DIRECT PARALLELIZATION OF CALL STATEMENTS

Rémi TRIOLET

University of Illinois
Center for Supercomputing R & D

Frangois IRTIGOIN

USA

Ecole des Mines de Paris

Laboratoire CAI
FRANCE

ABSTRACT

Asynchronous CALL statements are necessary in
order to use more than one processor in current mul-
tiprocessors. Detecting CALL statements that may be
executed in parallel is one way to fill this need. This
approach requires accurate approximations of called
procedure effects. This is achieved by using new objects
called Region and Ezecution Contezt. An algorithm to
find asynchronous CALL statements is given. It
involves a new dependence test to compute data depen-
dence graphs, which provides better results than previ-
ous ones even when no CALL statements are involved.
This method has been implemented in Parafrase and
preliminary results are encouraging.

Introduction

Supercomputers are now widely used for
scientific computations. However, programs need to be
restructured to be efficiently executed. As this is a tedi-
ous task, automatic tools have been developed that
perform a fine grain parallelization.

Paul FEAUTRIER

Université PARIS VI
Laboratoire MAS]
FRANCE

A new problem arises with currently available
multiprocessors (HEP, Cray-XMP, Cray-2, IBM-3090,
etc..) since the only way to access their multitasking
facilities is to use asynchronous CALL statements
(CALLs), which create new tasks to execute the called
procedures. As a consequence, programs must contain
such CALLs to execute on more than one processor.
This paper deals with the problem of automatically
finding asynchronous CALL statements in Fortran pro-
grams.

One solution is to transform existing CALLs into
asynchronous CALLs when possible. This solution has
proven successful when applied by hand and we
present here a method to automatize this process. We
call it Direct Parallelization of CALLs so as to avoid
any confusion with parallelization of CALLs by expan-
sion.

In the first part, the principle of direct paralleli-
zation of CALLs is presented and its practical interest
is shown. Problems raised by this approach are
enumerated in the second part; the most difficult one is
to describe parts of arrays accessed ' by procedure call
executions. Two new concepts to deal with these prob-
lems, ezecufion contezts and regions, are introduced in
the third part. Then, an interprocedural parallelization
algorithm is given and its main steps are explained.
The new dependence test, required by this algorithm, is
a critical piece and it is discussed in the fifth part.

Some knowledge of parallelization techniques is
assumed throughout this paper, see [20] for more
details. In the following, calls to functions and subrou-
tines are referred as CALLs. The program is composed
of several procedures whose source code is assumed
available.

1 In the following, accessed stands for read or written.

1. Direct Parallelization of CALL Statements

1.1. Principle

There are four main steps in the process of
transforming CALLs into asynchronous CALLs. The
first two steps are interdependent but we will see later

in which order they are applied to the different pro-
cedures.

Statement Effect Computation (SEC). Effects of ordi-
nary statements are computed, as usual, by scanning
references to variables. If the procedure contains a few
CALLs, their eflects are computed by translating
results of step PEC, applied to the called procedures;
variables of these procedures are transformed into vari-
ables of the calling ones.

Procedure Effect Computation (PEC). Global effects
of a procedure are computed by gathering results of
step SEC applied to its statements. All accessed vari-
ables or parts of variable are associated with the pro-
cedure.

Dependence Graph Computation (DGC). The Data
Dependence Graph (DDG) can be computed from step
SEC results, since sets of accessed variables are now
attached to CALLSs as well as to ordinary statements.

Restructuring and Parallelism Detection (RPD) Then,
the program can be restructured and the parallelism
can be detected with usual DDG based methods,
CALLS being processed like other statements.

This principle is simple, but we have to compute
very accurate effects with steps PEC and SEC, despite
the gatherings and translations involved, and then to
compute a good DDG at step DGC. Otherwise, little
parallelism will be found in step RPD.

1.2. Advantages of Direct Parallelization

Direct parallelization has interesting features for
users, time-space complexity of restructuring compilers
and parallelism detection.

As program structure is preserved, users will be
able to easily analyze results of source-to-source res-
tructuring compilers. This is useful when users want to
know what has been or has not been parallelized in
their programs, and when they have to debug them.

Neither the program size nor any subroutine size
are changed and procedures are processed in turn. Thus
the total amount of computation increases linearly with
the number of procedures and not with the number of
CALLs. Moreover, at any given time the restructuring
compiler has a usual and limited amount of code to
process. This is not true with the common solution to
handle CALLs: the procedure expansion [9].

Subroutines are not randomly defined. They usu-
ally perform sub-computations on subsets of data. Fre-
quent cases of such subsets in scientific programs are
rows and columns of matrices or more general parts
like diagonals, triangular upper or lower parts, ete...

We expect parts of these sub-computations to be exe-
cutable in parallel (see next section).

No computation, no matter how complex it may
be, involving local dynamic arrays of the called pro-
cedure will hinder parallelization in step RPD.
Although they are taken into account in step PEC,
translation in step SEC eliminates their effects. Again,
this is not true if the expansion method is used.

1.3. Experiments

Dongarra rewrote standard linear algebra pro-
cedures so as to execute CALLSs to lower level modules
in parallel [5]. Using a HEP computer with one Process
Execution Module, he obtained speedups varying from
6.84 to 8.53. The maximum speed-up of this machine
being 10, these results are good.

We studied by hand 35 out of 58 subroutines of
the LINPACK subroutine library (subroutines with
COMPLEX parameters were not considered in this
study). This library is especially interesting since
approximately 50% of the loops contain one or several
CALLs. Qur study showed that at least! 27% of these
loops could be automatically restructured and parallel-
ized into DOALL [20] or DOACCROSS [4] loops, pro-
vided an accurate DDG were computed. For instance,
loop 170 in figure 1 extracted from the LINPACK sub-
routine SSIFA is such a loop. The techniques
presented in this paper enable us to discover this paral-
lelism.

DO 170 JJ = 1 K-2

J=K-1-JJ
BK = A(JK)/A(K-1K)
BKM1 = A(JK-1)/A(K-1,K)
MULK = (AKM1*BK-BKM1)/DENOM
MULKM1 = (AK*BKM1-BK)/DENOM
T = MULK
CALL SAXPY(J,T,A(1,K),1,A(1,J),1)
T = MULKM1
CALL SAXPY(J, T A(1,K-1),1,A(1,1),1)
A(JK) = MULK
A(J K-1) = MULKM1

170 CONTINUE

where SAXPY(N,SA,SX,1,8Y,1) is equivalent to:
SY(1:N) = SY(1:N) + SA*SX(1:N)

Figure 1. A Parallel Loop of LINPACK

ta few loops were too large to be analyzed by hand, so they
were assumed serial,

2. Problems

We present here in more detail the problems
encountered in the different steps. We assume for the
sake of simplicity that there are no EQUIVALENCES,
no aliasing and that each COMMON has the same
shape in all procedures. All these technical difficulties
are dealt with in [17].

2.1. Statement and Procedure Effect Computa-
tion (SEC & PEC)

Variables that are read or written by procedures
or statements can be enumerated. But, for a given
array, the set of accessed elements may be very large
and even unknown at compile-time; so, this set must
be approximated. Consider for instance the two DO-
loops of figure 2; their effects cannot be described with
array element lists since index ranges are too big (loop
L1) or unknown (loop L2).

DO 101=1,10000 (L1)
R(I) = S(I*T(1) + U(])

10 CONTINUE
DO 101 = LB,UB (L2)
V(I) =00
10 CONTINUE
Figure 2.

Different approximations are discussed and a new
object called region is proposed in § 3. A good approxi-
mation cannot be computed unless some knowledge,
later called ezecution contert, on possible values of
variables is available and used in regions. We now have
to associate region lists and execution contexts to pro-
cedures and statements.

In step SEC, basic regions have to be derived
from variable references like I or T(I,J) in order to pro-
vide homogeneous data to step DGC. For a CALL
statement, regions associated by step PEC to the called
procedure, say Q, are related to variables of Q. They
have to be transformed into regions related to variables
of the procedure containing the CALL. Step SEC is
detailed in § 4.2.

In step PEC, regions attached to statements are
gathered to produce regions attached to the whole pro-
cedure. This must be done carefully so as to keep the
accuracy provided in step SEC by execution contexts.
Algorithms to associate sets of regions to procedures
are discussed in § 4.3.

2.2. Dependence Graph Computation (DGC)

Dependences between statements are usually
computed by testing if array references overlap [13].
We have to extend this test to regions, that is, to pro-
vide an intersection algorithm for regions. Solutions to

this problem are detailed in [17] and presented in § 4.4.

2.3. Restructuring and Parallelism Detection
(RPD)

The restructuring process is not deeply changed
because application of transformations is driven by the
DDG [20]. Consider for instance the loop in figure I;
the decision to apply scalar renaming and scalar
ezpansion on T or scalar forward substitution on BK or
MULK does not depend on the nature of the loop
body’s statements but on the accesses done on these
scalars. Maybe a few low-level transformations will
have to be modified to cope with CALL statement syn-
tax. This issue is no longer discussed here since it
depends on the restructuring compiler used.

The parallelism detection process is entirely
driven by the DDG, and hence no changes have to be
made. However, once CALLs have been transformed
into asynchronous CALLs, synchronization statements
have to be added. This is machine dependent and not
discussed here.

3. Introduction of Execution Contexts and
Regions

A region approximates a set of array elements.
This approximation is enhanced if we have some infor-
mation on the values of variables, especially integer
scalars. We call such information an execution context.

3.1. Possible Solutions for a Region

Approximating any array part by the array itself
leads to Summary Data Flow Information (SDFI) [1].
This solution does not provide much parallelism
although Huson proposes it in [9]. Our experiment on
LINPACK shows that only 10% instead of 27% of the
loops would be parallelized with the SDFL.

In a few cases, it is possible to translate array
references from the called procedure into array refer-
ences of the calling procedure. Conditions on subscript
expressions are so stringent that we do not consider
this solution any further.

An array part may be described by a range of
possible values for each index. The easiest solution is
to use integer constants as bounds since such parts are
easy to intersect and to translate. This can be extended
by accepting symbolic bounds, in which case intersec-
tion and translation require symbolic computation.

Loop L in subroutine MM from figure 3 is kept
serial with any solution but the last one. Symbolic
intervals seem to be interesting but scientific programs
use complex parts of arrays that cannot be closely
approximated: diagonal, upper part of a matrix, and so
on. Regions solve this last problem.

Execution context and region are now formally
defined in that order since the later uses the former.

SUBROUTINE MM(A LDA,N1,N3,B LDB,N2,C,LDC)
REAL A(LDA,*)B(LDB, *),C(LDC,*)

{}
(L) DOI=1N3
% T Nee)
(C) CALL SMXPY(N2,A(1I),N1,LDB,C(1,1),B) SECy r3=(A,{1<¢f<N1I° == I8
1<I° < N3}
ENDDO
{}
END
. SMXPY's .
SUBROUTINE SMXPY(N2,Y,N1,LDM,X,M) E:- i r2=(Y,{1<¢S<NI* 3]
REAL X(*),Y(*),M(LDM,*) effect
{
(E)} DOJ=1N1
15 P N L PECsyxpy
(S1) Y(J)=o0.
DOK = 1N2
{1st2§N132,]SK52SN232} .
(s2) Y(3) = Y(J) + X(K)*M(J,K) SECsuxpy P et =03 N
1 S Ks2§ N os2 })
ENDDO
ENDDO
{
END

Program statements with their execution contexts as
computed by the regular loop method.

Regions of Y and A associated to iterations
of statements and procedures

Figure 3. Overview of the Method

3.2. Definition of an Execution Context

Different kinds of information about values of
scalar variables in a program can be computed by a
Semantic Analysis. Linear inequalities among wari-
ables were chosen because they often provide enough
information to parallelize loops and because algorithms
from the convex polyhedral theory [7] let us transform
symbolic computations into numerical matrix computa-
tions.

Definition: Let S be a statement and let s denote
one iteration of §. Let ¥ be the set of integer scalars
of the procedure and v an element of V. Let v° be a

symbol to denote the value of v before the iteration s
and V* be the set of v° forall v in V. An execution
context attached to s is a system of linear inequalities
over V=

Example: Here is the execution context for the itera-
tion s of statement S in figure 4.

{22l L NI AL P L P41}

Other examples of execution contexts are given in
figure 3.

DO 101 = 2,N-1
DO 10 J = [-1,1+1
MAT(LJ) = 0. (S)
CONTINUE

Figure 4. Two Triangular DO-loops

10

3.3. Computation of an Execution Context

Several methods have been proposed: Constant
Propagation (12|, Linear Restraints Among Varicbles
3], Affine Relationship Among Variables [10]. These
intraprocedural methods can be extended to the inter-
procedural case with only one analysis per procedure
[17]. Good results are obtained when one is ready to
pay the necessary CPU time.

However simpler methods can provide enough
information when dealing with scientific program paral-
lelization. Under a few conditionst, a loop index is con-
strained by the lower and upper bounds, and this is
true over the entire loop body for any of its iterations.
Provided these bounds are linear expressions over
scalar integer variables, two inequalities may be
attached to the loop. Such a loop is called a regular
loop.

The execution context of a statement is formed
by combining all inequalities of the regular enclosing
loops. The previous example was computed this way as
well as all execution contexts intersparsed among state-
ments in figure 3.

The regular loop method and interprocedural
constant propagation have been implemented in
Parafrase [15]. Experiments on LINPACK show that
95% of its loops are regular.

3.4. Definition of a Region
Region attached to an iteration s of a stmt. S

The elements of a d-dimension array T accessed
by a reference in s are given by constraining the possi-
ble values of T’s indices. Let ¢;°, i € [1,d], be d sym-
bols for these values such that:

®* M V* =0 where & = (¢, €[1d]

In a region, the possible values of ¢, are determined by
a set of constraints involving the linear subscript
expressions of the reference and the execution context
of 5.

Definition 1: a region r of an array T accessed in s
is 2 pair (T ,X) where T is a system of linear inequali-
ties over V* | J ®° (See region rl in the next exam-
ple).

"These conditions are developed in [17]. Their computation re-
quires SDFI.

Region attached to a procedure Q

Let @ be a procedure with one entry point E
and ¢ be one execution of @ . Let T be an array refer-
enced many times in @ . The part of T that is accessed
by ¢ may be approximated by a region. In order to be
meaningful, possible values of indices must be con-
strained with symbols representing the initial values of
all parameters (in a general sense: common and formal
variables), that is values associated with e . This is the
only way to connect values of parameters in ¢ and
values of arguments (in a general sense: common vari-
ables and real arguments) in the calling routine P .

Definition 2: a region r of an array T accessed in ¢

is a pair (T',Z) where ¥ is a system of linear inequali-

ties over V¢ U o

Examples:!

Statement $ in figure 4 writes the region r1:

(MAT , {¢f=1",¢3=J%,2< I* < N*-1,
IF-1<Js <r1°41))

Subroutine SMXPY in figure 3 reads and writes the
region r2:

(r1)

(Y. {1<¢sr<N1}) (r2)

Statement C in figure 3 reads and writes the region r3
obtained by translation of r2:

A, {1<¢f< N1, g5 =1°,
1< I < N3 Y)

(13)

One can see with these examples that our
method is very accurate: the parts of arrays MAT, Y,
and A respectively described by r1, r2 and r3 are equal
to the parts actually accessed by the corresponding
statements or subroutines.

We show how and when steps SEC and PEC
associate regions to statements and procedures as part
of the parallelization process.

4. Finding Asynchronous CALL Statements in a
Procedure

Although our method does not involve intricate
algorithms, many details have to be taken into
account. Only an overview is given in this paper.

4.1. Main Algorithm

Let us call P the procedure we want to process.
We assume that the source code of all procedures called
directly or indirectly by P is available. Let us call them
@ fori =1,

We assume that execution contexts are available
for all statements of P and @,, using, for example, one

I these examples, each equality should be replaced by two ine-
qualities,

of the semantics analysis methods listed in § 3.3.

The calling greph is acyclic since Fortran prohi-
bits recursivity. So, we can find an order such that any
procedure appears after all the procedures it calls. The
Reverse Post Order (RPO) is one solution [8].

Algorithm:
FOR EACH @; following the RPO DO

1. Apply SEC to Q;:

this provides two sets of read
and written regions for any
iteration of Q; ’s statements;

2. Apply PECto Q,:

this provides two sets of read
and written regions for Q; ;

ENDFOR

3. Apply SEC then DGC and finally RPD to P :
this provides a parallelized P ;

Remark:

There is no reason to parallelize only P since
each @; can be parallelized as soon as step SEC has
been applied to it. So a whole program can be pro-
cessed by applying to the MAIN procedure a slightly
modified algorithm where step 1 is replaced by step 3.
For libraries, this algerithm must be applied to all
top-level procedures.

Part of this algorithm is exhibited in figure 3
where P = MM and @, = SMXPY.

4.2. Guidelines for SEC

Step SEC distinguishes ordinary statements and
CALLs. Let P be the procedure to analyze.

Case of an ordinary statement S.

The system of a region equivalent to an array
reference accessed by an iteration s of § is built by
equating variables ¢/ and corresponding subscript
expressions, provided they are linear combinations of
integer scalars.

More formaly, the array reference T(z1, 22 --
is transformed into the region:

(T, U {¢:=21})

% (=4

L, 3g)

where
X = {2z | % isalinear combination of P’s scalars }
For instance, T(I+2*J+1,1*K) becomes:
(T, {¢r=1T"+2J°+1}).
See also region rl in the example of § 3.4.

Case of a CALL C

Regions accessed by the called procedure, say Q,
have been previously computed and associated to Q
by step PEC because of the reverse post order. They
just need to be translated.

Regions of a formal variable ¥ cannot be accu-
rately translated unless V is declared as its
corresponding actual argument or as a part of it, when
it is an array. Most associations between formal and
actual parameters respect this condition: associations
such as scalar/scalar, matrix/matrix, matrix/vector,
vector/element, etc... See for instance the associations
between B and M or between C(1,I) and X in figure 3.

For such associations, regions of @ are renamed,
and their inequalities are translated by using equalities
between @ ’s formal scalar parameters and C'’s actual
arguments, and between P’s and @ ’s common scalar
variables with the same offset. This is only possible
under linearity condition. Consider for instance the
translation of region r 2 to region r3 in figure 3; the
double inequality 1 < ¢f < N1¢ comes from the
translation of 1 < ¢ < N1° with the equality
N1° = N1°, deduced from variable associations
implied by the CALL C'; finally the equality ¢ = I'°
comes from the array/sub-array association between
C(1]) and X. Note that all cases of region translation
are not that simple.

For other associations, a pessimistic attitude
must be adopted: whole arrays are assumed touched.
Finally, effects on common variables can be translated
In the same way due to the assumptions made on
COMMONSs in § 2.

Including the execution context.

In both cases (CALL or ordinary statement), the
execution context associated to the processed statement
1s added to the previously obtained systems. This can
be done since values of scalar variables respect these
inequalities when accesses are performed. For instance,
the region rl, given in § 3.4 for figure 4, describes a
band around MAT’s diagonal only because the execu-
tion context of S is included.

4.3. Guidelines for PEC

Let @ be the procedure to process, and E is its
entry point. For a given array T, we must find the
region accessed by all iterations of all @ ’s statements
as if @ was reduced to 2 single complex statement
associated with E. In order to do that, we have to
transform each region r® = (T,Z°) into a region
r¢ = (T ,5°), elements of V* in ¢ must be either
eliminated or replaced by expressions on V¢ whenever
possible.

For a given scalar variable V, an equality relat-
ing v° and elements of V° can be obtained with a
semantics analysis of @; more simply, detecting non
modified variables between ¢ and s provides equalities

such as ¢° = v°. For instance, the equalities
N1° = N1°*and N2* = N2°2hold in figure 3.

As local scalars have no initial values they are
eliminated; however, information provided by execution
contexts, included in step SEC, is kept because of vari-
able elimination algorithm properties. For instance,
region r1 of figure 4 is transformed into:

(MAT, {2 < ¢f < N°-1, 91 < ¢5 < $/+1})

assuming N is an input parameter and I and J local
variables,

Finally, regions of local variables are just
ignored. Then we just need to make the union of the
resulting regions that describe parts of the same vari-
able. This is done by computing the conver hull of
their inequality systems (algorithm in [7]).

4.4. Guidelines for DGC

As we assume there is neither EQUIVALENCEs
nor aliasing between variables, two regions
ri=(T,Z) and rp=(T5X,) cannot overlap if
Tl ?é Tg,

Dependence between two statements A and B is
due to region overlapping for some of their iterations a
and b .1f A and B are enclosed in n nested loops, the
dependence test is usually performed for a given ezecu-
tion ordering vector A whose elements specify relation-
ships between loop indices that must hold for a certain
kind of dependence to exist [20]. Given r* = (T ,5°),
r® = (T,Z*)and A, a linear system £4 of inequalities
containing all information available is built. If B2 is
not feasible, there is no dependence between A and B
for array T and vector A.

T4 is a system over V° UVt e U@ contain-
ing £* and £* plus three additional systems £° $A
and £~ detailed below.

Overlapping. This condition provides d equations

{ @ = Q(’i& }i € [1,4]
necessary for intersection. They are transformed into a
set of 2X d inequalities called £ See part 3 in the
next example.

Execution Ordering. If I is the index of a loop that
encloses both A and B, A provides a relation
I* N\; I where

)\IE{<-SJ>:2J=;?}

(A\r = 7 is the always true relation). Since all loop
indices belong to V', A provides a new system of ine-
qualities (possibly empty) over V¢ | J V!, called X4
See part 4 in the next example.

Execution Context Invariance. In general, no rela-
tion is known between v° and »®, when v is not a
loop index. However, if v is constant for any iteration
of A and B, the equality v* = v? is verified. Vari-
ables N1, N2 and N3 in figure 3 verify such a condi-
tion. A few of these variables are easy to detect: vari-
ables that are not at all modified for example. They are

very often used in subscript expressions after forward
substitution and induction variable removal transforma-
tions have been performed. These transformations
remove many local variables and replace them with
expressions involving loop indices and constant vari-
ables, for which information is available.

These equalities are transformed in inequalities
80 as to form a third system, £= See part 5 in the
example below.

Example

Let us consider the CALL C to subroutine SMXPY in
figure 3. Testing the output dependence from iteration
¢ of statement C to iteration ¢, leads to the following
T4 system:

- c]
1. region r

1% I oyat

. overlapping of r ‘and r 2
¢1ci= ¢1‘2
bl =o°

. execution ordering

I‘l < ‘rEQ
. execution contezt invariance

N3 1=N32 N1l= N1°2
One can easily see that this system is unfeasible thanks
to equalities and inequalities between I°1 1°2 ¢ ‘1 and
qﬁlte, So there is no output dependence from iteration
¢, to iteration ¢, of statement C for array A.

Deciding linear inequalities is time consuming.
However many constraints are equations like z = y
and are used first to reduce the system size. An
efficient implementation would even take them into

account during the conmstruction of ©® A decision
algorithm is described in the next section.

5. Evaluation of the DGC Algorithm

There are many reasons to evaluate the DGC
algorithm independently of the rest of our method.
Existing parallelization methods do not handle CALL
statements unless they are in-line expanded, so our
method can only be compared at the DGC level. In

addition, our DGC test can be used in existing restruc-
turing compilers without any application to CAlLs; as
this test includes execution contexts, it sometimes pro-
vides better results than other ones. Finally, as the
DDG computation is central in restructuring compilers
(for instance, Parafrase spends half of its CPU time
computing dependences) and as our test requires sym-
bolic computations, we have to show that execution
times can be afforded.

5.1. Parallelization Detection Results

Our test was developed to handle CALLs but it
also provides new results for triangular loops and vec-
tor statements.

CALL Statements

Although the examples shown in this paper are
simple, our method has been successfully applied to
more complex programs such as block matrix algo-
rithms. It may fail because of a too simple semantics
analysis but it can also be used to check parallel
CALLs in parallel programs; numerous conditions must
be verified and a programmer may always forget a few
of them. For instance, detecting the loop L of figure 3
is parallel implies several dependences such as the one
detailed in § 4.4 have to be checked.

Vector Statements

The same kind of check arises with vector
languages. Statements S1 and S2 from figure 5 would
be declared executable in parallel provided that

M(I,1:1-1) N\ M(1:1T-1,1)

can be automatically proved empty. This is just what
we have to do to handle CALLs.

Vector statement scalarization [20] could lead to
usual parallelization by current restructuring compilers.
Unfortunately they are not likely to find such parallel-
ism. For instance, equivalent loop L in figure 5 is not
parallelized by Parafrase.

Triangular Loops

A few parallel loops are declared serial by most
supercompilers due to DDG inaccuracy. The previously
discussed loop L remains serial because statements S1
and 82 are analyzed without their execution context:
1 < J < I-1. They are found to be output depen-
dent.

According to Veidenbaum [19], only a few paral-
lel loops are not discovered by current restructuring
compilers and the CPU time penalty due to the execu-
tion context computation and use may seem worthless.
However, an accurate DDG would also improve the
whole restructuring process. As an example,
DOACROSS delays [4] can be shortened by removing
only one dependence.

TMP = F(I)
MI, 11-1) = +TMP (S1)
M(L:I-1, I) = -TMP (S2)

Scalarization and

Loop Fusion
TMP = F(I)
DO J =11 (L)
M(LJ) = +TMP
M(J]) = -TMP
ENDDO

Figure 5. Vector Statement Restructuring

5.2. Computational Cost of DGC; Deciding
Linear Inequalities

Several methods to decide linear inequalities
have been proposed [16], [6], or may be derived from
linear programming methods. The Fourier-Motzkin’s
method has been implemented and experimented with
systems produced by the dependence test described in §
4.4. These systems usually have a special form: each
inequality involves only a few variables.

Fourier-Motzkin’s method decides a system of
linear inequalities by successively eliminating its vari-
ables. Variable V elimination is done by pairwise
combinations of all inequalities involving V so as to
preserve constraints induced by V on other variables.
A decision is made when an impossible constraint
(0<-b,b € N") appears, or when the system is
empty. Its main advantage is its simplicity: it is
quickly implementable. Its main disadvantage is its
theoretical complexity, known to be exponential in
time and space. In addition, it works on the real line
and cannot tell whether integer solutions exist or not;
wrong dependences are sometimes found, which is con-
servative. However, usual cases are properly handled
thanks to an extra computation based on a GCD test
[2].

Duffin proposes in [6] several improvements of
the Fourrier-Motzkin’s method so as to obtain a practi-
cal computational algorithm. In our case where very
sparse inequality systems are involved, experiments
show that time complexity is in O (L.V?), where I is
the number of inequalities and V' the number of vari-
ables, and that the memory space used to store inter-
mediate systems is decreasing. Extended results are
available in [18]. Nevertheless, our test seems to be an
order of magnitude longer than classical ones in which
it could be included as a sub-test for hard cases. More-
over, it could probably be optimized.

5.3. Comparison With Other DGC Methods

There has been much work in the area of com-
puting dependence graphs [2], [11], [14] & [20], but
none of these methods handles compound statements
like CALLs or vector statements. Taking into account
the loops’ execution context is partially done in Wolfe's
and Banerjee's methods since a few cases of false
dependences can be detected provided the loops’ upper
and lower bounds are integer constants. This feature
was extended in Kuhn's method to triangular loops,
but relations built on variables which are not loop
indices are not considered; as a consequence, loop L in
figure 5 would be declared serial if I is not a loop index.

However, Banerjee’s and Wolfe’s methods have
other advantages. They are based on the resolution of
diophantine equations, and different tests are applied
depending on the type of subscript expressions encoun-
tered. As a result, these methods are fast and can dis-
tinguish between real and integer solutions.

Our test is necessary as far as compound state-
ments are concerned and can be applied to ordinary
statements if good results on triangular loops are
required. On the contrary, if execution time is a prem-
ium, classical tests should be used.

Conclusion

We have presented an interprocedural method to
globally parallelize multi-routine programs. Although
its practical complexity is not as bad as it seems at
first glance, its basic steps, statement effect computa-
tion, procedure effect computation and dependence
graph computation, involve complex algorithms like
symbolic computations and linear programming, whose
cost in CPU time and memory space is heavy. As a
consequence, it is not advocated as a replacement of
previous methods but as a complement, used only
when necessary, upon detection of CALLs inside DO-
loops or upon detection of triangular loops for instance.

The new dependence test developed for interpro-
cedural dependence graph computation can also be
used by classical restructuring compilers when CALLs
are ignored, in which case the statement effect compu-
tation is simplified.

This method was implemented at the Center for
Supercomputing Research and Development at the
University of Illinois. Several passes and low level
functions were added to Parafrase: SDFI computation,
Execution Context computation, SEC and PEC steps,
etc... Finally the dependence test was modified in the
DDG computation.

Encouraging preliminary results were obtained
for CALLs to BLAS in LINPACK: all parallel loops
were automatically detected. However, the limited
semantics analysis method that was implemented could
not cope with complex expressions (e.g. containing
MODULO operators) assigned to variables used in sub-
scripts. So, a few BLAS subroutines had to be hand

modified.

For more complex programs, powerful semantics
analysis methods which provide more information
should be used, but one must be prepared to pay the
corresponding computational cost. However, the same
kind of information, linear inequalities among scalar
variables, should be used since up to now failures due
to non linear subscript expressions were rare when
whole programs were analyzed. Interprocedural con-
stant propagation and forward substitution usually
transform a few variables into numerical constants (eg
size of blocks in block matrix algorithms). The same
effect can be reached by programmers using symbolic
constants.

Automatic parallelization is not the only issue.
Our method can also be used in a programming
environment to check parallel programs containing
CALLs and to provide diagnoses about dependences.
The new concepts introduced, regions and ezecution
conterts, are useful for other purposes like global
optimization, interprocedural checking, array-bound
checking, dead-code elimination among others.

References

1]

2]

(3]

5}

6]

(7]

(9]

[10]

[11]

[12]

[13]

F. E. Allen, Interprocedural Data Flow
Analysis, Proc. of the IFIP Congress, North
Holland, (1974)

U. Banerjee, Speedup of Ordinary Programs,
Report No. UIUCDCS-R-79-989, University
of Nllinois at Urbana-Champaign, (1979)

P. Cousot, N. Halbwacks, Automatic
Discovery of Linear Restraints among Vari-

ables of a Program, in Proc. of the 5th
POPL, (1978)

R. G. Cytron, Compile-time Scheduling and
Optimization for Asynchronous Machines,
Report No. UIUCDCS-R-84-1177, University
of Tllinois at Urbana-Champaign, (1984)

J. J. Dongarra and R. E. Hiromoto, A Col-
lection of Parallel Linear Equations Rou-
tines for the Denelcor HEP, Parallel Com-
puting, vol. 1(2), North Holland, (1984)

R. J. Duffin, On Fourier’s Analysis of
Linear Inequality Systems, Mathematical

Programming Study 1, North Holland,
(1974)
N. Halbwachs, Automatic Discovery of

Linear Relationships among Variables of a
Program, in French: Détermination automa-
tique de relations linéatres vérifices par les
variables d’un programme, These 3eme
cycle, Université de Grenoble (LN.P.),
(1979)

M. S. Hecht, Flow Analysis of Computer
Programs, North Holland, (1977)

C. A. Huson, An In-Line Subroutine
Expander for Parafrase, Rep. UIUCDCS-R-
82-1118, University of Illinois at Urbana-
Champaign, (1982)

M. Karr, Affine Relationships among Vari-
ables of a Program, Acta Informatica, No 6,
(1976)

K. Kennedy, Automatic Translation of For-
tran Programs to Vector Form, Report No.
476-029-4, Rice University, (1980)

G. Killdal, A Unéfied Approch to Global
Program Optimization, Proc. of the 1st

POPL, (1973)

D. J. Kuck, Dependence Graph and Com-
piler Optimizations, Proc. of the 8th POPL,
(1981)

-10 -

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. H. Kuhn, Optimization and Interconnec-
tion Complexity for: Parallel Processors,
Single-Stage Networks, and Decision Trees,
Report No. UIUCDCS-R-80-1009, University
of Illinois at Urbana-Champaign, (1980)

Analyzer Documentation (PARAFRASE),
Center for Supercomputing R & D, Univer-
sity of Illinois at Urbana-Champaign, (1985)

R. Shostak, Deciding Linear Inequalities by
Computing Loop Residues, ACM Journal,
Vol. 28(4), (1981)

R. Triolet, Contribution to Automatic Paral-
lelization of Fortran Programs with Pro-
cedure Calls in French: Contribution a la
parallelisation automatigue de programmes
Fortran comportant des appels de
procédure, These de Docteur-Ingénieur,
Université PARIS VI (LP.), (1984)

R. Triolet, Interprocedural Analysis Based
Restructuring of Fortran Programs, Proc. of
the International Workshop, Parallel Algo-
rithms & Architectures, Marseille (France),
to be published by North-Holland, (Apr.
14-18, 1986)

A. Veidenbaum, Compiler Optimizations
and Architecture Design Issues for Multipro-
cessors, Report No. UIUCDCS-R-85-1207,
University of Illinois at Urbana-Champaign,
(1985)

M. J. Wolfe, Optimizing Supercompilers for
Supercomputers, Report No. UIUCDCS-R-
82-1105, University of Illinois at Urbana-
Champaign, (1982)

