Semantical Interprocedural Parallelization:
An Overview of the PIPS Project

Francois Irigoin
Pierre Jouvelot
Rémi Triolet

CRI, Ecole des Mines de Paris, France
{irigoin, jouvelot }Gensmp.fr

Abstract

PIPS is an experimental FORTRAN source-to-source par-
allelizer that combines the goal of exploring interprocedu-
ral and semantical analysis with a requirement for compila-
tion speed. We present in this paper the main features of
PIPS, i.e., demand-driven architecture, automatic support
for multiple implementation languages, structured control
graph, predicates and regions for interprocedural analysis
and global nested loop parallelization, with an emphasis on
its core data structures and transformation phases. Some
preliminary results on the practical impact of our design
choices are discussed.

This research is partially funded by DRET, under contract
87-017.

1 Introduction

Detecting the maximum level of parallelism in sequential
programs requires a thorough understanding of their behav-
ior. If numerous vectorizing and parallelizing compilers for
scientific programs exist in both the academic ([ABCCF88],
[KKLWs4], [CCHKT88], [SG90], [AS89], [DLTKK90]) and
industrial (VAST, FORGE, KAP) worlds, few are able to
address the question of parallelism detection on a global
basis, i.e. coupled with interprocedural information and
comprehensive semantical analysis. The main goal of the
PIPS (Parallélisation Interprocédurale de Programmes Sci-
entifiques) project is to address this very issue and explore
its effectiveness on real programs written in a real language.

PIPS is a source-to-source parallelizing compiler that
transforms Fortran77 programs by replacing parallelizable
nests of sequential DO loops with either Fortran90 [A90]
vector instructions or DOALL constructs. It is not targeted
towards a particular supercomputer, although only shared
memory machines have yet been considered.

The principal characteristics of PIPS are:

o Interprocedural parallelization [T84]. It is at the core
of PIPS: every step of the parallelizing process is able
to cope with interprocedural information. A striking
example of this drastic point of view is the parser,
which encodes every assignment statement as a fune-
tion call to a built-in = procedure with two arguments,
the right and left hand side expressions. There is no
“assign” node in the abstract syntax tree of programs
and a user CALL would be encoded in the same way.

o Interprocedural analysis. To be most effective, a par-
allelizing compiler needs to gather as comprehensive as
possible information about the behavior of programs.
This is done in PIPS by a set of sophisticated (inter-
procedural) semantical analysis phases that compute
side-effects (SDFI), regions [TIF86] and predicates in
the style of [CH78].

o Efficiency. PIPS is fast enough to be used on real life
programs. We use benchmarks provided by ONERA,
a French research institute in aeronautics, and other
more standard suites such as the PERFECT Club or
LINPACK.

In the remainder of this paper, we discuss the general
architecture of the PIPS parallelizer (Section 2), present
the core data structures used within PIPS (Section 3), de-
scribe the different semantical analysis phases (Section 4),
dependence tests (Section 5) and transformations (Section
6) applied by PIPS, give the current status of the project
(Section T) and conclude (Section 8). Given the breadth of
this presentation, no particular section is dedicated to a dis-
cussion of the related work; relevant references are provided
within each section.

2 PIPS General Design

Since PIPS is mainly a research project, we wanted its archi-
tecture to be modular and evolutive enough to adapt to the
wide variety of people involved in the project (researchers,
students, numerical analysts,...) and to the requirements of
interprocedural analysis and interactivity. This dictated a
structure in phases, all of which manipulate a common inter-
mediate representation of programs that has been carefully
designed and whose updates are under top supervision (see
figure 1).



This architecture is hardly new. But a major issue is
then the determination of the order according to which these
different phases of the parallelizing process have to be sched-
uled to maintain consistency. PIPS adopts a relatively un-
commen approach to this problem; the ordering is demand-
driven, dynamic and automatically deduced from the declar-
ative specifications of the dependencies between phases, by
a program called pipsmake. Users are allowed to send re-
quests to pipsmake, either to get a particular data structure
or to apply a specific function.

Every data structure used, produced or transformed by
a phase in PIPS, such as the abstract syntax tree, the con-
trol flow graph or the use-def chains, are considered to be
resources which are under control of a data base manager,
called pipsdbm. The place where the data actually reside
(memory or file) is left to pipsdbm which can optimize these
transfers according to the current memory space available.
Data structures destroyed in memory by side effects per-
formed by a given phase can be retrieved on disk, as well
as data structured saved by previous PIPS runs, if they are
still consistent.

Called by pipsmake, any phase begins by requesting some
resources, via the db_get function provided by pipsdbm, per-
forms some computation and declares the availability of its
result via db_put. Every data structure is linked to its associ-
ated program unit. Currently, the units known by pipsmake
are the whole PROGRAM, a given MODULE (i.e. a Fortran77
subroutine or function), the CALLEES (i.e., the list of all the
modules that are called by a given module) and the CALLERS
(i-e., the list of all the modules that call the given module).
Via the notion of callees and callers, pipsmake manages the
interprocedurality of PIPS.

Every phase in PIPS, such as the parsing of a source
program or the privatization process, denotes a function; it
may use and/or produce some resources. Every phase that
exists in PIPS is declared via production rules; these are
stored in a configuration file which is used by pipsmake to
schedule the execution of each function, according to what
the user and each phase (recursively) request. We give below
an excerpt of this configuration file:

proper_eiffects > MODULE.proper_effects
< PROGRAM.entities
< MODULE.code
< CALLEES.summary_effects

cumulated_effects > MODULE.cumulated_effects
< PROGRAM.entities
< MODULE.code
< MODULE.proper_effects

summary_effects > MODULE.summary_effects
< PROGRAM.entities
< MODULE.code
< MODULE.cumulated_effects

Here, for instance, the phase cumulated_effects computes
the accumulated effects (such as a read on a given variable,
called entity in PIPS) of all the statements of a MODULE. It
needs the definition of all the entities of the PROGRAM - recall
that PIPS is interprocedural -, the code of the module and
its proper effects, i.e. the effects of the subroutine calls.
This architecture is demand-driven, since data structures
are computed only when needed by some phase, and flexible,
since each phase does not have to worry about the others

and only requests resources at its outset. This organiza-
tion permits the interprocedurality to be almost transpar-
ent to the programmer of a given phase since he can ignore
how resources are computed. Each necessary resource is
requested from pipsdbm and the appropriate function has
previously been automatically activated by pipsmake, if the
rules are correct. This allows for easy implementations of
both top-down and bottom-up algorithms on the call graph
of a program. Note however that it relies heavily upon the
non-recursivity of Fortran77. It also provides the database
structure necessary to combine interprocedural analysis and
the speed necessary for interactivity: objects are computed
only when they are needed and when they are not already
available and up-to-date.

3 Data Structures

PIPS is organized around a core data structure that im-
plements the abstract syntax trees of Fortran77. Since we
expected to look at other languages than Fortran77 in the
future, we carefully designed our Intermediate Representa-
tion (IR) to avoid to stick too closely to Fortran77 idiosyn-
crasies. Based upon experience, we also knew that numerous
constructs in Fortran77 were mere syntactic sugar and could
be abstracted as function calls, thus avoiding a huge set of
cases that would have to be treated separately, even though
they are all of the same. Occam’s razor has been applied to
its most extreme; there are only three cases of expressions
and five cases of statements ! Even so, almost all Fortran77
has been embedded inside this IR.

The data structures that implement the IR used in PIPS
are defined with the software engineering tool NewGen [JT89),
developed by Pierre Jouvelot and Rémi Triolet. NewGen al-
lows the definition of data domains in terms of basic ones,
like integer or float, that can be combined to form prod-
ucts, sums, lists or sets. From these definitions, expressed in
a simple language, NewGen generates a set of creation, ma-
nipulation and destruction functions on objects and values
of these domains. We give below, as an example of New-
Gen compactness and PIPS philosophy, the definition of the
expression domain used in PIPS:

expression = reference + range + call ;
reference = variable:entity x
indices:expression# :
range = lower:expression x
upper:expression x
increment :expression ;
call = function:entity x
arguments:expression#* ;

Here, we can see that a node for a call expression, repre-
senting a Fortran77 FUNCTION call, includes the function
entity and the list of arguments expressions. As said above,
an assignment is encoded in the same way, with a pseudo-
intrinsic function = and two arguments denoting the left
hand side and the right hand side of the assignment. This
is possible since the implicit call mechanism is by reference.

The functions and macros generated by NewGen can be
in either C or CommonLISP, the two languages currently

! The most significant restrictions are multiple entry points to-
gether with assigned and computed gotos, which can, most of the
time, be desugared into more standard constructs. The very com-
mon BUFFER IN and BUFFER OUT extensions have been added to
accept benchmark programs.



W-Pips

(Workstations
under X-Window )

(apply-transformation)

T-Pips

(Asynchronous
Terminals)

Pips Make
Phase Scheduling
Coherency Control

‘»”’(/””/”

Analysis Phases

o~

Initialize Effects

Parser Regions

Controlize Preconditions

Linker Transformers

Prettyprinters Complexities
Chains

Dependence Graphs

LY

Transformation Phases

Loop Exchange

Loop Parallelization
Loop Distribution
Loop Blocking

(db-get, [db-put,...)

Pips Dbm

Resources
Management

(genrwrite,
gentread)

Files

Source Files
Inactive Resources
Prettyprinter’s Results

Memory

‘,///,//\\\\\\\ Active Resources

Figure 1: PIPS Structure



supported. These two versions are compatible at the file
system level since NewGen automatically generates func-
tions that can read and write data structures on files in a
language-independent format. This permits a programrning
style reminiscent of persistency, a feature heavily exploited
by pipsdbm.

CommonLISP is used as a prototyping language. For
instance, a given exploratory phase can thus be quickly pro-
grammed in this highly expressive language before being ef-
ficiently recoded in C, once the algorithms have been de-
signed and polished in the Lisp environment. The incre-
mental linker of PIPS was first programmed in Common-
LISP and rewritten in C. The implementation of generalized
reduction detection [JD89] is being carried out in Common-
LISP.

4 Semantical Analysis

We discuss in this section the control graph used in PIPS,
together with the interprocedural computation of memory
effects, regions [T84] and predicates, based on the intrapro-
cedural computation of the same information on the state-
ments of modules.

4.1 Control Graph

Semantical analysis® of programs is performed on their Hier-
archical Structured Control-flow Graph (HSCG}. This data
structure is unique to PIPS among parallelizers® and its in-
ception can be traced back to the notion of control effect
masking described in [TG89]. The basic premise is that use-
ful parallelism is only found in structured parts, which are at
the same time easier and faster to manipulate and analyze,
and very common in scientific programs like the benchmarks
we were given. Most analysis algorithms for structured code
have a simple recursive description by structural induction
on the abstract syntax tree definition of the programming
language. The presence of random branches destroys this
nice property and imposes the computation of fixed points
by iteration on the control graph.

The controlizer phase of PIPS, which computes the hi-
erarchical structured control flow graph of a program, tries
to keep the influence of branches as local as possible so that
if, for instance, a label is only used within and from within
a loop body, the loop will appear as a structured construct
from the outside; control vagaries are masked. The HSCG
is thus a layered data structure where each layer is either
a structured construct or a graph-based description of a
non-structured piece of code. The algorithms that manipu-
late HSCGs are successively defined by recursion and fixed
point iteration. In particular, note that the presence of lo-
cal branches in loops does not prevent parallelization, if the
data dependences do not create conflicts.

The control graph is defined by the domain unstructured
whereas structured statements are either basic commands
altering the store with side-effects (call), sequences (block),
tests (test) or DO loops (1oop). The NewGen declarations,

2 Semantical analysis denotes any kind of abstract interpretation
of program and not only type checking or overloading removal as in
classical compilers.

3 High-Level Data Flow Analysis was proposed in [R77] and [S80]
for classical compilers. Most academic parallelizers use either a clas-
sical low-level control flow graph or & program dependence graph
[FOWS7] or both. Another approach is to restructure the control
flow graph before analysis are performed [TF89].

slightly simplified for the purpose of exposition, look like the
following:

statement = label:entity x
number:int x
comments:string x
instruction ;

instruction = block:statement# + test + loop +
call + unstructured ;
test = condition:expression x
true:statement x
false:statement ;
loop = index:entity x
range x
body:statement x
label:entity ;

unstructured = control x exit:control ;

control = statement x
predecessors:control* x
successors:control* ;

All the semantical analysis phases are defined by induction
on the statement domain.

4.2 Effects

Effects describe the memory operations performed by a given
statement. Besides the reference on which the operation is
performed and its kind (read or write), PIPS distinguishes
between effects that are always performed and the ones that
may be performed.

Proper effects are memory references local to a given
statement, such as a write on the left-hand side of an as-
signment or on the index variable of a DO loop construct.
Cumaulated® effects take into account all effects of a given
statement, including those of its substatements (recall that
the definition of the PIPS abstract syntax tree is recursive).
Contrarily to proper effects, only the variable that is ref-
erenced is kept; in particular, in case of array references,
index expressions are lost in this aggregation. Summary ef-
fects abstract the cumulated effects of a module by masking
the effects performed on entities local to the module.

The proper effects of a call statement are derived from
the cumulated effects of the body of the callee. Proper and
cumulated effects are computed by an (automatic) bottom-
up scan of the call tree, as can be seen in the following
excerpt of the pipsmake rules for effects we saw previously:

proper_effects > MODULE.proper_effects
< PROGRAM.entities
< MODULE.code
< CALLEES.summary_seffects

summary_effects > MODULE.summary_effects
< PROGRAM.entities
< MODULE.code
< MODULE.cumulated_effects

cumulated_effects > MODULE.cumulated_effects
< PROGRAM.entities
< MODULE.code
< MODULE.proper_effects

4 Cumulated effects are also known as use-mod or sdfi information.



To give a better flavor of pipsmake’s behavior, suppose no
effects are available when the proper effects of some module
are requested. Let P be this module and assume it calls
Q, a leaf of the call graph. pipsmake will find the program
entities and P’s code on disk or in memory if parsing and
linking have been performed® but not Q’s summary effects.
It will push them as a new goal and try to activate the
rule for summary effects. But Q’s cumulated effects are
not available either, and the new goal becomes Q’s proper
effects, which can be evaluated because Q has no callees (Q
was assumed to be a call graph leaf).

4.3 Predicates

To improve the accuracy of the effect information, to pro-
vide more information for dependence testing [TIF86] and
to select better program transformations, statements are la-
belled with predicates that express constraints on the integer
scalar variables, which are often used in references and loop
bounds. This is most useful for array references, for instance
to precisely define which subpart of an array is referenced
by a memory operation and to refine cumulated effects into
regions [T84][TIF86]. It is also used to improve dependence
testing when inductive variables and triangular loop bounds
are involved, and to select one vector loop or one parallel
loop among many dependence free loops.

PIPS predicates are abstract commands, mapping a store
to a set of stores [ST7]. They are relations between the values
of integer scalar variables in an initial store and a final store.
The relations considered are polyhedra, represented by sys-
tems of linear inequalities and equalities and, sometimes, in-
ternally by generating systems, as in [CH178], because they
provide a sound and general mathematical framework. Con-
stant propagation, as well as inductive variable detection,
linear equality detection [K76] or general linear constraints
computation [CH78], can be performed in this framework
using different operators to deal with PIPS basic control
structures: sequences, tests, loops and control graphs (the
so-called unstructured). More accurate operators are usu-
ally slower and PIPS users can interactively choose which
ones are best for their program or module after viewing the
results.

Unlike most analysis, we are dealing with abstract com-
mands instead of abstract stores for two reasons. First, vari-
ables appearing in references cannot be aggregated to build
cumulated and summary effects unless they denote the same
value, i.e., they refer to the same store. The module’s ini-
tial store is a natural candidate to be the unique reference
store and, as a result, a relationship between this store and
any statement’s initial store is needed. Second, dependence
tests are performed between two statements. Although a
relationship between each statement store would be more
useful than two stores, each relative to one statement, this
would not be realistic because too many predicates would
have to be computed. Thus a common reference to the same
initial store seems to be a good trade-off between accuracy
and complexity.

The drawback for using abstract commands instead of
abstract stores is that the polyhedron dimensions are dou-
bled, which is bad news for the exponential algorithms used
to deal with polyhedra [CH78). This was made less of a prob-
lem by exploiting the hierarchical structured control graph

51f not, pipsmake will activate the parse and link phases whose
rules have been omitted here.

to compute predicates in an as small as possible environ-
ment.

A two-phase algorithm was designed and implemented.
The first phase computes abstract commands bottom-up
from the call statements to the sequences, tests and loops
up to whole modules, and bottom-up from leave procedures
to the main module. This is the most CPU intensive part
but it benefits from locality. Each procedure is analyzed
only once. The second phase is a top down phase. It prop-
agates information about the initial store of the main pro-
gram downwards to the call statements and to the called
procedures, down to the simplest statements of the leaf pro-
cedures. Each procedure again is analyzed only once and
receives as initial store the convex hull of all stores of its
call sites.

It is difficult to compare this analysis with previously
published methods either intraprocedural, like [CHT78]®, or
interprocedural, like [CCKT86], for two reasons. The first
one is that many lattices are used, even though some al-
gorithms are lattice independent. The second one is that
different sets of operators can be used for a given lattice
producing more or less accurate results. To put it in a very
simplified way, return functions & la [CCKT86] are com-
puted over a [CH78] lattice in the first phase, while jump
functions are computed in the second phase. Example 1 of
[CCKT86] could be handled if the assignment in ralph:

b=a*c/2000;

were linear.

4.4 Regions

Regions were defined [T84][TIF86] and implemented a first
time in Parafrase [T85] by Rémi Triolet. Since then many
different methods have been published and sometimes im-
plemented. They belong to two broad classes [C90]. In the
first class, the effects of call statements are somehow ag-
gregated within each procedure using some lattice, at the
cost of an accuracy loss and of a dependence test exten-
sion, but with the benefit of a reduction in the number of
dependence tests to be performed to parallelize the callers
[T84][C87][CK88][BK89]. In the second class, these elemen-
tary effects are simply gathered, which may benefit accu-
racy, but have to be tested independently to parallelize each
caller, which induces a time penalty [L89] and, sometimes,
requires a dependence test modification [BC86].

The region method as described in [T85] et [TIF86] did
not look very attractive mainly because the dependence test
used was shown to be very slow’ and because the convex
hull algorithm used to aggregate regions is potentially slow
too. It was decided to implement it anyway in PIPS because
worst-case exponential algorithms are not necessarily expo-
nential on practical cases [TIF86]. This is especially true if
restrictive assumptions are made on the region shapes as in
[BK89]; once it has been shown that most regions belong
to some subset, algorithm complexity should be evaluated
on that subset. Experimental results are needed here to
usefully compare methods.

®In his PhD thesis Halbwachs gave hints about interprocedural
extensions and program structure exploitation but no implementation
seems to have ever been done.

" Slowliness reported in [T85] was also due to the implementation.
Rémi Triolet had very little time to finish his work at CSRD.



From a theoretical point of view, regions could (but should
they?) be improved by preserving some integer lattice infor-
mation when possible, instead of giving up by systematically
using convexity to reduce the information amount. For in-
stance, convexity reduction in T(2+I) will lose the even par-
ity information of the index expression. This could easily,
from a mathematical point of view, be done by characteriz-
ing subparts of an array as affine images of polyhedra.

From a practical point of view, region implementation
in PIPS is underway and only very simple cases have been
handled up to now. Our key benchmarks were also ana-
lyzed by hand. Three out of four contain some interpro-
cedural parallelism within DO loop bodies. Since regions
would not give better results than array slices, subarray-
based detection was quickly implemented as an extension of
effect translation, the process that maps the summary effects
of the callee to the proper effects of the CALL statement.
At each CALL site, the summary effects of the callee are
checked and ranges are used to express effects on subarrays,
such as columns or set of columns.

5 Dependence Tests

The dependence test algorithm [B88] is a critical part for
any parallelizer. Under the usual linear assumptions on loop
bounds and array index expressions, integer programming
provides an exact test at a very high cost [TF89]. Histor-
ically, simpler tests have been developed to speed up de-
pendence testing because the number of tests to perform
increases as the square of the number of references in the
statements of interest.

Recently people have tried to develop multi-precision
tests. Fast tests are used first. If a positive or negative
conclusion is obtained, the test is finished. If a don’t know
answer is returned, a more sophisticated test is applied.

Although we know it could be easily improved, we used
the Fourier-Motzkin pairwise elimination technique described

in [TIF86], with slight variations. First of all, equations can -

be solved exactly before inequalities are combined and can
show dependence or independence very often. Second, the
whole dependence system built with the array references and
the execution contexts (called predicates in PIPS) does not
have to be solved for each dependence level [AK87] or for
each dependence direction vector [W89].

It is sufficient to project® the dependence system on the
dependence subspace once and for all, and either to quickly
conclude when a constant dependence vector is found or
when the equations have no solution, or to add additional
constraints to the small system obtained in the dependence
space. Its dimension is bounded by the number of enclosing
loops® and additional constraints are very simple since they
are either simple equalities, like di = 0, or simple inequali-
ties, like di > 0 (2 is assumed to be a loop index and di the
corresponding dependence direction).

Also, the algorithm complexity seems to adapt to the de-
pendence system intrinsic difficulty although it is very sim-
ple to program. Diagonal systems, which do not need si-
multaneous testing [BC86), are solved linearly and constant
dependences are detected before inequalities are involved.

8 Linear programming, as used in [LT85], or integer programming
techniques are faster to decide emptiness but do not preserve encugh
information for projection.

9I.'iepem!.irlg on previous program transformations, inductive vari-
ables and the like may have to be taken into consideration, increasing
the sub-system size.

Finally, measurements show that dependence testing does
not take a noticeable amount of time compared to the whole
parallelization process, at least in our implementation.

6 Transformations

A number of transformation phases have been implemented
or planned inside the PIPS parallelizer. We will discuss
below the following ones : privatization, detection of induc-
tion variables and reductions, distribution of loops and loop
rescheduling.

6.1 Privatization

Some variables are used as local temporaries inside loop bod-
ies. They are assigned on loop entries and their values on
body exit are not used by subsequent iterations. This condi-
tion is checked in the privatization phase by looking at the
use-def chains; all variables that satisfy this condition are
flagged as local to the loop. Whenever such a loop is pret-
typrinted, a PRIVATE pragma is inserted into the output and
the related dependences are deleted. Privatization increases
the potential for parallelism detection, without the memory
penalty of scalar expansion [W89].

6.2 Induction Variables and Reductions

Loop invariants, induction variables and reductions such as
inner products are special cases of the so-called generalized
reductions. A prototype implementation of the technique
described in [JD89] is being written. Tt is based on sym-
bolic evaluation of loop bodies and pattern-matching of the
resulting symbolic store against a database of known cases.

This phase could be used to replace references to induc-
tion variables inside a loop body by appropriate expressions
built over loop counters. By eliminating spurious depen-
dences created by these variables, this would improve the
potential for parallelism detection. Since inductive variables
are also found by the semantic analysis, it will be interesting
to compare the two method effectiveness.

The eventual goal is to detect reductions on real variables
and to replace sequential loops by parallel reductions or by
a proper library call.

6.3 Loop Distribution

The algorithm used in PIPS to generate parallel code is
based on the technique described in [AK87]. The depen-
dence graph is structured into strongly connected compo-
nents, each of which is recursively analyzed with an incre-
mented dependence level. Depending on whether the target
architecture has a vector facility or not, it can be interesting
to replace parallel loops that have more than one assignment
statement in their bodies by a set of single assignment loops.
These simple loops can then be replaced by vector instruc-
tions by the code generator. This transformation, called
loop distribution, is provided by PIPS. It is coupled with
the prettyprinter which is able to generate instructions with
a syntax compatible with Fortran90.

6.4 Nested Loop Parallelization

Even if the initial order in which iterations of a loop nest
body are executed prevents the straightforward paralleliza-
tion of these loops, there may be ways to perform a change



of basis in the corresponding iteration space to exhibit some
loop parallelism. Based on the dependence directions be-
tween loop statements, the hyperplane method [L74] is one
of the numerous techniques, like loop interchange and loop
skewing, that perform a unimodular change of basis and that
belong to this class of transformation.

A first prototype of global loop nest parallelization was
implemented as an experimental phase in the PTRAN project
[I88], using dependence direction vectors [W89]. The uni-
modular change of basis choice was based on a heuristic and
designed for a vector multiprocessor like the IBM 3090 VF.
A loop direction with as many as possible contiguous mem-
ory accesses was chosen as inner vector loop and another
parallel loop was chosen as parallel outer loop to define par-
allel tasks. Other parallel loops were kept sequential. A
more general version, using dependence cones to character-
ize the loop dependence set, was presented in [IT88b].

A PIPS implementation of this technique is under devel-
opment. Program transformations are performed automati-
cally, but the choice of the transformation is still left to the
user at the time being.

T Status and Preliminary Results

PIPS has been under development for the last two years and
required six man-years of design, programming and testing.
It is written in about 50k lines of C, although some prototype
phases were written in CommonLISP. A window-based user
interface has been added, written on top of the X11 Window
System with the XView Toolkit. It runs on Sun 4 and Sparc
workstations, under the SunOS operating system.

Parts of our test suite include four medium-sized (from
one to three thousand lines of sparsely commented code) nu-
merical programs from ONERA (Office National d’Etudes et
de Recherche Aéronautiques), a government-funded agency
for aerospace research. They were run on PIPS to assess
both its performance and its efficiency.

The performance of the whole system is difficult to assess
since it depends on input-output file transfers implicitly per-
formed by pips_dbm. Currently, all the data structures are
saved on disk, which means that a significant performance
penalty is incurred. A more intelligent manager would cache
some of them in memory and delay the disk operations to
the point where they are required.

A few conclusions can be drawn from our preliminary
results. First, interprocedural parallelism detection would
benefit from better programming practice :

¢ Formal arrays should be dimensioned as accurately as
possible. Declarations like 4(1) should be prohibited
and declarations like 4(*) should be avoided as often
as possible. Some parameter N is usually passed to
loop over A and should be used to declare A(l).

¢ Temporary arrays should be avoided. In ONERA bench-
marks, many copies could be replaced by better pro-
cedure call or index expressions.

o Implicit conditions on key parameters read from disk
should be explicitly checked. The program would be
safer and semantical analysis could automatically prop-
agate this extra information where it is needed.

Second, new compilation techniques are needed to achieve a
reasonably good automatic interprocedural parallelization,
while others are not as useful as expected :

o Regions seem to be overprecise to summarize the ef
fects of modules. More attention should be paid to
effect translation, from effects on formal parameters
to effects on actual ones.

¢ Interprocedural semantical analysis gathers potentially
useful information but, often, a key piece of informa-
tion is missing.

e Array expansion [F88] or privatization are needed.

o Kill information about arrays would be useful to mask
procedure effects on static arrays.

o General cases of array reshaping should be handled.

8 Conclusion

The PIPS project strives to reach three objectives: (1) con-
firm interprocedural analysis as a useful basis for paralleliza-
tion, (2) justify the use of sophisticated semantical analysis
techniques to improve the effectiveness of parallelism detec-
tion and (3) show the practicality of these two approaches
with actual programs written in full Fortran77. By using
both standard software engineering tools such as Lex and
Yacc and the NewGen program generator, developed in-
house, these ambitious requirements can be fulfilled with
a limited development team of three people.

The PIPS parallelizer is still under development and but
preliminary experiments on real programs have been suc-
cessfully carried out. The effectiveness of parallelism de-
tection cannot be evaluated without hand analysis, almost
impossible on real programs, or without another parallelizer.
The project evaluation is also hampered by the lack of a tar-
get machine; we expect to tune PIPS for Cray-like machines
in the near future.

New parallelization techniques are also going to be intro-
duced in or derived from it, such as code partitioning [IT88a]
and data movement generation [An90] for shared memory
and, eventually, distributed memory supercomputers.

References

[A90] ANSIX3J3/88.115. Fortran90. June 90

[An90] Ancourt, C. Génération Automatigue de Codes de
Transfert pour Multiprocesseurs & Mémoires Locales.
PhD thesis, Université Paris 6, 1991

[ABCCF88] Allen F., Burke M., Charles P., Cytron R.,
and Ferrante J. An overview of the PTRAN analysis
system for multiprocessing. Journal of Parallel and
Distributed Computing , Vol. 5, No 5, Oct. 1988.

[AK87] Allen, R., and Kennedy K. Automatic translation
of FORTRAN programs to vector form. ACM Trans-
actions on Programming Langages and Systems, Oct.
87.

[AS89] Appelbe, B., and Smith, K. Start/Pat: A Parallel
Programming Toolkit. JEEE Software, Jul. 89.

[B88] Banerjee, U. Dependence Analysis for Supercomput-
ing. Kluwer Academic Publishers, 1988



[BC86] Burke, M., and Cytron, R. Interprocedural Depen-
dence Analysis and Parallelization. In the Proceed-
ings of the ACM Symposium on Compiler Construc-
tion, 1986

[BK89] Balasundaram, V., Kennedy, K. A Technique for
Summarizing Data Access and its Use in Parallelism
Enhancing Transformations. In the Proceedings of the
ACM Symposium on Programming Languages Design
and I'mplementation, 1989

[C87] Callahan, D. A Global Approach to Detection of Par-
allelism. PhD Thesis, Rice University, 1987

[C90] Chassany, P. Les méthodes de parallélisation inter-
procédurale. Tech. Rep. EMP-CAI-I E/129, Ecole
des Mines, 1990

[CCHKTS88] Callahan, C. D., Cooper, K. D., Hood, R.
T., Kennedy, K., and Torczon, L. Parascope: A Par-
allel Programming Environment. In the Inter. J. of
Supercomputer Applications, Winter 88.

[CCKT86] Callahan, C. D., Cooper, K. D., Kennedy, K.,
and Torczon, L. Interprocedural Constant Propaga-
tion. In the Proceedings of the ACM Symposium on
Compiler Construction, 1986

[CH78] Halbwachs, N., and Cousot, P. Automatic Discov-
ery of Linear Restraints Among Variables of a Pro-
gram. In the Conference Record of the Tenth ACM An-
nual Symposium on Principles of Programming Lan-
guages, 1978

[CK88] Callahan, D., and Kennedy, K. Analysis of Inter-
procedural Side Effects in a Parallel Programming En-
vironment. Journal of Parallel and Distributed Com-
puting, v. 5, n. 5, 1988

[DLTKK90] Dehbonei, B., Laurent, C., Tawbi, N., and
Kulkarni, R. & S. PMACS: An Environment for Par-
allel Programming. In the Proceedings of the Interna-
tional Workshop on Compilers for Parallel Computers,
Paris, Dec. 90.

[F88] Feautrier, P. Array Expansion. In the Proceedings of
the ACM International Conference on Supercomput-
ing, St-Malo, 1988.

[FOWS87] Ferrante, J., Ottenstein, K. J., and Warren, JI.
D. The Program Dependence Graph and it Use in Op-
timization. ACM TOPLAS, 1987

[I88] Irigoin, F. Loop Reordering with Dependence Direc-
tion Vectors. In the Journées FIRTECH Systémes
et Télématique Architectures Futures: Programmation
Paralléle et Intégration VLSI, Paris, 1988

[IT88a] Irigoin, F., and Triolet, R. Supernode Partitioning.
In the Proceedings of the ACM Symposium on Princi-
ples of Programming Languages, San-Diego, 1988

[IT88b] Irigoin, F., and Triolet, R. Dependence Approxi-
mation and Global Parallel Code Generation for Nested
Loops. In the Proceedings of the International Work-
shop on Parallel and Distributed Algorithms, Bonas,
1988

[ID89] Jouvelot, P., and Dehbonei, B. A Unified Semantic
Approach For The Vectorization And Parallelization
Of Generalized Reductions. In the Proceedings of the
ACM International Conf. on Supercomputing, Crete,
1989

[JG89] Jouvelot, P., and Gifford, D. K. Reasoning about
Continuation with Control Effects. In the Proceedings
of the ACM Conference on Programming Languages
Design and Implementation, 1989

[JT89] Jouvelot, P., and Triclet, R. NewGen: A Language

Independent Program Generator. Rapport Interne CAII
191, 1989

[K76] Karr, M. Affine Relationships among Variables of a
Program. Acta Informatica, 1976

[KKLW84] Kuck, D. J., Kuhn, R. H., Leasure, B., and
Wolfe, M. J. The Structure of an Advanced Retar-
getable Vectorizer. In Supercomputers: Design and
Application, IEEE Comp. Soc. Press, 1984

[L74] Lamport, L. The Parallel Execution of DO Loops.
Communications of the ACM, 1974

[LT85] Lichnewsky, A., and Thomasset, F. Techniques de
base pour lexploitation automatique du parallélisme
dans les programmes. INRIA Report 460, 1985

[L89] Li. Intraprocedural and Interprocedural Data Depen-
dence Analysis for Parallel Computing. CSRD Report
910, 1989

[R77] Rosen, B. K. High-Level Data Flow Analysis. Com-
munications of the ACM, 1977

[S77] Stoy, J. E. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. MIT
Press, 1977

[S80] Sharir, M. Structural Analysis: A New Approach to
Flow Analysis in Optimizing Compilers. Computer
Language, 1980

[SG90] Shei, B., and Gannon, D. SIGMACS: A Programmable
Programming Environment. In the Proceedings of the
International Workshop on Programming Languages
and Compilers for Parallel Computers, Irvine, Aug.
90.

[T84] Triolet, R. Contribution & la parallélisation automa-
tique de programmes Fortran comportant des appels
de procédure, PhD Thesis, Université Pierre et Marie
Curle, 1984

[T&5] Triolet, R. Interprocedural Analysis for Program Re-
structuring with Parafrase. CSRD Report 538, 1985

[TF89] Tawbi, N., and Feautrier, P. Parallélisation automa-
tique de programmes pour ordinateurs multiprocesseurs
a mémoire partagée. Tech. Rep. MASI, Université
Pierre et Marie Curie, 1989

[TIF86] Triolet, R., Irigoin, F., and Feautrier, P. Direct
Parallelization of Call Statements. In the Proceedings
of the ACM Symposium on Compiler Construction,
1986

[W89] Wolfe, M. J. Optimizing Supercompilers for Super-
computers. MIT Press, 1989



