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Abstract

Supercompilers must reschedule computations
defined by nested DO-loops in order to make an efficient
use of supercomputer features (vector units, multiple
elementary processors, cache memory, etc..). Many
rescheduling techniques like loop interchange, loop
strip-mining or rectangular partitioning have besn
described to speedup program execution. We present
here a class of partitionings that encompasses previous
techniques and provides enough flexibility to adapt code
to multiprocessors with two levels of parallelism and two
levels of memory.

1. Introduction

Supercomputer features, like vector units and vec-
tor registers, multiple elementary processors, cache and
local memories, do not provide the performance level
claimed by the manufacturers and expected by users on
all kinds of programs. The necessary adaptation has
always been first applied by hand before automatic tools
were made available. Some practical knowledge has now
be gained for new architectures,!* with MIMD and vec-
tor capability plus a memory hierarchy, that shows the
interest of DO loop blocking,

We present here a new program transformation,

called supernode partitioning. The basic idea is to -

aggregate many do-loop iterations, called nodes so as to
provide vector statements, parallel tasks and data refer-
ence locality when applied to perfectly nested DO loops.

In section 2 this transformation is applied to a
simple example to show how it differs from other
transformations and what can be expected from it. The
next two sections are devoted to preliminaries. First
assumptions on initial code are given and then bases of
dependence analysis are briefly sketched. A new concept,
czlled the dependence cone, is introduced as a basic
tool for partitioning.

In section §, supernode partitioning is studied.
First four constraints that should reasonably be met by
any partitioning are discussed. Hyperplane partitioning
is introduced and a validity condition is derived from
dependences. This is generalized to partitioning with
multiple hyperplanes and other conditions on partition-
ing are introduced to meet the four initial constraints.
Finally an opposite approach, based on node clustering
with a basis to keep together computations sharing datz,
leads to the same result. It is shown to be dual of hyper-
plane partitioning. Validity conditions, that can be
checked automatically with a dependence conme, are

" developed in both cases.

Once supernodes are defined it remains to gen-
erate code. This is the purpose of section 6. First of all 2
control structure must be decided to ensure a proper
global scheduling of supernodes, compatible with depen-
dences, and another one to schedule locally nodes inside
supernodes. We show that linear schedulings provide in
both cases one sequential outer loop and N -1 inner
parallel loops, where N is the number of loops in the
initial code.

Many supernode partitionings as well as global
and local linear schedulings are valid and we show how
they can be used to exploit various features of two dis-
similar machines, the Cray-2 and the Alliant FX-8. The
same set of criteria, ordered in two different ways, leads
to two different partitionings for the same initial pro-
gram.

Finally automatic code generation in 2-D is
sketched. A general control frame is used and every
parameter turns out to be the result of operations on
linear systems of equalities and inequalities, because of
assumptions made in part 4 and of the partitioning tech-



nique chosen.

2. Example

Comnsider program 1 which performs a relaxation
step:

DOI=1,L
DOJ=1M
T(1,3) = (T(I-1,3)+T(1, 1)+ T(1+1,3)
+T(1,J-1)+T(1,J+1))*0.2
ENDDOI, J

(S)

Program 1: A Five Point Relaxation Step

The relationship that exists between different
iterations of statement S is depicted in figure 1, where
each dot represents one iteration and each arrow a flow
of data between two iterations.
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Figure 1: Dependences for Program 1

With this example usual program transformations
like strip-mining?® and loop interchange? do not provide
any parallelism. The hyperplane method!8: 17. 5 should
be applied to generate vector statements but commercial
supercompilers do not apply it and keep loops I and J
sequential. Furthermore, if the hyperplane method were
available, it should be combined with strip-mining to
use for example the 8 vector units of an Alliant F3{-8.

But the resulting ordering does not allow data re-
use, neither in registers nor in cache memory since a
whole diagonal of array T must be computed before
values produced as T(I,J) are used as T(I,J-1) and
T(I-1,]) to compute the next diagonal. Moreover the
synchronization overhead cannot be kept low on mul-
tiprogramming oriented machines like Cray-2, Cray-
XMP or IBM-3090-VF since a partition size is bounded
by = linear function of T's dimensions.

These conflicting goals are met with the partition-
ing of figure 2, where iterations of statement S are
clustered into blocks that can be executed in parallel,
front by front. Each block is labeled by its front
number. The size of a block can be scaled up or down to
adjust synchronization overhead versus the parallelism
degree of fronts, i.e. the number of supernodes per front.
Within a block, computations can be performed in vec-
tor mode along direction 7', and one vector register can
be used three times along direction 7,, saving two loads
out of five.

1¥ Figure 2
A Possible Partitioning for Program 1

Supernode partitioning is more general than rec-
tangular partitionings® . It can be applied more oiten
and provides more flexibility.

3. Terminology and Assumptions

Algorithms of interest can be written as sets of
perfectly nested DO-loops, whose upper and lower
bounds are all linear, enclosing 2 loop body S with
linear array references. That is, each subscript expres-
sion must be a linear expression over the scalar integer
variables of the program. The loop body must not con-
tain any GOTO exiting one or many loops and all state-
ments must be at the same nesting level. Loop incre-
ments are equal to 1 (normalized loops) and so the ini-
tial execution ordering is the lexicographic order on
index values.

Such algorithms can zlso be expressed by a set of
uniform recurrence equationsi5 as used for systolic
machines, but their domain must be bounded.

With the assumption on loop bound linearity, the
sets of computations considered are finite convex polyhe-
dra of some iteration space ZY, where N is the
number of nested loops and the dimension of the space.
Each element, an iteration of loop body S, is called a
node n and is referred to by its iteration vector 7.
These vectors have the values of loop indices as coordi-
nates in the initial basis B = (¥, §); in figure 1, node



n's iteration vector is (I, J; ). A set of nodes is called a
supernode. A few supernodes are shown on figure 2.

The set of computations is called the computa~
tion domain. It is defined by a set of linear inequali-
ties derived from loop bounds. For example, program
1’s computation domain is defined by the following sys-
tem:
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0 L
1], M

107 34

0 -1 .

where 7 is expressed in the initial basis B .

Thus a computation domain is defined by a
matrix A and a vector @ and each iteration vector of
this domain verifies:

AT <3

4. Dependences

Schedulings of nodes are constrained by different
dependence relations!® | whose most intuitive one is
the data flow dependence (also called a true depen-
dence): 2 node n, using some data produced by node
n,, depends on 7, and cannot be executed concurrently
to n,. The set of nodes n; depending on n1 15 character-
ized by the dependence vectors 4 = 7o - J1.

For each pair of array references that can induce
such a dependence the set of possible values for 4 is
usually upper approximated by another set that con-
tains all d’s and some extra elements. For instance
Wolfe uses a dependence direction vector?® which
indicates if d’s coordinates are less than, equal to or
greater than 0.

In our case, this set is characterized by a convex
polyhedron!? %: 12 D which can be automatically com-
puted from systems of linear equalities and inequalities
describing dependence conditions (equality of array
references), belonging to the computation domain
(deduced from A and 7) and definition of 7. These sys-
tems are projected on 4 ’s coordinates and finally, D is
obtained by computing the convex hull of the projected
systems. D is given by its generating system?2! : three
sets of vertices, rays and lines.

This computation must be performed for each
pair of references in the loop body and these elementary
dependences must be combined to tell whether an itera-
tion 7, depends directly or indirectly on an iteration 7o
and must always be executed afterwards.

The transitive closure of all dependences provides
this ordering relation between nodes. In our case the
tramsitive closure is obtained by putting together the
elementary generating systems and by transforming ver-
tices into rays and each line into 2 rays. The final set of
rays R = (7, ¥, ..., 7:) is called the dependence
cone!? | and provides the following equation:
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There is no equivalence because many approxima-
tions occur during the dependence cone computation
and because the dependence distance vector set may not
be a cone.

Similar dependence cones can be derived from a
set of uniform recurrence equations used for systolic
algorithm? , and less precise ones from Wolfe’s depen-
dence direction vectors (rays are parallel to basis vec-
tors).

The relation must ezecute after 1 is called depends
on in the following and 7, depends on 7, is denoted by
T ‘( Te.

When the dependence vectors can be exactly com-
puted, it is possible to decompose the computation
domain in connected components that can be executed
, thus we can assume that the iteration
space is connected. The cone dimension is supposed here
to be N, the dimension of the iteration space, but it is
shown in [13] how to handle other cases.

For program 1, the dependence cone is given by
7,=75, and ¥, = b, which in this simple case could
have been computed from the dependence direction vec-
tors (=,<) and (<,=).

To see better how the dependence cone can sum-
marize elementary dependences consider program 2

which is part of a Gaussian elimination for banded
matrices? .

DOI=1N
DOJ=1M
Y(1+3) = F(Y(1), Y(I+7))
ENDDO
ENDDO

S:

Program 2
Gaussian Elimination of Banded Matrices

F is a side-effect free function and two pairs of refer
ences must be tested: (Y(I), Y(I+J)) and
(Y(I+17),Y(I+17)). There are no constant dependence dis-
tance vectors since a monodimensional array is used at a
nesting level of 2. Linear systems built for these two
pairs provide the following information on dependence
distance vectors by projection on the dependence space:

d >1
H1.2={

4 +d; >1
Hl'a-:{d,' +d‘.|. =0



These polyhedra are reduced to the smallest polyhedra
containing their lexico-positive part and are expressed as
generating systems (see [12] for more details):

o= ({}{C) ©)} )
m= ({21} {(2)) )

These two elementary dependence relations are unioned
and transitively closed into a new relation generated by:

= ({61 ) 0))

By redundance elimination this first generating system is

Ca=(()()

This let us find possible supernode partitioning while
Wolfe's combined dependence direction vector for the
same loop is (<,*) and contains a line. Dependence

(@ )oY

would be derived from it.

The subsets of the dependence space defined by
R and Ry are depicted in figure 3.2 and 3.b. It is obvi-
ous that dependence cone R is more accurate than Ry .
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Figure 3.a: Dependence Set Generated by R
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Figure 3.b: Dependence Set Generated by Ry,

Dependence cones defined by generating systems
provide the kind of information that was previously
available only for constant dependence distance vectors.
However rays provide only a dependence direction and
not a distance. Some useful information is lost for the
minimum distance partitioning® .

5. Partitioning

5.1. Constraints on Partitioning

Four constraints are imposed on supernodes. They
must be atomic, identical by translation, bounded, and
they must tile the computation domain.

Each supernode must define an atomic task, that
can be executed without- synchronization omce it is
started. All necessary inputs must be available at the
beginning and all outputs are made available to other
superncdes at the end. In other words, all synchroniza-
tion points are beginnings or ends of supernodes. This
constraint implies the following condition on supernodes:

Y.l €8 V7577 €525 8,y (1)
1T => 7 <7 o T <> 77

-

?1?12 => not (74 ?._?’1’ )

where <6> means are not dependent. The partitioning

relation must be compatible with the partial order on
nodes, which means that a partial order on supernodes is
induced and that supernodes can be scheduled atomi-
cally without violating dependences.

The constraint of identity is imposed to keep
code generation simple enough to be automated: each
supernode must be the image of any other one by a
translation, except when it crosses the computation
domain boundaries (for instance see the unique super-
node of front 8 in figure 2). In the later case, supernodes
are called partial supernodes, in opposition to full



supernodes.

Supernodes must be bounded to make sure the
array regions they refer can be adapted to the high
speed memory (register, cache or local).

And finally supernodes must tile exactly the itera-
tion space to make sure each iteration of S is executed
once and only once.

5.2. Hyperplane Partitioning

Let B be a vector of Q¥, where Q is the set of
rational numbers, and consider the following partition-
ing relation:

J1€¢ and J2€s <=> |B7]=|k7.) (2)

It slices the iteration space with regularly spaced hyper-
planes defined by:

-

FR7=K KEeEN

This can be seen on figure 4.a. Hyperplane direction vec-
tor ki, is not at scale to be visible. Its coordinates are

(1/2, -1/4).

hl

Figure 4.a: Partitioning With One Hyperplane

The fo]lowmg theorem shows that condition (1) is
satisfied if 7 R > 0. Intuitively this latter condition
means that all rays, and as a consequence, all depen-
dence vectors, cross any hyperplane defined by % in the
same direction, from_one supernode to another. The
opposite condition, &~ R < U, could also be used and
would define an opposite set of directions. We choose
the former condition:

FTR >3

so that E gives the ray crossing direction.

(3)

Theorem 1
Condition (3) is a sufficient condition for condition (1).

Proof
Let’s suppose (1) is not true while (8) holds:

3 To 7d €sa5% 8,
i
‘§11

37,7 €8
7 < J2 and 77

This can be rewritten:

Te=T1+X M7 M\ 20
I
W=7+ Tmn wm>o0
3

These two equations and condition (3) imply:
K.7.>F .7, and F.7 >k .7
because A\; 's and p; ’s are positive and thus:
F .72 F.7) and |F.3¢ |2 (F. 7]

With definition (2) of hyperplane partitioning, this
implies:

¥ . Te)=F . Til=IF .3/ |=|F.7
and all nodes must belong to the same supernode, which

is inconsistent with the hypothesis s, £ s .
End of Proof

If we were dealing with real or rational numbers,
condition (3) would also be a necessary condition of
(1). This is not the case. Condition (3) is a bit too
strong and some valid partitionings as obtained by a
combination of wavefronting and strip-mining do not
meet it13

Vectors % that meet condition (3) are called
valid hyperplanes. This condition defines the opposite
of R’s polar cone?* , B . Thus each valid hyperplane
is a positive lmea.r comblna.t.lon of Bs rays. The
dimension of B~ depends on B and, for instance, is 0
when the program is fully sequential The partitioning
method presented here apply when E" and R are fuil
dimensional.

R" may not be full-dimensional when there are
too many dependences. In this case supernode partition-
ing should be applied to a subset of the initial nested
loops. Remaining loops are kept sequential to remove
some dependences.

R may also not be full-dimensional when there
are not enough dependences, as in the matrix product.
One solution is to isolate fully parallel loops and to
apply supernode partitioning to the remaining ones.
Parallelism is then available but data locality and syn-
chronization overhead cannot be controlled. Another
solution is to introduce pseudo-dependences in R and
R to define the partitioning. These pseudo-
dependences are ignored when computing possible
schedulings.

5.3. Generalized Hyperplane Partitioning

This hyperplane partitioning can be generalized
by using a set H of valid hyperplanes &;. The parti-
tioning relation becomes:
j1€s and Jo€8 <=>

Vi L}:j . 3’1]=L?;J ?2.1
The validity condition becomes HT R > 0, where 0
denotes a null matrix with proper dimensions. It can be

(4)



easily shown to be a sufficient condition for (1) since two
supernodes are separated by at least one hyperplane and
since the previous proof can be applied to this hyper-
plane.

Figure 4.2 and 4.b show two hyperplane partition-
ings for program 1. The partitioning defined by & is not
valid because & does not belong to B , which here is
equal to R (see figure 1 and §4). Although &, is 2 valid
hyperplane, the partitioning generated by (K, k) leads
to unschedulable supernodes: A must be executed before
B, and B before A. A valid partitioning was shown in
figure 2.

Figure 4.b: Partitioning With Two Hyperplanes

5.4. Identity Condition

Theorem 2
Supernodes are equal up to a translation iff H is free.

Proof

We must show that for any two supernodes s, and s,
there exists at least one translation ¥ that maps any
node of s, onto a node of s, Let k{ and k4 be the
integer coordinates of s; and s4:

VYies, VE,€H |k .7]=4k
Vi€s: YE, €H |F;.7]=
Translation 7 is such that:
VE €H V7, LK .Jil=kH =>

LE . (hi+ )=k

Let r{, r4 and r/ be the rational parts of previous dot
products. The condition on  can be rewritten:

R, . Ti=k +r{
R, (Gi+T)=k{ +r{ +ki+1r/=1Fk}

This holds for any 7, thus r{ € [0..1. Tokeep 7, + 7
in s, 7/ must be equal to 0. Combining the two previ-
ous equalities and using a matrix notation, the condition
on T becomes:

TT=F-F

where k{’s and k{’s are the coordinates of ¥, and ,.
This system has solutions if H is free. The solution is
unique when H is a generator, i.e. when its rank is equal
to the iteration space dimension N .

End of Proof

In figure 4.c, a third partitioning direction K is
used to show what hapens when too many hyperplanes
are used. [ is no longer square and cannot be inverted.
Obviously supernodes are not equal.

These solutions are integer if A~ has integer com-
ponents. This is another important condition since we
have to map integer point onto integer point to generate
the same code for each supernode. This last condition is
not met by partitioning of figure 4.b: nodes cannot
always be mapped onto nodes from another supernode
with an integer translation. Let’s compute A%

/2 1/
] By = [1/4] H = [-1/4 i/i]
1/4 1/4

16 [ ]
3 |-1/4 1/2

For most ¥, and ¥y, ¥ = H'(F,-F,) will not have
integer coordinates.
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Figure 4.c: Partitioning With Three Hyperplanes

5.5. Finite Supernodes

The number of nodes (i.e. integer points) of a
supernode is finite if the supernode is bounded.

Theorem 3

Supernodes are bounded if and only if H is a generator
of the iteration space.

Proof

e It is a necessary condition. If H were not a generator
of the iteration space, there would exist 2 non~empt.y
orthogonal subspace H+. Any integer vector F™of B+
verifies:

VE eH K .Ft=o0

and any supernode s containing a node ; contains also
the infinite set of nodes



{7 /3 NeZat T =7 +2F+ )

since:

VR, €H K .7

R, .7 +FK K+

=K .7

Vector K exists because H is a set of rational vectors.
It is a sufficient condition. A polyhedron that is not

bounded contains rays. Let ¥ be one such ray. By
definition of supernodes and rays we get:

VA>0 k <K .(7+22)< k;+1

This implies k;.# = 0 for all k;. As H is a generator,
it is possible to build a basis H’ from H and to use the
corresponding subset of equations (Hprime )T# =TT to
show # = 0.

End of Proof

For
unbounded.

instance figure 4.a’s partitioning is

5.8. Proper Partitioning

The tiling condition is satisfied by definitions (2)
and (4) that maps any node into exactly one supernode.

The other three conditions on partitioning
presented in section 5.1 are met if H is a basis whose
vectors define valid hyperplane partitionings, i.e. belong
to B, the opposite of the dependence polar cone. It is
possible to build such a basis when R (and hence B ) is
full-dimensional.

5.7. Basis Clustering

The basic idea is to put together nodes that
depend on each other to propagate values from producer
to consumer inside one supernode and to limit com-
munications between supernodes. This idea, depicted on
figure 5, leads to the following definition:

71€s and Toes <=> |7 ]=172"] ()
where 3,;» denotes the coordinates of 7 in some cluster-
ing basis P and where the floor function and the

equality are applied componentwise.

Supernodes are equal to unit cells of basis P . This
gives a linear condition for 2 node 7 to belong to a
supernode of origin 7o:

0 < P77 <1

where 7 and 7, are expressed in the initial basis B and
Tin P. To use integer linear algorithm, each term is
multiplied by |det(P)| and the strict inequality is
removed:

=

0 < |det(P)| PH(7-70) < (|det(P)|-1)T

Since definitions (4) and (5) can be rewritten with
matrix notation as:
BT T =HT 7,

and:

P77 = |P7'7.)
(with 7 and 7, expressed in the initial basis B)itis
clear that each clustering basis P = (... 7, ..) Is
related to a partitioning basis # = (..., k;, ...) by the
relation HT = P-! which can be rewritten R; .7 =6,
where 6, ; is the Kronecker function. This means that

the E} 's are orthogonal to P faces and the same for the
P ’s relatively to H.

In order to meet condition (1), a clustering basis
P must satisfy the condition PR >0 since it defines
the same partitioning than H = (P97 and since this
partitioning is valid if and only if #7 R > 0. This new
condition means that all dependence vectors must have
positive coordinates in P . Moreover, the matrix P must
have integer components in the initial basis to generate
identical integer supernodes. This condition is easier to
understand than the condition on A~ developed for
theorem 2.

Figure 5
Three Valid Clustering Bases
for Program 1

8. Code Generation

8.1. Generation Parameters

Once H (or P) are chosen many schedulings of
nodes and supernodes are possible. To keep control code
generation simple and to produce efficient code linear
schedulings are chosen. A linear scheduling is defined by
one vector 7

Definition: Let 7, and 7, be two iteration vectors. 72
is_executed after 7, with linear scheduling 7 iff
.71 <372

These linear schedulings are also used as temporal
functions to generate systolic arrays from systolic equa-
tions. With Fortran control structures a linear schedul-
ing given by @ is obtained with one sequential loop
along direction @ enclosing N -1 parallel loops. These
loops are chosen to scan the whole iteration space, and
the parallel ones are characterized by basis vector of the
subspace orthogonal to 7.



Definition: A linear scheduling compatible with depen-
dences is called a valid linear scheduling.

Theorem 4

The set of valid linear schedulings is defined by
7’ R >7

Proof

Let }'1 and J"g be iteration vectors of two dependent
nodes:

-

?1? 2 => 3’2=}'1+E>~t T
P

VkEX 20and 3 5 st X; >0
This implies:

T.72=0.1+LM0.7
E
Since 7, must execute after 7, 7.7» > 7.7, and
L A .7 > 0. This must hold for any set of A\p's as
defined above and implies 7" R > 0. Since @ has
rational coordinate and since X @ and @ define the same
linear ordering, the validity condition can be written:
" .

7' R >1

End of Proof

Thus valid linear schedulings belong to a subset of
valid partitioning hyperplanes. This subset is a
polyhedron that can be defined by a generating system.
Potential schedulings are positive linear combinations of
its rays.

This analysis can be applied at the node level
(and is better known as the hyperplane method) and at
the supernode level since supernodes can be ordered by
only one node (see condition (1)), their origin for exam-
ple. A supernode origin is its node with minimal coordi-
nates in P . These coordinates are equal by definition to
the supernode coordinates.

Let Ty be the vector whose coordinates in basis
H areallequal to 1. ie. Ty = T ).

Theorem 5:
Ty is a valid linear scheduling.

Proof

We must show Tg R >3 Icnowm)g that HT R >0
(see §5.4) and hence that Ty R > 0. Suppose
l,q R =T0. By definition of Ty and since H is a valid
partitioning:

LHR=0ad Vi i R>0
1

This implies AT R = 0. Since H is a basis, HT can be
inverted and R = 0 which is impossible for 2 depen-
dence cone. 0 denotes a null matrix when convenient.
End of Proof

This shows that, under the full-dimensionality

assumption on the dependence cone R, cne outer
sequential loop and N -1 inner parallel loops preserve
dependences between supernodes and another similar set
of loops preserve dependences between nodes. Tj; is used
to show the existence of parallel loops but many other
valid global and local linear scheduling can be chosen.
The global and local scheduling directions can be
different.

Generation bases G, also called scanning bases,
can be derived from any linear scheduling & The N -1
parallel loops are defined by N -1 vectors of G that are
orthogonal to @ The last vector of G defines the
sequential direction. It has to be free with the others
and to be oriented along . Vector @ can sometimes be
used. G must be unimodular (i.e. | det(G)| =1) to
map nodes (i.e. integer points) of the iteration space
onto nodes of the initial one. For supernodes, the same
condition must hold for the change of basis matrix from
G toP.

Thus, once a partitioning is defined by a matrix
H, 2 global and a local iteration directions as well as
the corresponding generation bases have still to be
defined to scan supernodes inside the computation
domain and to scan nodes inside each supernode. The
supernode size can easily be adjusted by an integer scal-
ing factor applied to H or P without changing the par-
titioning and iteration directions. The partitioning grid
can also be translated and so a partitioning origin must
be chosen.

8.2. Choosing a Partitioning

Supercomputer architectures are too intricate to
derive an analytical expression for the partitioned pro-
gram execution time. Nevertheless several key factors
are well known. Vector statements should be generated;
vectors should have a constant length; data stored in
vector registers should be re-used; data accessed many
times should be kept in cache; memory references should
be done with stride 1; the workload should be balanced
between eclementary processors; synchromization over-
head should be minimized; and so on. Supernode parti-
tioning is flexible enough (partitioning directions, local
iteration direction, supernode size, ...) to fulfill any of
these factors. But these goals are conflicting and priori-
ties must be given to each of them according to the tar-
get architecture.

Partitioning on figure 2 was designed for a 4
processor Cray-2. A hyperplane direction was chosen to
get vectors of constant length (64: the vector register
length?). The second partitioning direction was chosen
to save two loads out of five with the references
T(1,J-1), T(L,I), T(I, J+1). Another direction could have
been chosen with references T(I-1,J), T(IJ), T(I+1,J).
Vector access stride cannot be 1. Load imbalance was
considered second to vector performances and synchroni-

tPartitionings depicted on figure 2 and 6 have been scaled down to
keep nodes visible.



zation overhead can be kept low with large supernodes,
along direction 7.

Another partitioning is presented in figure 6 for
an Alliant FX-810 . As potential speedup is 2 to 3 with
vector statements and 8 with code spreading on elemen-
tary processors, we decided to promote parallelization
versus vectorization. This partitioning was chosen
because it provides fronts of 8 supernodes or more
before the previous one. Moreover a parallelism degree
of 8 is quickly reached because supernode size can be
small due to an efficient synchronization hardware. This
partitioning drawback is the variable length of vector
statements generated to exploit vector units (see figure
6). Vector registers are not re-used since the cache
memory has the same throughput.
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Figure 8
A Partitioning for Program 1
on Alliant FX-8

8.3. Automatic Code Generation

Once a partitioning and the other code generation
parameters have been chosen, it is possible to check
automatically their validity with the dependence come
and to compute the partitioned code. In 2-D, we use the
control structure given in program 3.

DOSEQ L1 =LB_Li, UB_L1
DOALL L2 = MAX(LB_L2,, LB_L2,, ...
MIN(UB_L2,, UB_L2,, ...)
IF (T1) THEN
DOSEQ 11 = Ib_]1, ub_]1
DOVEC 12 = MAX(Ib_J2,, 1b_]2,, ...
MIN(ub_J2,, ub_J2,, ...)
loop body S with new subscripts
ELSE IF (T2) THEN
DOSEQ 11 = Ib_]J1’, ub_J1’
DOVEC 12 = MAX(Ib_J2,’, Ib_l2,’, ..
MIN(ub_J2,, ub_l2,’, ...)
loop body S with new subscripts
ELSE IF (...) THEN

),

).

J;

Program 3 .
Skeleton for Automatic Code Generation (2-D)

Fronts of supernodes are scanned by one outer
sequential loop (L1) along dependences (supernodes in
figure 2 and 6 aré labeled by L1 values, the fromt
number) and every front by a parallel inner one (L2) to
use the elementary processors. Tests (T1, T2, ...) are
applied to check whether (and how) each supernode

crosses the computation domain boundaries. Nodes are

scanned inside each supernode by a sequential and a
vector loops (11 and 12). Finally a change of basis is
applied to subscript expressions as can be seen in the
code fragment of program 4, where K is the supernode
size and (I0, JO) its origin coordinates. The transforma-
tion linearity keeps array subscript expressions linear,
and constant stride memory references are still available
for vector code generation.

DOSEQ 11 =0, K-1
DOVEC 12 = 0, K-1

(S)  T(lo+12,Jo+11-12) = (T(I0+I12-1,J0+11-12)
&  +T(10+12,J0+11-12)+ T(10+12+1,J0+11-12)
&  +T(I0+12,J0+11-12-1)+T(10+12, J0+11-12+1))*0.2

Program 4
Code Fragment for Full Supernodes of Figure 2

New loop boundaries and tests are computed with
well known integer linear system algorithms, like testing
feasibility® , projection, redundance elimination®? |
etc... More details can be found in [13].

To give a flavor of the techniques used, let see
how bounds for loop L1 and L2 can be computed. Super-
nodes (L1,L2) of interest contain at least one node (I,J)
of the initial computation domain. Let (P1,P2) be the
origin of the partitioning and (10,J0) the origin of super-



node (L1,L2). L1 and L2 are coordinates in the genera-
tion basis G, while the other coordinates are relative to
the initial basis B. The partitioning is defined here by
the clustering basis P. The previous sentences can be
mathematically rewritten: '

(%)= (B2) + @ (3)
(0) < 1aee(Py P (13) < (1 det(P) -0y (1)
A(3) s

Lower and upper bounds for L1, LB_L1 and UB_L1, are
obtained by projecting this system on L1 and by elim-
inating redundant constraints. This is feasible even
when 7 contains variables as in §3. Then the new pair
of inequalities on L1 is added to the initial system and
this redundant system is projected on L1 and L2.
Redundancy elimination is performed and multiple con-
straints, if any, are handled with MAX and MIN opera-
tors.

The same technique is applied to generate tests
T1, T2, etc... because interesting predicates can always
be expressed as linear conditions. It is also applied to
generate bounds for loops 11 and 12. Thus it can be used
to generate loop bounds for the hyperplane method or
for loop interchanging?” whatever the initial (linear) loop
bounds are.

Conclusion

We have presented a new restructuring method,
called supernode partitioning. This method provides
enough parameters to adapt perfectly nested DO loops
to multiprocessors with vector umits and a two-level
memory hierarchy. It can also be used for simple vector
Processors.

This program transformation can be implemented
in supercompilers using the classical Banerjee-Wolfe
dependence test like KAP® | PFC! or VATIL!® |, but
would benefit from more sophisticated tests as presented
in [17] and [25] and from the new concept of dependence
cone!? . Hyperplane partitioning can also be used to
map systolic programs on fixed size arrays.”» 20

Algorithms have been developed to automate its
application to 2-level nested loops. Work is underway to
extend it to any depth and to non-perfectly nested
loops. These algorithms can be used with simpler
methods like loop interchange to compute new loop
bounds.

Preliminary results on an Alliant FX-8 have
shown a 50 % speed increase due to reference locality
improvement!! . We are also working on an IBM 3090
VF to study cache policy effects and on a Cray-2 to
measure the effect of register re-use and to assess syn-
chronization overhead. These experiments should lead to
a better knowledge of key architectural parameters and
to the development of a partitioning choice algorithm.
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