2 + 1
DO 20 J =1, J2
C 16%I2 + 1
DO 20 I = 1, I2
c 15
DW(I,J,N) = VOL(I,J)*W(I,J,N)
c 0
20 CONTINUE
¢ 59*IL.JL + 46%JL + 8
DO30N=1, &4
c i
31 E 9
C 15%IL.JL + 12%JL + 1
DO 30 J =2, JL, 2
c 3
JJ = JI+1
C 1
II = 1
C 30*IL + 1
Do 25 I = 2, IL, 2
c 3
II = II+1
c 58
WW(II,JJ,N) = (DW(I,J,N)+DW(I+1,J,N)+DW(I,J+1,N)+DW(I+
& 1,J+1,N))/(VOL(I,3)+VOL(I+1,J)+VOL(I,J+1)+VOL(I+1,J+1)

12

(UNSTR)
(STAT)
0001

(p@)
0003
(STAT)
0004

(pQ)
0006
(STAT)
0007
(STAT)
0008
(o)
0010
(STAT)
0011
(STAT)
0012
0012
(STAT) -
0013
(D0)
0015
(D0)
0017
(po)
0019
(STAT)
0020
(STAT)
0021
(D0)
0023
(STAT)
0024
(D0)
0026
(STAT)
0027
(STAT)
0028
(p0)
0030
(STAT)
0031
(STAT)
0032
0032



& ) 0032

¢ 0 (STAT)
25 CONTINUE 0033
c 9 (STAT)
WW(1,JI,N¥) = WW(IIL,JJ,N) 0034
C 9 (STAT)
WW(II2,J3,0) = WW(2,JJ,N) 0035
e 0 (STAT)
30 CONTINUE 00386

C 62*IL + 80 (DO)
DO 40 N =1, 4 0038
C 1 (STAT)
£t = 0039

C 16+IL + 1 (DO)
DO 35 I =2, IL, 2 0041
C 3 (STAT)
II = II+1 0042
C 28 (STAT)
WW(II,JJ2,N) = (DW(I,J2,N)+DW(I+1,J2,N))/(VOL(I,J2)+VOL(I 0043
& +1,J2)) 0043
C 0 (STAT)
35 CONTINUE 0044
G 9 (STAT)
WW(1,JJ2,N) = WW(IIL,JJ2,N) 0045
c 9 (STAT)
WW(II2,JI2,8) = wWw(2,3J2,N) 0046
C f 0 (STAT)
40 CONTINUE 0047
C 0 (STAT)

RETURN
END

7 Conclusion

It is necessary for the performance evaluator to be aware of the relative amount of time required
by different operations. For instance on the IBM RISC System/6000 computer, handfuls of
floating-point multiplication and additions can be performed in the time it takes to do a single
fixed-point multiply or to service a cache miss or even to get the result of a comparison to the
branch unit. In many instances, compilers cannot exploit these facts. So we need several tables
to present the machine’s characteristics.

Neither static nor dynamic evaluation is sufficiently powerful to solve performance predica-
tion. We have to find a way to combine the advantages of the two methods of evaluation and
get rid of the drawbacks as much as possible. We think that the method of half-static and half
dynamic evaluation is a good way to evaluate the performance of a program. The aim of this
method is to get rid of static evaluation problems, while keeping the advantages of the symbolic
expression of complexity. This method runs in three steps.

1. It begins with a first pass of static evaluation, accumulating information about its failures:
the locations of the IF-tests where the branch probability could not be computed (almost
all), and the locations of DO-loops whose ranges were not exactly computed. These are
the only counters needed to complete the static complexity evaluation.

13



2. In the second step, dynamic analysis is used to address these shortcomings. A copy of the
program is made, inserting counters at all places where a failure occurred during the first
pass. The modified program is executed. At the end of the run, the counters are written
in a file that will now be exploited by a second pass of static evaluation.

3. The last step is to rerun the static evaluation with all the counters obtained by the second
step to get the overall complexity of the program.

An advantage of this method is that the profiling execution can run on any machine (once
again, having the same internal floating-point representation). As it uses much less profiling
information than the dynamic approach, and because the output evaluation is parametric, its
results are less sensitive to the choice of the data set provided for this particular sample run.

In this paper we have shown how a library of polynomial models and a machine description
can be used to construct the static analysis tool described in step one. This is also the foundation
for step three. Our simple model allowed us to show that this approach works. In the future,
we plan to combine this tool with the dynamic analysis described step two.

Furthermore, the only use of the first pass of complexity evaluation is to insert counters only
where it is necessary, to gain time on the execution of the modified program. Actually, it may be
more interesting to skip it and choose to measure every IF-test probability and every DO-loop
range width.

14
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CONPAR 92
VAPP V

The: past decade has seen the- emergence of

two highly successful series of CONPAR and of

VAPP conferences on the subject of parallel

processing.

The Vector and Parallel Processors in
Computational Science meetings were: held In-
Chester (VAPP|,.1981), Oxford. (VAPPIL,. 1984y and =

Liverpool (VAPP lil, 1987). The: Internationat
Conferences on Parallel Processing took place
in NOmberg (CONPAR 81), Aachen (CONPAR 86)
and Manchester (CONPAR 88). Thereafter the

two series joined and the CONPAR'QU VAPP' v

conference was organised in: Zurich

The next even’r ln the seres CONPAR 92 VAPP Vv .

will be organised in 1992 at the Ecole Normale

Superieure de LYON (FRANCE) from September

12 1992’rOSeptember4 1992. .

The format of the joint meeting will foﬂow ’rhe

pattem set by its predecessors. It-is infended to
review- hardware and® architecture

- developments: together with languages and =~
software tools for supporting: parallel processing
and to highlight advances in models, algorithms:
and’ applications: software: on vector and -

parailel orch'rtec‘rures._ :

¥ }anguc:ges / software tools ' - 2
¥ automatic parallelization and mopping': 5
¥* hardware / architecture
¥ performance analysis
- ¥ algorithms

~ % agpplications-

¥ models / semantics
¥ paradigms for concumrency
% testing and debugging
% portabliity -

e o Retum Ferm of Infent
Submrss:on of paper

p - Final Program

Final Call for Papers

The proceedings will be published by Springer
Verlag In the Lecture Notes in Computer
Science Serie.

Original papers are Invited for the conference.

" Five coples of the full paper (maximum of 15
- pages) are to be submitted no later than Feb 29,
i 19921‘0

. Secretariat CONPAR92/VAPPV

' Ecole Nomale Supérieure de Lyon

" Laboratoire de I'Informdatique du Paraliélisme
- 46, alide d'lialie - 69364 Lyon Cedex 07 - France

“.

+33/72/72/80/37 - fax +33/72/72/80/80
e-rnait conpcr?i’@trenslé'l bitnet

Sy e . B

Now please |
before Feb29 1992
- May 15,1992

- June 15,1992

Notrﬁcohon of ccceptctnce "

_,.GBes’r’rechn!ccl con’rﬂbuﬁon RCH
@ Best student contribution

_ ® Best presentation
! . @ Best poster



C.FRABOUL
D.GANNON
J.LGAUDIOT
A.GERASOULIS
W.GILOI
G.HAINS
R.N.IBBETT
H.IMAI
C.JESSHOPE

H. JORDAN
OLANGE =
M.LANGSTON
N.N.MIRENKOV
H.MULHENBEIN
Y.MURAOKA
P.NAVAUX
D.A. PADUA
D. PARKINSON
B.PHILIPPE

R.H. PERROTT
G.R. PERRIN
B.PLATEAU
R.PUIGJANER
P.QUINTON|

V.RAMACHANDRAN

K.D.REINARTZ
G.REUNS
Y.ROBERT
D.ROOSE
W.RYTTER
S.SEDUKHIN
B.SENDOV.
SW.SONG
O.SYKORA
MJICHUENTE
E.ETYRTYSHNIKOV -
D.IRYSTRAM:
M.VALERO:
M.VANNESCHI
M.VAJTERSIC.
P.VITANYL
U.VISHKIN
RWAIT: |
H.P. ZIMA

!(::r.i

(Toulouse - France)
(Bloomington - USA)
(L.Angeles - USA)
(Rutgers Univ. - USA)
(TU Berlin - FRG)
(Moniréat - Canada)
(Edinburgh - UK
(Tokyo - Japan)
(Surrey - UK)

s (Colorado - USA)
(TU Hamburg-Harburg - FRG) -
- (Tenessee - USA) -
- (Acad. of Sclen. USSR)
(Augustin| - FRG)-

(Tokyo - Japan)
(Porfo Allegre - Brasi))
“(linols - USAY

(Queen Mary College - UK)
(IRISA Rennes - France)
(Beifast - UK)

(Besancon - Francs), *

(Grenoble - France)
(Baleares - Spain)
(Rennes - France)

(Austin - Usay -
(Erlangen-NOmberg FRG) -

(Delft - Netheriands)

(ENS' Lyon - France)

(Leuven - Belgium)-
(Warszawski - Poland)

(Novos!blrsk USSRy :»

(Sofia- -Bulgaria) - -
(Soa-Paulo - Brosify

(Bratislava - CSFR)
(Yaounde:- Cameroun)

(Moscow: - USSRy =
(Grencble - France)
(Barcelona - Spain) -

(Pisa - taly)” |
(Bratiskava - CSFR)
Ccwi and Amsterdam - Netherlands)
(MGMc:nd USA and Tel Aviv- IssaéD.

; * (Uverpoot - UKy -~
(Wien - Austria)y: -
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CONPAR 92 - VAPP v

: Lahmahoiredcl'mformaﬂqnedn?amﬂﬂhme

Ecole Normale Supéﬂenre
: de Lyon, France

4 September_. 1-4, -1992.

FINAL CALL FOR PAPERS

nsor b

--:j"'Béé PPSG, CNRS; GI-PARS, Institut

IMAG Programme de Recherches
Coordonnées C3

in cogperatign wim

IFIPWG]OB IEEE ACM, AFCET
' SI- PARS INRIA



